
ISM MPSI/PCSI, Informatique
Année 2025/2026

Corrigé du TP Informatique 19

Exercice 1

1. On saisit :

h=lambda pos:[pos[0]-1,pos[1]]

b=lambda pos:[pos[0]+1,pos[1]]

g=lambda pos:[pos[0],pos[1]-1]

d=lambda pos:[pos[0],pos[1]+1]

2. On saisit :

def visite(laby,pos):

"""Bascule pos dans laby en état visité"""

laby[pos[0]][pos[1]]=1

3. On saisit :

def etat(laby,pos):

prise en compte des bords

L,C=len(laby),len(laby[0])

if pos[0]<0 or pos[0]>=L or pos[1]<0 or pos[1]>=C:

return 2

else:

return laby[pos[0]][pos[1]]

4. On saisit :

def voisinage(laby,pos):

"""Indique si pos dans laby admet un voisin pas encore visité"""

return etat(laby,g(pos))*etat(laby,d(pos))*etat(laby,h(pos))*etat(laby,b(pos))==0

5. On saisit :

def voisin(laby,pos):

"""Renvoie un voisin de pos dans laby pas encore visité"""

if etat(laby,g(pos))==0:

return g(pos)

elif etat(laby,d(pos))==0:

return d(pos)

elif etat(laby,h(pos))==0:

return h(pos)

elif etat(laby,b(pos))==0:

return b(pos)

ou une version avec boucle :

1

def voisin(laby,pos):

Lpos=[g,d,h,b]

for f in Lpos:

if etat(laby,f(pos))==0:

return f(pos)

6. On saisit :

def dedale(laby,deb,fin):

"""Résout le labyrinthe laby en partant de la position deb"""

chemin=Pile()

chemin.empiler(deb)

pos=deb

while pos!=fin and not chemin.vide():

visite(laby,pos)

if voisinage(laby,pos):

chemin.empiler(pos)

pos=voisin(laby,pos)

else:

pos=chemin.depiler()

if pos==fin:

visite(laby,pos)

return not chemin.vide(),chemin

On teste :

plt.imshow(np.array(laby),cmap='Greys',interpolation='nearest')

plt.show()

deb=[0,0]

fin=[3,6] # ou [1,6] pour pas de chemin

print("Recherche de chemin - origine :", deb)

print("priorité de transition : gauche/droite/haut/bas")

res,chemin=dedale(laby,deb,fin)

print("Résultat :")

print(res)

plt.imshow(np.array(laby),cmap='Greys',interpolation='nearest')

plt.show()

La pile chemin contient un chemin du début à la sortie.

2

Exercice 2

1. On saisit :

def creuse(laby,pos):

"""Creuse la case en position pos dans laby"""

laby[pos[0]][pos[1]]=0

def mur(laby,pos):

"""Mure la case en position pos dans laby"""

laby[pos[0]][pos[1]]=2

2. On saisit :

def avance(laby,pos):

"""Liste des cases creusables depuis pos dans laby"""

L,C=len(laby),len(laby[0])

res=[]

if pos[0]>0 and etat(laby,h(pos))==2 and not voisinage(laby,h(pos)):

res.append(h(pos))

if pos[0]<L-1 and etat(laby,b(pos))==2 and not voisinage(laby,b(pos)):

res.append(b(pos))

if pos[1]>0 and etat(laby,g(pos))==2 and not voisinage(laby,g(pos)):

res.append(g(pos))

if pos[1]<C-1 and etat(laby,d(pos))==2 and not voisinage(laby,d(pos)):

res.append(d(pos))

return res

3. On saisit :

def gener(laby,deb):

"""Génération d'un labyrinthe dans laby en partant de deb"""

chemin=Pile()

pos=deb

chemin.empiler(pos)

fin=False

while not fin:

liste=avance(laby,pos)

creuse(laby,pos)

n=len(liste)

if n==0:

pos=chemin.depiler()

mur(laby,pos)

fin=pos==deb

else:

pos=liste[rd.randint(n)]

chemin.empiler(pos)

creuse(laby,pos)

On teste :

3

L,C=8,15

laby1=[[2 for j in range(15)] for i in range(8)]

print("Génération de labyrinthe")

gener(laby1,[0,0])

plt.imshow(np.array(laby1),cmap='Greys',interpolation='nearest')

plt.show()

0 2 4 6 8 10 12 14

0

1

2

3

4

5

6

7

Figure 1 � Un labyrinthe parfait

4

