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de beaux pavages du plan.

L'AUTEUR

1 existe une grande variété de formes
fractales, engendrées par de nombreux procédés.
En dépit de leur frontiere ciselée a I'extréme, cer-
taines d’entre elles pavent parfaitement le plan:
on peut emboiter des copies d’une telle forme
pour recouvrir entiérement le plan, sans laisser de
trou et sans aucun chevauchement. Un tel recou-
vrement parfait du plan par des briques de base
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des mathématiques:

et I'incomplétude

forme du plan dont la dimension ne vaut pas 1
(comme pour un cercle) ni 2 (comme pour
un disque), mais un nombre réel non entier.
Dans le cas ol la dimension est comprise stric-
tement entre 1 et 2, cela signifie qu’on a affaire
a une forme de nature intermédiaire entre
une courbe usuelle et une forme d’aire non
nulle. La dimension non entiere d’une frac-
tale en fait un objet «infiniment découpé »,
et la plupart des fractales ont de plus la pro-
priété d’étre «autosimilaires»: en zoomant
ou dézoomant autant qu’on le veut sur une
partie quelconque de la forme, on observera
toujours les mémes motifs. C’est par exemple
le cas de la célebre courbe définissant le bord
du flocon de von Koch (voir Pencadré 1), du
tapis de Sierpinski, ou encore de la fractale
de Mandelbrot.

Un des pavages les plus simples du plan,
méme si ’on oublie souvent de le mentionner,
est celui qu’on obtient en exploitant un seg-
ment de droite S entre deux points A et B, dont
on conserve une extrémité — par exemple, le

FLOCONSET
DRAGONS POUR
PAVER LE PLAN

Les fractales sont des objets mathématiques qui défient
I'intuition. Certaines d’entre elles poussent ’exotisme
jusqu’a s’emboiter parfaitement pour former

point A - et pas 'autre, ce qu'on note S=[A,B[.
Il est clair qu’en alignant des copies de ce seg-
ment les unes contre les autres, on obtient un
pavage parfait de la droite D qui porte le seg-
ment [A,B]. En pavant de la méme fagon
chaque droite paralléle a D dans le plan, on
obtient un pavage du plan tout entier n’utili-
sant que des copies de S. Bien str, le nombre
de copies de S utilisé pour ce pavage est infini
non dénombrable, mais il s’agit bien d’un
pavage au sens le plus strict, car tout point du
plan est couvert par exactement une copie de S.
On appelle «pavage fin» un tel découpage du
plan en une quantité indénombrable de sous-
parties disjointes d’intérieur vide. La question
qui nous intéresse en premier lieu est celle de
I’existence de pavages fins du plan utilisant non
pas un segment, mais une forme fractale. De
tels pavages existent bel et bien, et un premier
exemple provient du tout premier objet fractal
introduit en mathématiques: le graphe de la
fonction de Weierstrass.

PAVAGES FINS

En 1872, le mathématicien allemand Karl
Weierstrass présente a ses collegues de ’Aca-
démie des sciences de Berlin un exemple de
fonction continue sur tout R, I'ensemble des
nombres réels, mais qui n’est pourtant déri-
vable en aucun point, ce qu’on pensait alors
impossible. Plus précisément, il présente une
famille de telles fonctions, famille indexée sur
deux parametres réels. Pour tous nombres a et b



© Toutes les images sont de Pour la Science d'apres J. P. Delahaye

FLOCON DE VON KOCH ET DIMENSION FRACTALE

Le flocon de von Koch est défini a partir de la
courbe présentée dans le dessin (a), qui est
construite de manieére itérée. On part d'un
segment de longueur 1. On en retire le tiers
central, qu'on remplace par deux sommets d'un
triangle équilatéral de c6té 1 / 3. On reproduit
ces mémes étapes de construction sur chacun
des quatre segments de la figure obtenue, et on
recommence le procédé indéfiniment. La courbe
finalement obtenue est de longueur infinie,
puisqu'a chaque itération de la construction on
multiplie la longueur de la courbe par4 /3 > 1.
Elle est également autosimilaire : si 'on zoome
autant qu'on le veut sur n'importe quelle portion
de cette courbe, ce qu'on obtiendra ressemblera
a la courbe dans sa totalité.

