TD 8: EQUATIONS DIFFÉRENTIELLE LINÉAIRES

En l'absence de précisions, y désigne une fonction de la variable x.

EDL du premier ordre

Résoudre les équations différentielles linéaires homogènes du premier ordre suivantes en précisant le domaine des solutions :

1)
$$y' + 3y = 0$$

4)
$$y' - xy = 0$$

2)
$$y' - (x+1)^2 y = 0$$
;

$$5) y' + \frac{1}{x}y = 0;$$

3)
$$y' - \ln(x)y = 0$$
;

6)
$$y' + \frac{1}{1-x^2}y = 0$$

Résoudre l'équation différentielle suivante :

$$\sqrt{1-x^2}y' + y = 1 \text{ sur }]-1,1[$$

(Un second membre particulier)

Résoudre sur \mathbb{R} les équations différentielles :

1)
$$y' + 2y = x^2$$

3)
$$y' - y = (x+1)e^x$$

1)
$$y' + 2y = x^2$$

2) $y' + y = 2\sin(x)$

3)
$$y' - y = (x+1)e^x$$

4) $y' + y = x - e^x + \cos(x)$

Résoudre sur \mathbb{R} les équations différentielles :

1)
$$y' - \frac{2}{t}y = t^2 \text{ sur }]0, +\infty[$$

2)
$$(1+x)y' + y = 1 + \ln(1+x)$$
 sur $]-1,+\infty[$

3)
$$y' + \tan(x)y = \cos(x) + \sin(2x)$$

4)
$$y' + y = x - e^x + \cos(x)$$

1)
$$y' - \frac{2}{t}y = t^2 \text{ sur }]0, +\infty[$$
 5) $y' - \frac{\sinh(x)}{1 + \cosh(x)}y = \sinh(x) \text{ sur } \mathbb{R}$

6)
$$\operatorname{ch}(x)y' - \operatorname{sh}(x)y = \operatorname{sh}^3(x) \operatorname{sur} \mathbb{R}$$

7)
$$(e^x - 1)y' + e^x y = 1 \text{ sur } \mathbb{R}_+^* \text{ et } \mathbb{R}_-^*$$

8)
$$(x^2+1)y'-xy=(x^2+1)^{3/2}$$

Déterminer l'unique solution
$$y$$
 de l'équation $y' - \frac{2x}{1+x^2}y = 1$ telle que $y(0) = 1$.

**

1) Déterminer les fonctions $f:[0,1] \to \mathbb{R}$ dérivables telles que :

$$\forall x \in [0,1], f'(x) + f(x) = f(0) + f(1)$$

2) Trouver toutes les applications f dérivables de \mathbb{R} dans **C** telles que :

$$\forall (x, y) \in \mathbb{R}^2 \quad f(x+y) = f(x)f(y).$$

EDL du second ordre

Résoudre les équations différentielles linéaires homogènes du second ordre suivantes:

1)
$$y'' + y = 0$$
;

4)
$$y'' - y = 0$$
;

1)
$$y'' + y = 0;$$

2) $y'' - 3y' + 2y = 0;$
3) $y'' = -2y' - y;$
6) $y'' = -2y' - y;$

5)
$$y'' = -2y' - y$$

3)
$$y'' - y' + (1 - i)y = 0$$
; 6) $y'' - 2iy' - y = 0$.

6)
$$y'' - 2iy' - y = 0$$
.

Résoudre sur \mathbb{R} les équations différentielles :

1)
$$y'' + 2y' + y = xe^x$$

3)
$$y'' + 2y' + 2y = (x+1)e^{-x}$$

2)
$$y'' + y' - 2y = xe^x$$

2)
$$y'' + y' - 2y = xe^x$$
 4) $y'' - 2y' + y = e^x$

Résoudre les équations différentielles suivantes :

1)
$$y'' + y' - 6y = 1 - 8x - 30x^2$$
,

2)
$$y'' + y' = 3 + 2x$$
,

3)
$$y'' + 4y = 4 + 2x - 8x^2 - 4x^3$$
.

10 Résoudre sur \mathbb{R} les équations différentielles :

1)
$$y'' + y = \sinh(x)$$

2)
$$y'' - 3y' + 2y = x \operatorname{ch}(x)$$

3)
$$y'' - 2y' + y = 2 \operatorname{ch}(x)$$

11 Résoudre sur \mathbb{R} les équations différentielles :

1)
$$y'' + 2y' + 2y = \sin(x)$$

2)
$$y'' + y = x \sin(x)$$

3)
$$y'' + y = 2\cos^2(x)$$

Résoudre l'équation différentielle suivante sur tout intervalle ne contenant pas -1 :

$$(1+x)^2y'' + (1+x)y' - 2 = 0.$$

13 $\bigstar \bigstar$ Déterminer tous les couples $(a, b) \in \mathbb{R}^2$ tels que les solutions de l'équation y'' + ay' + by = 0 soient toutes bornées sur \mathbb{R}_+ .

Applications et complications

14 Résoudre le système différentiel :

$$\begin{cases} x'' = x' + y' - y \\ y'' = x' + y' - x \end{cases}$$

où x et y sont des fonctions de la variable t.

Le mouvement d'une particule chargée dans un champ magnétique suivant l'axe (Oz) est régi par un système différentiel de la forme

$$\begin{cases} x'' = \omega y' \\ y'' = -\omega x' \\ z'' = 0 \end{cases}$$

où ω dépend de la masse et de la charge de la particule, ainsi que du champ magnétique. En posant u = x' + iy', résoudre ce système différentiel.

On cherche à résoudre sur \mathbb{R}_+^* l'équation différentielle :

$$x^2y'' - 3xy' + 4y = 0.(E)$$

- 1) Cette équation est-elle linéaire? Qu'est-ce qui change par rapport au cours?
- 2) Analyse: Soit y une solution de (E) sur \mathbb{R}_+^* . Pour $t \in \mathbb{R}$, on pose $z(t) = y(e^t)$.
 - a) Calculer pour $t \in \mathbb{R}, z'(t)$ et z''(t).
 - b) En déduire que z vérifie une équation différentielle linéaire d'ordre 2 à coefficients constants que l'on précisera (on pourra poser $x = e^t$ dans (E)).
 - c) Résoudre l'équation différentielle trouvée à la question précédente.
 - d) En déduire le "portrait robot" de *y* (quel forme doit-il avoir en vue des questions précédentes)?
- 3) Synthèse : Vérifier que, réciproquement, les fonctions trouvées à la fin de l'analyse sont bien toutes les solutions de (E) et conclure.
- Soit (E) l'équation différentielle :

$$xy'' + 2(x+1)y' + (x+2)y = 0.$$

En considérant la fonction $z: x \mapsto xy(x)$, résoudre cette équation différentielle sur \mathbb{R}^*_{\perp} .

- (Recollement)
- 1) On considère l'équation différentielle

$$(E): xy' + (x+1)y = x+1$$

- a) Résoudre (*E*) sur \mathbb{R}_+^* et \mathbb{R}_-^* .
- b) L'équation (E) a-t-elle une solution sur \mathbb{R} ?
- 2) Trouver toutes les solutions dérivables sur $\mathbb R$ de l'équation différentielle :

(E) :
$$x^3y' - 2y = 0$$

19 $\bigstar \bigstar$ Résoudre sur \mathbb{R} l'équation (E): y''' - y'' + y' - y = 0.