
ISM MPSI/PCSI, Informatique
Année 2025/2026

Corrigé du TP Informatique 16

Exercice 1

1. On saisit :

>>> 2.**1024

Traceback (most recent call last):

File "<pyshell#0>", line 1, in <module>

2.**1024

OverflowError: (34, 'Result too large')

>>> 2**1024

179769313486231590772930519078902473361797697894230657273430081157732675

...

2. La première saisie est faite avec virgule et l'interpréteur traite donc le nombre au format
�ottant. L'exposant qui suit est hors du champ de validité du format �ottant d'où l'erreur
Overflow. La deuxième saisie est faite sans virgule donc l'interpréteur traite le nombre au
format int, format sans limitation pour les entiers relatifs d'où le résultat.

Exercice 2

1. On saisit :

>>> 1+2**(-10)-1==2**(-10)

True

>>> 1+2**(-100)-1==2**(-100)

False

2. Cette expérimentation illustre le phénomène d'absorption : bien que python sache traiter 2−100

seul, la limite de précision est dépassée lors du calcul de 1 + 2−100 qui est donc traité comme 1
d'où le résultat observé.

3. On complète :

def seuil():

n=1

while 1+2**(-n)-1==2**(-n):

n+=1

return n-1

On obtient :

>>> seuil()

52

1

On trouve la taille de la mantisse ce qui était prévisible : c'est elle qui détermine la précision du
codage d'un �ottant.

4. On saisit :

def seuil1(deb,fin):

c=(deb+fin)//2

while deb<=fin:

if 1+2**(-c)-1==2**(-c):

deb=c+1

else:

fin=c-1

c=(fin+deb)//2

return c

Exercice 3

1. On saisit :

>>> .1+.2

0.30000000000000004

>>> .3+.6

0.8999999999999999

>>> .8+.9

1.7000000000000002

Ces calculs très simples montrent les limites de codage du format �ottant.

2. On obtient :

0.10000000000000000555

0.20000000000000001110

...

0.50000000000000000000

0.59999999999999997780

...

Les nombres dont la saisie est �dèle au codage sont ceux dont la partie fractionnaire est consti-
tuée de puissances négatives de 2 : 0 et 0.5 = 1

2
. Pour tous les autres, le codage n'est pas conforme

à la saisie de l'utilisateur. Il s'agit d'un défaut structurel du format float, défaut présent dans
tous les langages de programmation utilisant ce format.

3. On obtient :

0.01000000000000000021

0.02000000000000000042

...

0.23999999999999999112

0.25000000000000000000

0.26000000000000000888

...

2

On constate le même phénomène avec 0.75 = 1
2
+ 1

4
et 0.25 = 1

4
et un codage non conforme pour

les autres.

Exercice 4

1. Le calcul donne P = X2 − 0.4X + 0.04 et Q = X2 − X+ 0.25

2. On saisit :

def discriminant(a,b,c):

return b**2-4*a*c==0

puis

>>> discriminant(1,-.4,.04)

False

>>> discriminant(1,-1,.25)

True

3. Dans les deux cas, les polynômes sont à racines doubles mais le test utilisé n'en détecte qu'un
sur les deux, celui dont les coe�cients sont constitués exactement de puissances (négatives) de
deux. Pour un tel test, on s'expose immanquablement à des erreurs de codage.

4. Il faut privilégier un test de la forme abs(delta)<eps avec un seuil eps choisi par l'utilisateur.

Exercice 5

2. Théoriquement, on devrait avoir R(h) = 0 pour tout h ̸= 0. Ce n'est pourtant pas ce qu'on ob-
serve avec taux_acc(10,2**55,100) puis en concentrant l'étude avec taux_acc(2**50,2**53,100) :

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1e16

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1e16

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1 � Tracé de l'erreur relative R(h) en fonction de 1
h

3. On constate qu'à partir de 1
h
≳ 0.6×1016, on a R(h) = 1 soit une erreur de 100%. On remarque

que 0.6 × 1016 ≃ 252 autrement dit l'erreur devient totale au delà du seuil d'absorption. Mais
avant d'atteindre ce seuil, on observe une zone d'instabilité numérique avec des résultats très
médiocres : c'est le phénomène de cancellation catastrophique (ou élimination catastrophique)
où le calcul ampli�e l'erreur numérique jusqu'à un niveau pathologique.

3

Exercice 6

1. On saisit :

def mant(x,n):

a=bin(int(2**n*x))

return a[3:]

2. On saisit :

>>> liste=[1,1.5,1.25,1.125,1.1,1.9]

>>> for x in liste:

print(mant(x,50))

00

1000

0100

001000

00011001100110011001100110011001100110011001100110

11100110011001100110011001100110011001100110011001

3. Pour les nombres de la forme 1 + k
252

avec k ∈ [[0 ; 252 − 1]], l'écriture binaire fractionnaire
semble �nie (elle l'est mais on ne peut pas véri�er expérimentalement qu'il y a une in�nité de
zéros). Pour les autres, l'écriture binaire fractionnaire semble au contraire in�ni.

4. On saisit :

>>> for x in liste:

print(mant(x,100))

00...

1000...

0100...

001000...

0001100110011001100110011001100110011001100110011001000000000000000000...

1110011001100110011001100110011001100110011001100110000000000000000000...

On gagne quelques chi�res signi�catifs mais à peine. En fait, la taille de la mantisse est de 52
bits donc au delà de 52 chi�res dans l'écriture binaire fractionnaire, c'est peine perdue. On ne
peut pas espérer plus de précision que le format codé en machine.

4