Pour obtenir le flocon de von Koch complet, on
prend trois exemplaires de cette courbe, qu'on
joint a leurs extrémités autour d'un triangle
équilatéral, comme montré dans le dessin (b).
C'est une forme fractale : sa dimension, non
entiére, vaut log(4) / log(3) = 1,261 859...
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La dimension d'un sous-ensemble E du plan ou
de U'espace peut étre définie de plusieurs facons,
qui heureusement coincident dans la plupart des
cas. L'une des méthodes de calcul de la
dimension, appelée « méthode de Minkowski-
Bouligand », ou « méthode box-counting »,

consiste a recouvrir E par des ensembles de

taille décroissante. Si le nombre minimum de
morceaux de taille inférieure ou égale a e — avec
e un nombre réel strictement positif — nécessaires
pour recouvrir E est N(e), alors la dimension D

de E est la limite, quand e tend vers zéro,

de log(N(e)) / log(1/ e).

Ainsi, comme il faut N(1 / n) = n segments de
taille 1 / n pour recouvrir un segment de droite
de longueur 1, on calcule que

log(N(1/n)) /log(1/ (1 /n)) =log(n) / log(n) = 1.
Donc la dimension du segment est 1. De méme,
comme il faut N(1/ n) = n? carrésde cété1/n
pour recouvrir un carré plein de cé6té 1, le calcul
montre que le carré plein de coté 1 est de
dimension 2.

Pour calculer la dimension de la courbe qui sert

a construire le flocon de von Koch, on considére
par exemple une suite de triangles isocéles dont
la base est de longueur e, = (1 / 3)", qui recouvrent
la courbe, comme dans les figures du dessin (c). Il
faut N(1) = 1 triangle de base e, = 1 pour recouvrir
la courbe ; puis N(1/ 3) = 4 triangles de

basee, =1/ 3; puis N(1/9) = 16 triangles de
longueure, =1/9; etc. De maniére générale, il
faut N(1 / 3") = 4" triangles de longueur e, = (1 / 3)
pour la courbe. On calcule donc que

log(N(e,)) / log(1/ e,) = log(4™) / log(1 / (1/ 3") =

(n xlog(4)) / (n x log(3)) = log(4) / log(3) =

1,261 859... En faisant tendre n vers + o — donc
en faisant tendre la taille des triangles de la
construction vers 0 —, on obtient que la limite

de log(N(e,)) / log(1 / e,) vaut

log(4) / log(3) = 1,261 859... C'est la dimension,
non entiere, de la courbe définissant le flocon

de von Koch. Cela justifie son caractére fractal.

y N
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tels que a est compris entre O et 1, et b est un
entier impair tel que ab>1+(37/2), la fonc-
tion f, , de Weierstrass est définie par:

fus(0) =X, g a*xcos(b'mx),
pour tout nombre réel x.

Chaque fonction utilisée dans cette
somme infinie décrit une oscillation pério-
dique, de plus en plus rapide a mesure que
n augmente, ce qui explique la non dérivabilité
de la somme.

Conjecturée par Benoit Mandelbrot et
démontrée seulement en 2017 par le mathé-
maticien allemand Gerhard Keller, et indé-
pendamment par le mathématicien chinois
Weixiao Shen, la dimension fractale du graphe
de la fonction f,, est donnée par la formule:
D=2+log(a) /log(b). En prenant, par exemple,
a=1/2 et b=3, on a donc: D=2+log(1/2) /log(3) =
1,2690071...

