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Exercice 1

1. On saisit :

>>> 2.%x%x1024
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
2.%x1024
OverflowError: (34, ’Result too large’)
>>> 2%x1024
179769313486231590772930519078902473361797697894230657273430081157732675

2. La premiére saisie est faite avec virgule et U'interpréteur traite donc le nombre au format
flottant. L’exposant qui suit est hors du champ de validité du format flottant d’ou Ierreur
Overflow. La deuxiéme saisie est faite sans virgule donc linterpréteur traite le nombre au
format int, format sans limitation pour les entiers relatifs d’ou le résultat.

Exercice 2

1. On saisit :

>>> 1+2%* (-10) -1==2%%(-10)
True

>>> 1+2%* (-100) -1==2%*(-100)
False

2. Cette expérimentation illustre le phénoméne d’absorption : bien que python sache traiter 2719
seul, la limite de précision est dépassée lors du calcul de 1 + 2719 qui est donc traité comme 1
d’ou le résultat observé.

3. On compléte :

def seuil():
n=1
while 1+2**(-n)-1==2**(-n):
n+=1
return n-1

On obtient :

>>> seuil()
52




On trouve la taille de la mantisse ce qui était prévisible : c’est elle qui détermine la précision du
codage d’un flottant.

4. On saisit :

def seuill(deb,fin):
c=(deb+fin)//2
while deb<=fin:
if 1+2%%(-c)-1==2%*(-c):

deb=c+1
else:
fin=c-1
c=(fin+deb)//2
return ¢
Exercice 3
1. On saisit :
>>> . 1+4.2
0.30000000000000004
>>> .3+.6
0.8999999999999999
>>> .8+.9

1.7000000000000002

Ces calculs trés simples montrent les limites de codage du format flottant.

2. On obtient :

0.100000000000000005655
0.20000000000000001110

0.50000000000000000000
0.59999999999999997780

Les nombres dont la saisie est fidéle au codage sont ceux dont la partie fractionnaire est consti-
tu&adepuBsanm%rﬁgaﬁvesde2:()etOiB::%.Pourmnwlesaume&lecodagenkﬁtpasconﬁmnm
a la saisie de l'utilisateur. Il s’agit d’'un défaut structurel du format float, défaut présent dans
tous les langages de programmation utilisant ce format.

3. On obtient :

0.01000000000000000021
0.02000000000000000042

0.23999999999999999112
0.25000000000000000000
0.26000000000000000888




On constate le méme phénomeéne avec 0.75 = %4—% et 0.25 = }l et un codage non conforme pour
les autres.

Exercice 4

1. Le calcul donne P=X2-04X+0.04 et Q=X2-X+0.25

2. On saisit :

def discriminant(a,b,c):
return b**x2-4xaxc==0

puis

>>> discriminant(1,-.4,.04)
False
>>> discriminant(1,-1,.25)
True

3. Dans les deux cas, les polynémes sont a racines doubles mais le test utilisé n’en détecte qu'un
sur les deux, celui dont les coefficients sont constitués exactement de puissances (négatives) de
deux. Pour un tel test, on s’expose immanquablement a des erreurs de codage.

4. 1l faut privilégier un test de la forme abs (delta)<eps avec un seuil eps choisi par 'utilisateur.

Exercice 5

2. Théoriquement, on devrait avoir R(h) = 0 pour tout h # 0. Ce n’est pourtant pas ce qu’on ob-
serve avec taux_acc (10,2**55,100) puis en concentrant I’étude avec taux_acc (2*x*50,2%%53,100) :
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FIGURE 1 — Tracé de Derreur relative R(h) en fonction de ;

3. On constate qu’a partir de ¢ = 0.6 x 10, on a R(h) = 1 soit une erreur de 100%. On remarque
que 0.6 x 10'6 ~ 252 aqutrement dit erreur devient totale au dela du seuil d’absorption. Mais
avant d’atteindre ce seuil, on observe une zone d’instabilité numérique avec des résultats trés
médiocres : c’est le phénoméne de cancellation catastrophique (ou élimination catastrophique)
otl le calcul amplifie I'erreur numérique jusqu’a un niveau pathologique.



Exercice 6

1. On saisit :

def mant(x,n):
a=bin(int (2**n*x))
return al3:]

2. On saisit :

>>> liste=[1,1.5,1.25,1.125,1.1,1.9]
>>> for x in liste:
print (mant (x,50))

000000000000000000000000000000000000000060000000000
100000000000000000000000600000000000000000000000000
01000000000000000000000000000000000000000000000000
00100000000000000000000000000000000000000000000000
00011001100110011001100110011001100110011001100110
11100110011001100110011001100110011001100110011001

3. Pour les nombres de la forme 1 + 5% avec k € [0; 2°% — 1], Pécriture binaire fractionnaire
semble finie (elle I'est mais on ne peut pas vérifier expérimentalement qu’il y a une infinité de
zéros). Pour les autres, I’écriture binaire fractionnaire semble au contraire infini.

4. On saisit :

>>> for x in liste:
print (mant (x,100))

0000000000000000000000000000000000000000000000000000000000000000000000. . .
1000000000000000000000000000000000000000000000000000000000000000000000. . .
0100000000000000000000000000000000000000000000000000000000000000000000. . .
0010000000000000000000000000000000000000000000000000000000000000000000. . .
0001100110011001100110011001100110011001100110011001000000000000000000. . .
1110011001100110011001100110011001100110011001100110000000000000000000. . .

On gagne quelques chiffres significatifs mais a peine. En fait, la taille de la mantisse est de 52
bits donc au dela de 52 chiffres dans 'écriture binaire fractionnaire, c’est peine perdue. On ne
peut pas espérer plus de précision que le format codé en machine.




