ISM MPSI/PCSI, Informatique
Année 2025/2026

TP Informatique 19

Copier le fichier ClassePile.py dans le répertoire de travail puis, pour chaque programme,
commencer par réaliser l'importation from ClassePile import * pour manipuler la classe
ClassePile. Celle-ci est munie des opérations primitives suivantes :

— Pile() qui crée une pile vide;

— P.vide () qui renvoie True si la pile P est vide et False sinon;

— P.empiler(x) qui empile I’élément x dans la pile P;

— P.depiler() qui dépile le sommet de la pile non vide P.
On dispose également de I'opération P.affiche () pour afficher le contenu de la pile P.

Exercice 1

On modélise un labyrinthe par une liste de listes
d’entiers. On fixe la convention suivante :

0

— les murs sont numérotés par des 2,
— les cases non visitées par des 0;
— et une case visitée par 1.

Une position est désignée par une liste [i,j]
ol ¢ désigne le numéro de ligne et j le numéro
de colonne. Dans ’exemple ci-contre saisi dans
le fichier 1aby . py, le point en haut a gauche ad-
met pour position [0,0], en bas a droite [6,6]
et la sortie [3,6].

Les déplacements dans un labyrinthe sont vers
le haut, vers le bas, vers la droite ou vers la
gauche (pas de déplacement en diagonal). FIGURE 1 — Labyrinthe parcouru

1. Ecrire des fonctions h(pos) pour haut, b(pos) pour bas, g(pos) pour gauche et d(pos)
pour droite d’argument pos une position sous forme de liste [i,j] qui renvoient une
nouvelle liste contenant la position aprés déplacement (on ne modifiera pas la liste fournie
en argument). On supposera le déplacement possible (absence de mur dans la direction
du déplacement).

2. Ecrire une fonction visite(laby,pos) qui passe I'état de la case en position pos a 1,
c’est-a-dire a 1’état wvisité.
3. Ecrire une fonction etat (1aby,pos) qui renvoie I'état de la case du labyrinthe située a la

position pos. La fonction devra renvoyer 2, c’est-a-dire un mur si pos repére une position
hors du labyrinthe.



4. Ecrire une fonction voisinage(laby,pos) qui renvoie True si la case en position pos
admet une position voisine non visitée vers laquelle un déplacement est possible.

5. Ecrire une fonction voisin(laby,pos) qui, pour une position admettant une position
voisine libre non visitée, en renvoie une. Les priorités de déplacement sont laissées au
choix du programmeur.

6. Ecrire une fonction dedale (laby,deb,fin) d’arguments un labyrinthe laby, une position
initiale deb, une position a atteindre fin. La fonction dedale modifie directement les cases
de laby en les passant a I’état visité jusqu’a trouver un chemin menant a la sortie si celui-
ci existe et sinon jusqu’a épuisement des cases accessibles. La fonction dedale renvoie un
True et une pile contenant un chemin jusqu’a la sortie si celui-ci existe, False et une pile
vide sinon.

L’algorithme est le suivant : la position courante est initialisée a la position de début et empilée
dans un chemin; puis, tant qu’on n’est pas sorti et que le chemin n’est pas vide, on marque
la position courante comme wisitée (il se peut qu’elle le soit déja), on regarde s’il y a des cases
voisines libres non visitées : si oui, on empile la case courante et on se déplace sur 'une de ces
positions voisines, sinon, on dépile la derniére position empilée et on y retourne (on fait marche
arriére sur une case déja visitée donc). On sort de la boucle « tant que » soit parce qu’on est
sorti du labyrinthe, soit parce que le chemin est vide ce qui signifie qu’on a visité toutes les cases
accessibles sans atteindre la sortie.

Exercice 2

Dans le fichier laby_rd.py, la fonction 1ab(N,M,p) d’arguments N nombre de lignes, M nombre
de colonnes et p la probabilité qu'une case soit un mur génére un labyrinthe de maniére élémen-
taire. Mais ceci n’est pas pleinement satisfaisant car un tel labyrinthe peut étre sans solution.

On se propose de générer aléatoirement un labyrinthe parfait, ou chaque case libre est reliée a une
autre par un unique chemin. Un tel labyrinthe est sans sans boucle, sans ilots, ... On part d’un
environnement constitué uniquement de murs qu’on va creuser pour fabriquer le labyrinthe. Pour
qu’il soit parfait, on ne creuse pas une case qui est voisine d'un case déja creusée. On conserve
les conventions fixées dans l’exercice précédent. On utilisera également les fonctions etat et
voisinage.

1. Ecrire une fonction creuse(laby,pos) qui passe 'état de la case en position pos a 0 et

une fonction mur(laby,pos) qui passe son état a 2.

2. Ecrire une fonction avance (laby,pos) qui renvoie les cases creusables depuis la position
pos. Par convention, on ne creuse pas un mur qui débouche sur une case libre.

3. Ecrire une fonction gener (1aby,deb) d’arguments un labyrinthe laby constitué de murs
et deb une position initiale et qui modifie directement les cases de laby pour générer un
labyrinthe depuis la position deb.

L’algorithme est le suivant : on empile la position de départ puis, tant qu’on n’est pas revenu en
position initiale, on détermine la liste des cases creusables depuis la position courante, on creuse
la case ot I'on se trouve, s’il n’y a pas de cases creusables, on dépile la derniére position ce qui
permet de revenir sur ses pas et on mure la position de repli (pour ne pas fausser le caractére
éventuellement creusable des positions voisines), sinon on en choisit une au hasard parmi celles
creusables et on I'empile.

On utilisera la fonction rd.randint (a,b) qui permet de réaliser un tirage aléatoire d’un entier
dans [a; b—1].