Le fait que le graphe de f;, pave le plan est
assez simple & démontrer. En translatant le
graphe de la fonction f,, verticalement de 7,
pour i un nombre réel quelconque non nul, on
obtient le graphe de la fonctionf, ,, définie par
fann () =f,, () +h, qui ne coupe le graphe def,,
en aucun point. L’ensemble des translatés du
graphe quand on fait varier h de - & + pave
donc parfaitement le plan. Ce pavage par le
graphe d’une fonction continue n’est en rien
extraordinaire: on a la méme chose pour le
graphe de toute fonction définie et continue
sur R. Toutefois, ce qui est étonnant dans ce
cas précis, c’est que le graphe n’a pas une
dimension égale a 1.

Notons que dans ce pavage, la brique de
base —la courbe de f,, - est de taille infi-
nie, ce qu’on peut juger insatisfaisant. C’est
cependant facile a corriger, car la fonc-
tion f,, est périodique de période 2: pour
tout nombre réel x, f,,(x+2) =f,,(x). Pour
définir un pavage par des formes bornées, il
suffit donc de ne retenir que le morceau du
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A gauche, le graphe de la fonction de
‘ Weierstrass f,, sur l'infervalle [0, 2[ avec les
[ parameétres a=1/2 et b=3. I s'agit d'une forme
r/ fractale, qui pave par translation la bande

N"“ [ verticale entre les droites d'équation x= 0
| y/ et x=2, comme le montre la figure de droite.
H"” En franslatant vers la droite et vers la gauche

la bande verticale ainsi obtenue, on pave alors
parfaitement le plan tout entier avec le graphe
fractal de Weierstrass. C'est un pavage fin du plan.

graphe correspondant aux abscisses de I'in-
tervalle [0,2[. Cela fournit un morceau du
graphe qui pave le graphe de la fonction f,,
tout entier —de la méme maniere que le seg-
ment [A,B[ pave toute la droite qui le porte.
Avec les translations verticales, cela permet
donc de paver tout le plan (voir la figure ci-
dessus). Cette méthode s’adapte a tout graphe
fractal d’une fonction continue définie sur un
intervalle borné de nombres réels.

11 existe cependant des courbes fractales
qui ne sont pas des graphes de fonctions défi-
nies sur R ou sur un intervalle. C’est par
exemple le cas de la frontiere du célébre flocon
de von Koch, qui est une courbe de dimen-
sion log(4) [log(3) (voir Pencadré 1). Est-il pos-
sible de paver le plan avec cette courbe?

On peut prouver qu’un cercle de rayon non
nul, méme si ’on accepte d’en faire varier la
taille, ne pave pas le plan. Le raisonnement
s’adapte facilement pour démontrer que la
frontiere du flocon de von Koch ne pave pas
non plus le plan. Peut-on, en revanche, y par-
venir si ’on ne prend qu’une partie de cette
courbe - par exemple son tiers supérieur?
Cette question est plus subtile. Pour chercher
a y répondre, on peut s’autoriser a n’utiliser
que des copies exactes de ce tiers supérieur, ou
au contraire s’autoriser a utiliser des copies de
tailles différentes. Dans aucun des deux cas je
ne connais la réponse: voila un beau défi pour
les lecteurs et lectrices qui souhaiteraient se
pencher sur la question!

PAVAGES GENERALISES

Poursuivons avec le flocon de von Koch,
mais en le considérant cette fois-ci avec son
intérieur. Nous noterons vK la forme ainsi
obtenue. Ce flocon rempli n’est pas une forme
fractale, car il contient un disque de rayon
non nul - donc sa dimension est supérieure
ou égale a 2 — et qu'’il est par ailleurs contenu



dans le plan - sa dimension est donc inférieure
ou égale a 2. Il est par conséquent de dimen-
sion exactement 2. Toutefois, sa frontiere, elle,
est fractale. Que se passe-t-il si 'on cherche a
paver le plan avec de telles formes aux bords
infiniment découpés?

