Problème n° 1

Autour de la partie entière :

1) Le but de cette première question est de montrer que pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$,

$$\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor.$$

On va pour ceci raisonner par double inégalité:

a) Montrer que:

$$\frac{\lfloor nx\rfloor}{n} \le x < \frac{\lfloor nx\rfloor}{n} + \frac{1}{n}$$

b) En déduire que;

$$\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor \leq \lfloor x \rfloor.$$

c) Montrer que :

$$n\lfloor x\rfloor \le nx < n\lfloor x\rfloor + n$$
.

- d) En déduire un minorant de $\lfloor nx \rfloor$ puis conclure.
- 2) Dans cette question, on va étudier la "partie entière supérieure" d'un nombre réel. Soit $x \in \mathbb{R}$, on admet qu'il existe un unique entier $N \in \mathbb{Z}$ vérifiant :

$$N - 1 < x \le N$$

On note cette entier $\lceil x \rceil$ et on l'appelle partie entière supérieure de x. Dans les questions suivantes, on démontre quelques propriétés d'un tel objet :

- a) Donner la partie entière supérieure de 3, 3.5, et -2.
- b) Soit $x \in \mathbb{R}$, montrer que $x \le \lceil x \rceil < x + 1$
- c) Montrer que la fonction partie entière supérieure est croissante.
- d) Soit $x \in \mathbb{R}$, montrer que $\lfloor x \rfloor = \lceil x \rceil \iff x \in \mathbb{Z}$.

<u>Problème n° 2</u>

Complexes et racines de l'unité

Soit $u = e^{\frac{2i\pi}{11}}$. On pose:

$$S = u + u^3 + u^4 + u^5 + u^9$$
 et $T = u^2 + u^6 + u^7 + u^8 + u^{10}$

- 1) Justifier que $u^{11} = 1$ et $\bar{u} = \frac{1}{u}$.
- 2) En déduire que S et T sont conjugués.
- 3) Démontrer que S + T = -1 et $S \times T = 3$.
- **4**) En déduire les valeurs de *S* et *T* .
- 5) On rappelle que par définition : $\tan\left(\frac{3\pi}{11}\right) = \frac{\sin\left(\frac{3\pi}{11}\right)}{\cos\left(\frac{3\pi}{11}\right)}$.
- 6) a) Démontrer que :

$$i \tan\left(\frac{3\pi}{11}\right) = \frac{u^3 - 1}{u^3 + 1} = -\sum_{k=1}^{10} \left(-u^3\right)^k$$

- b) Démontrer que : $4i \sin(\frac{2\pi}{11}) = 2(u u^{10})$.
- c) En déduire que : $\tan\left(\frac{3\pi}{11}\right) + 4\sin\left(\frac{2\pi}{11}\right) = i(T-S) = \sqrt{11}$.

Problème n° 3

Autour des fonctions trigonométriques réciproques

1) (Questions préliminaires) :

Donner les valeurs des expressions suivantes lorsqu'elles sont définies (on précisera pourquoi quand elles ne le sont pas) :

$$\arccos(\cos(\frac{21\pi}{4})), \cos(\arccos(\frac{21\pi}{4})), \arcsin(\sin(\frac{3\pi}{5})), \sin(\arcsin(\frac{3\pi}{5})), \tan(\arctan(\frac{5\pi}{2})), \arctan(\tan\frac{5\pi}{2}).$$

- 2) On pose $A = 4 \arctan(\frac{1}{5})$.
 - a) En utilisant 2 fois la formule d'addition/duplication de la tangente déterminer la valeur de tan(A) qu'on notera B.
 - b) Montrer que $0 \le A \le \pi$ (on pourra encadrer $\frac{1}{5}$ judicieusement).
 - c) En déduire que $A = \tan(B)$.
- 3) Soient x et y deux réels tels que 0 < x < y.
 - a) Montrer que:

$$\arctan\left(\frac{x}{y}\right) + \arctan\left(\frac{y-x}{y+x}\right) \in [0, \frac{\pi}{2}[$$

b) En déduire que :

$$\arctan\left(\frac{x}{y}\right) + \arctan\left(\frac{y-x}{y+x}\right) = \frac{\pi}{4}.$$

- 4) Montrer que : $4\arctan\left(\frac{1}{5}\right) \arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$.
- 5) En utilisant un procédé similaire à la question 2), calculer $\arccos \frac{3}{4} + \arccos \frac{2}{3}$.

Problème n° 4

(BONUS: Pour les plus motivés)

Etablir que:

$$\forall x \in \mathbb{R}_+, \operatorname{Arctan}(\operatorname{sh} x) = \operatorname{Arccos}\left(\frac{1}{\operatorname{ch} x}\right)$$