Chapitre 10: Ensembles et applications

A) Ensembles

- Notion d'ensemble, d'éléments
- Parties, inclusions, appartenance
- Preuve égalité par double inclusion
- Intersection, réunion, complémentaire, intersection.
- Produit cartésien
- Ensemble des parties d'un ensemble

B) Applications/Fonctions

- Applications, ensemble de départ, ensemble d'arrivée
- Image, antécédent d'un élément.
- Graphe d'une fonction.
- Fonction identité, fonction indicatrice d'un ensemble
- Egalité d'applications
- Restriction et prolongements.
- Images directes/images réciproques
- Injection, surjection, bijection
- Notion de bijection réciproque, équivalence entre l'existence d'une bijection réciproque et la bijectivité d'une fonction.
- La composée de fonctions injective/surjective/bijective est injective/surjective/bijective

Les notions de famille d'éléments et de relations binaires n'ont pas été abordées; elles seront vu dans le chapitre consacré aux relations binaires.

Chapitre 11 : Nombres réels et suites numériques

A) L'ensemble des nombres réels

- Propriété de la borne supérieure/inférieure sur \mathbb{R} .
- Caractérisation de la borne supérieure (classique et avec des ε .)

Questions de cours :

Les étudiants doivent impérativement savoir redonner les définitions du cours avec des quantificateurs, en particulier les notions d'image directe/réciproque, d'injectivité/surjectivité/bijectivité

- La composée de fonctions injective/surjective/bijective est injective/surjective/bijective (le faire pour les 3).
- Soit $f: E \to F$ Montrer que : f bijective $\iff \exists f^{-1}: F \to E, f^{-1} \circ f = Id_E$ et $f \circ f^{-1} = Id_F$. (On montrera bien les deux sens de l'équivalence).
- Soit *A* et *B* 2 ensembles, prouver :
 - 1) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - **2**) $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- Soit E, F 2 ensembles, A et B 2 sous ensembles de $E, f: E \rightarrow F$ Montrer que :
- 1. $f(A \cup B) = f(A) \cup f(B)$
- 2. $f(A \cap B) \subset f(A) \cap f(B)$. L'inclusion réciproque est-elle vraie?
- Soit E, F 2 ensembles, A et B 2 sous ensembles de $F, f: E \rightarrow F$ Montrer que :
 - 1) $A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$
 - **2**) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$