Précisons tout d’abord que, lorsqu’on parle
de pavage du plan par une forme F de dimen-
sion 2, on considere qu’on réalise un pavage si
chaque point du plan est recouvert par au
moins une copie de F, mais ’on accepte que les
points sur la frontiére des copies de la forme F
soient couverts plusieurs fois. C’est le cas
quand on considere le pavage du plan par des
carrés pleins: la frontiere de chaque carré est
couverte deux fois, et les coins des carrés sont
méme couverts quatre fois.

Laforme vK ne pave pas le plan: on constate
aisément qu’il n’existe aucune fagon de placer
cOte a cote deux copies de vK sans laisser d’es-
pace non couvert entre elles. En revanche, et
c’est une chose tout a fait étonnante, en com-
binant des copies de vK et des copies de vK de
taille 1/ \/ 3, on peut paver le plan (voir Penca-
dré 2). Cette utilisation de la méme forme mais
dans deux tailles différentes amene la notion
de «pavage généralisé ».

A ce stade, précisons un peu le vocabulaire.
Pour nous, «un pavé» P du plan désigne une
forme bornée (c’est-a-dire qui tient dans un
disque de rayon fini), fermée au sens topolo-
gique (elle contient sa frontiére), qui a au moins
un point intérieur p (i.e. il existe un disque de
rayon non nul de centre p, entierement contenu
dans P) et qui est telle qu'un point est sur la
frontiere de P si et seulement s’il est la limite
d’une suite de points intérieurs a P. Ainsi, un
carré plein avec sa frontiere ou un flocon de von
Koch rempli constituent des pavés. Un 9 dont
on remplit le trou, en revanche, n’en est pas un,
car la queue du 9 est composée de points qui
sont sur sa frontiere mais ne sont pas la limite
de suites de points intérieurs.

Un «pavage généralisé» d’un sous-
ensemble Q du plan (par exemple, le plan tout
entier) par un pavé P est un pavage du plan
obtenu non plus en emboitant parfaitement
des exemplaires de P, mais des exemplaires
d’un ensemble fini de formes distinctes P,,
P,, ..., P, tel que chaque P, est obtenu en appli-
quant une ou plusieurs opérations de rotation,
de translation ou d’homothétie a P. Autrement
dit, chaque P; a la méme forme que P, mais sa
taille peut étre différente. On exige aussi que
deux formes du pavage n’aient en commun, au
plus, que des points de leurs frontieres, et que
tout point de Q soit un point d’un des P, ou la
limite de points pris dans les P, — cette derniere
condition est un peu délicate, mais elle est
importante, car il arrive que certains points ne
soient pas inclus dans les P, mais soient seule-
ment limites de points inclus dedans.

On peut démontrer les deux étonnants
résultats ci-dessous:

(a) Quel que soit le pavé P, il existe un
pavage généralisé du plan par P.

(b) Si P et Q sont deux pavés, il existe un
pavage généralisé de Q par P.

Revenons au flocon de von Koch plein, vK.
En manipulant le pavage du plan par deux
flocons de tailles respectives 1 et 1/\/3, on
obtient un pavage de vK par des flocons de plus
en plus petits (voir Pencadré 2). 11 s’agit bien
d’un pavage généralisé de vK par vK, au sens
indiqué ci-dessus.

Reste une question naturelle: s’il n’existe
pas de pavage du plan avec un unique flocon de

DE VON KOCH

Le flocon de von Koch avec son
intérieur, qu'on note vK, permet de
paver le plan si l'on s'autorise a utiliser
deux tailles différentes de vK (taille 1 et
taille 1/ V3), comme le représente le
dessin (a). La démonstration de ce
résultat n'est pas évidente du tout, mais
elle a été magistralement expliquée par
Mickaél Launay dans une vidéo de sa
chaine YouTube « Micmaths ».

