
ISM MPSI/PCSI, Informatique
Année 2025/2026

TP Informatique 19

Copier le �chier ClassePile.py dans le répertoire de travail puis, pour chaque programme,
commencer par réaliser l'importation from ClassePile import * pour manipuler la classe
ClassePile. Celle-ci est munie des opérations primitives suivantes :

� Pile() qui crée une pile vide ;
� P.vide() qui renvoie True si la pile P est vide et False sinon ;
� P.empiler(x) qui empile l'élément x dans la pile P ;
� P.depiler() qui dépile le sommet de la pile non vide P.

On dispose également de l'opération P.affiche() pour a�cher le contenu de la pile P.

Exercice 1

On modélise un labyrinthe par une liste de listes
d'entiers. On �xe la convention suivante :

� les murs sont numérotés par des 2,
� les cases non visitées par des 0 ;
� et une case visitée par 1.

Une position est désignée par une liste [i,j]

où i désigne le numéro de ligne et j le numéro
de colonne. Dans l'exemple ci-contre saisi dans
le �chier laby.py, le point en haut à gauche ad-
met pour position [0,0], en bas à droite [6,6]
et la sortie [3,6].

Les déplacements dans un labyrinthe sont vers
le haut, vers le bas, vers la droite ou vers la
gauche (pas de déplacement en diagonal).

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 1 � Labyrinthe parcouru

1. Écrire des fonctions h(pos) pour haut, b(pos) pour bas, g(pos) pour gauche et d(pos)
pour droite d'argument pos une position sous forme de liste [i,j] qui renvoient une
nouvelle liste contenant la position après déplacement (on ne modi�era pas la liste fournie
en argument). On supposera le déplacement possible (absence de mur dans la direction
du déplacement).

2. Écrire une fonction visite(laby,pos) qui passe l'état de la case en position pos à 1,
c'est-à-dire à l'état visité.

3. Écrire une fonction etat(laby,pos) qui renvoie l'état de la case du labyrinthe située à la
position pos. La fonction devra renvoyer 2, c'est-à-dire un mur si pos repère une position
hors du labyrinthe.

1

4. Écrire une fonction voisinage(laby,pos) qui renvoie True si la case en position pos

admet une position voisine non visitée vers laquelle un déplacement est possible.

5. Écrire une fonction voisin(laby,pos) qui, pour une position admettant une position
voisine libre non visitée, en renvoie une. Les priorités de déplacement sont laissées au
choix du programmeur.

6. Écrire une fonction dedale(laby,deb,fin) d'arguments un labyrinthe laby, une position
initiale deb, une position à atteindre fin. La fonction dedalemodi�e directement les cases
de laby en les passant à l'état visité jusqu'à trouver un chemin menant à la sortie si celui-
ci existe et sinon jusqu'à épuisement des cases accessibles. La fonction dedale renvoie un
True et une pile contenant un chemin jusqu'à la sortie si celui-ci existe, False et une pile
vide sinon.

L'algorithme est le suivant : la position courante est initialisée à la position de début et empilée
dans un chemin ; puis, tant qu'on n'est pas sorti et que le chemin n'est pas vide, on marque
la position courante comme visitée (il se peut qu'elle le soit déjà), on regarde s'il y a des cases
voisines libres non visitées : si oui, on empile la case courante et on se déplace sur l'une de ces
positions voisines, sinon, on dépile la dernière position empilée et on y retourne (on fait marche
arrière sur une case déjà visitée donc). On sort de la boucle � tant que � soit parce qu'on est
sorti du labyrinthe, soit parce que le chemin est vide ce qui signi�e qu'on a visité toutes les cases
accessibles sans atteindre la sortie.

Exercice 2

Dans le �chier laby_rd.py, la fonction lab(N,M,p) d'arguments N nombre de lignes, M nombre
de colonnes et p la probabilité qu'une case soit un mur génère un labyrinthe de manière élémen-
taire. Mais ceci n'est pas pleinement satisfaisant car un tel labyrinthe peut être sans solution.

On se propose de générer aléatoirement un labyrinthe parfait, où chaque case libre est reliée à une
autre par un unique chemin. Un tel labyrinthe est sans sans boucle, sans îlots, . . . On part d'un
environnement constitué uniquement de murs qu'on va creuser pour fabriquer le labyrinthe. Pour
qu'il soit parfait, on ne creuse pas une case qui est voisine d'un case déjà creusée. On conserve
les conventions �xées dans l'exercice précédent. On utilisera également les fonctions etat et
voisinage.

1. Écrire une fonction creuse(laby,pos) qui passe l'état de la case en position pos à 0 et
une fonction mur(laby,pos) qui passe son état à 2.

2. Écrire une fonction avance(laby,pos) qui renvoie les cases creusables depuis la position
pos. Par convention, on ne creuse pas un mur qui débouche sur une case libre.

3. Écrire une fonction gener(laby,deb) d'arguments un labyrinthe laby constitué de murs
et deb une position initiale et qui modi�e directement les cases de laby pour générer un
labyrinthe depuis la position deb.

L'algorithme est le suivant : on empile la position de départ puis, tant qu'on n'est pas revenu en
position initiale, on détermine la liste des cases creusables depuis la position courante, on creuse
la case où l'on se trouve, s'il n'y a pas de cases creusables, on dépile la dernière position ce qui
permet de revenir sur ses pas et on mure la position de repli (pour ne pas fausser le caractère
éventuellement creusable des positions voisines), sinon on en choisit une au hasard parmi celles
creusables et on l'empile.

On utilisera la fonction rd.randint(a,b) qui permet de réaliser un tirage aléatoire d'un entier
dans [[a ; b− 1]].

2

