ISM MPSI/PCSI, Informatique
Année 2025/2026

Corrigé du TP Informatique 19

Exercice 1

1. On saisit :

h=lambda pos: [pos[0]-1,pos[1]]
b=lambda pos: [pos[0]+1,pos[1]]
g=lambda pos: [pos[0],pos[1]-1]
d=lambda pos: [pos[0],pos[1]+1]

2. On saisit :

def visite(laby,pos):
"""Bascule pos dans laby en état visité"""
laby[pos[0]1] [pos[1]1]1=1

3. On saisit :

def etat(laby,pos):
prise en compte des bords
L,C=1len(laby),len(laby[0])
if pos[0]<0 or pos[0]>=L or pos[1]<0 or pos[1]>=C:
return 2
else:
return laby[pos[0]1] [pos[1]]

4. On saisit :

def voisinage(laby,pos):
"""Indique si pos dans laby admet un voisin pas encore visité"""
return etat(laby,g(pos))*etat(laby,d(pos))*etat(laby,h(pos))*etat(laby,b(pgs))==0

5. On saisit :

def voisin(laby,pos):
"""Renvoie un voisin de pos dans laby pas encore visité"""
if etat(laby,g(pos))==0:
return g(pos)
elif etat(laby,d(pos))==0:
return d(pos)
elif etat(laby,h(pos))==0:
return h(pos)
elif etat(laby,b(pos))==0:
return b(pos)

ou une version avec boucle :

def voisin(laby,pos):
Lpos=[g,d,h,b]
for £ in Lpos:
if etat(laby,f(pos))==0:
return f(pos)

6. On saisit :

def dedale(laby,deb,fin):
"""Résout le labyrinthe laby en partant de la position deb"""
chemin=Pile()
chemin.empiler(deb)
pos=deb
while pos!=fin and not chemin.vide():
visite(laby,pos)
if voisinage(laby,pos):
chemin.empiler(pos)
pos=voisin(laby,pos)
else:
pos=chemin.depiler ()
i1f pos==fin:
visite(laby,pos)
return not chemin.vide(),chemin

On teste :
plt.imshow(np.array(laby),cmap=’Greys’,interpolation=’nearest’)
plt.show()

deb=[0,0]

fin=[3,6] # ou [1,6] pour pas de chemin

print ("Recherche de chemin - origine :", deb)

print ("priorité de transition : gauche/droite/haut/bas")
res,chemin=dedale(laby,deb,fin)

print ("Résultat :")

print(res)
plt.imshow(np.array(laby),cmap=’Greys’,interpolation=’nearest’)
plt.show()

La pile chemin contient un chemin du début a la sortie.

Exercice 2

1. On saisit :

def creuse(laby,pos):
"""Creuse la case en position pos dans laby"""
laby[pos[0]] [pos[1]]1=0

def mur(laby,pos):
"""Mure la case en position pos dans laby"""
laby[pos[01] [pos[1]11=2

2. On saisit :

def avance(laby,pos):

"""Liste des cases creusables depuis pos dans laby"""

L,C=1len(laby),len(laby[0])

res=[]

if pos[0]>0 and etat(laby,h(pos))==2 and not voisinage(laby,h(pos)):
res.append (h(pos))

if pos[0]<L-1 and etat(laby,b(pos))==2 and not voisinage(laby,b(pos)):
res.append (b(pos))

if pos[1]>0 and etat(laby,g(pos))==2 and not voisinage(laby,g(pos)):
res.append (g(pos))

if pos[1]<C-1 and etat(laby,d(pos))==2 and not voisinage(laby,d(pos)):
res.append (d(pos))

return res

3. On saisit :

def gener(laby,deb):
"""Génération d’un labyrinthe dans laby en partant de deb"""
chemin=Pile()
pos=deb
chemin.empiler(pos)
fin=False
while not fin:
liste=avance(laby,pos)
creuse (laby,pos)
n=len(liste)
if n==0:
pos=chemin.depiler ()
mur (laby,pos)
fin=pos==deb
else:
pos=liste[rd.randint(n)]
chemin.empiler(pos)
creuse (laby,pos)

On teste :

L,C=8,156

laby1=[[2 for j in range(15)] for i in range(8)]

print ("Génération de labyrinthe")

gener (laby1l, [0,0])
plt.imshow(np.array(labyl),cmap=’Greys’,interpolation=’nearest’)
plt.show()

FIGURE 1 — Un labyrinthe parfait