En regardant attentivement ce pavage,
on constate qu'un gros flocon est
toujours entouré de 6 petits, et que
Uensemble de ces 7 flocons forme

1 flocon encore plus

gros. Réciproquement, cela signifie
qu'un flocon peut étre découpé en

7 « sous-flocons » : un gros au centre
et 6 petits autour. On en déduit la
construction d'un pavage du plan

avec des vK de trois tailles différentes,
comme le montre le dessin (b).

En réitérant le procédé on trouve

bien str un pavage avec quatre tailles
différentes de flocons, et l'on peut
poursuivre et obtenir des pavages avec
n tailles différentes de flocons, pour
toutn > 2.

On en déduit également un pavage du
flocon par lui-méme avec des séries de
flocons de plus en plus petits a mesure
que l'on s'approche du centre - plus
précisément, pour un flocon de taille 1,
on obtient un pavage par des séries de
flocons de taille (1 / V3)" pour toutn > 1,
comme le montre le dessin (c). C'est un
pavage généralisé de vK par vK.

Ces emboitements parfaits de flocons
de plus en plus petits permettent par
ailleurs de paver n'importe quelle
partie Q du plan « ouverte » au sens
topologique - c'est-a-dire une partie Q
du plan dont chaque point est le centre
d'un disque entiérement contenu

dans Q. Le dessin (d) montre, par
exemple, le début d'un tel pavage

pour un disque ouvert.

PAVAGES AVEC DES FLOCONS
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von Koch, est-il néanmoins possible de paver
le plan avec un unique pavé de dimension 2 a
frontiere fractale? La réponse est positive, et
l’on peut construire un tel pavé en utilisant la
courbe définie par le tiers supérieur du flocon
de von Koch. Les procédés permettant de
construire de tels pavés fournissent en réalité
une infinité de pavages du plan par des formes
de dimension 2 a frontiere fractale.

A PARTIR D'UN PAVAGE
QUELCONQUE

Une premiere idée consiste a partir d'un
pavage du plan par des carrés et a modifier les
carrés en remplacant chacun de leurs quatre
coOtés par le tiers supérieur de la frontiere
de vK. De la sorte, on obtient bien une forme
de dimension 2 a frontiere fractale. Pour que
cette forme pave le plan, il faut de plus que
les courbes fractales utilisées a la place des
cdtés du carré s’emboitent, ce qu’on garantit
en orientant ces morceaux de courbe alternati-
vement «vers l'intérieur » et «vers ’extérieur »
du carré initial (voir la figure ci-dessous).
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En appliquant le méme procédé mais en
partant, cette fois-ci, du pavage du plan par
des hexagones réguliers, on obtient un autre
pavé a frontiere fractale. Cette méthode ne
fonctionne pas, en revanche, si ’on part du
pavage du plan par des triangles équilatéraux.
En effet, 3 est un nombre impair, ce qui inter-
dit d’équilibrer la forme: en utilisant cette
méthode de substitution, on obtiendrait soit
un pavé ou la substitution se serait faite deux
fois vers ’extérieur et une fois vers I'intérieur,
soit un pavé oti la substitution se serait faite
deux fois vers I'intérieur et une fois vers ’ex-
térieur. Dans ces deux cas, les formes obte-
nues ne s’emboitent pas pour paver le plan.
En revanche, on peut exploiter ce pavage du
plan par des triangles équilatéraux si ’on
remplace les bords des triangles non pas par
le tiers supérieur de la frontiere de vK, mais
par une courbe fractale possédant un centre
de symétrie (voir la figure ci-contre). On peut
facilement construire une telle courbe en
utilisant une méthode de substitution répé-
tée, comme pour le flocon de von Koch, mais
avec un motif de base possédant un centre de
symétrie. Une telle courbe fractale symétrique
permet d’ailleurs de construire des pavés a
frontiere fractale a partir de n’importe quel
pavé polygonal ayant tous ses cotés de méme
longueur, méme quand ce pavé polygonal a un
nombre impair de cotés.

LES DRAGONS

Une méthode entierement différente four-
nit une autre famille infinie de formes a fron-
tiere fractale pavant le plan: celle du «dragon
de Heighway» et de ses variantes. Découvert
en 1966 par John Heighway, Bruce Banks et
William Harter, des physiciens de la Nasa, le
«dragon de Heighway» a été popularisé en 1967
par Martin Gardner, par le biais d’un article
dans le magazine Scientific American. Il est tou-
jours I’objet de recherche a ’heure actuelle:
en 2025 de nouvelles propriétés lui ont encore
été découvertes!

Le procédé pour engendrer le dragon est élé-
mentaire. On part d’une bande de papier, quon
plie en deux en rabattant «par le dessus» la

On peut obtenir un pavé a frontiére fractale en partant
d'un carré et en remplagant ses cotés par des courbes
fractales. En utilisant, pour ce faire, le tiers supérieur de
la frontiere du flocon de von Koch, il y a deux fagons
d'opérer cette substitution des cotés, montrées dans
les dessins (a) et (b). Pour le dessin (a), on a orienté la
courbe fractale «vers |'extérieur du carré» pour deux
cOtés adjacents, et «vers l'intérieur» pour les deux autres
cotés. Pour le dessin (b), on a alterné «vers I'extérieur»
et «vers l'intérieur». Si I'on souhaite appliquer la méme
méthode en partant d'un triangle équilatéral, on peut
exploiter une courbe fractale possédant un centre

de symétrie, construite par substitutions répétées,
comme le montre le dessin (c).



LES DRAGONS

En pliant quatre fois « par le dessus » une bande

de papier, puis en la dépliant en transformant les A e o ige
plis creux et bosses en angles droits, on obtient b 25Uy 9% o3 i"e ;Ebe T ¢
une courbe nommeée « courbe du dragon a b i *"cﬁgv :

Uordre 4 ».

En opérant la méme série d'opération n fois au
lieu de 4, pour tous les entiers n, on obtient une
suite de courbes qui, a l'infini, converge vers une
forme a deux dimensions et a frontiére fractale :
le « dragon de Heighway ».

s
i3]

a 1
g 6
{ s
4 On observe qu'a tout ordre, un dragon est composé
( ( exactement de deux « sous-dragons » identiques,
plus petits, orthogonaux l'un a l'autre - cela résulte
de la construction. C'est ce constat qui permet de

démontrer que le dragon de Heighway pave le plan.

moitié droite de la bande. On recommence en
rabattant «par le dessus» la moitié droite de la
bande pliée. On recommence, par exemple,
4 fois. On déplie alors la bande en s’arrangeant
pour que chacun de plis marqués - en creux ou
en bosse - forme un angle droit. La forme obte-
nue apres n étapes de pliage puis le dépliage est
une courbe continue qui ne se recoupe pas.
Quand on fait tendre n vers I'infini on obtient le
«dragon de Heighway» (voir encadré 3).
Phénomene remarquable: la forme obtenue a
'infini est de dimension 2. En effet, a force de
«se replier sur elle-méme» au fil des étapes de
construction, la courbe finit par remplir com-
plétement une partie du plan d’intérieur non
vide H, chaque point de H étant la limite d’une
suite de points pris sur la courbe. Comme le
flocon de von Koch, le dragon a une fronticre
fractale, de dimension:
log,(1/3x[1+1/(73-6+/87)++/ (73+6y/87)1) =

1,5236...

Si, aulieu de plier «par le dessus» a chaque
étape de la construction, on plie une fois sur
deux «par le dessus» et une fois sur deux «par
le dessous», on obtient a chaque étape une
autre courbe qui ne se recoupe pas, qui a I'in-
fini fournit un autre dragon. Il y a bien évi-
demment une infinité de facons de choisir une
suite alternant des pliages «par le dessus» et
«par le dessous », ce qui donne une infinité de
dragons différents.

Un tres beau résultat assure que chaque dra-
gon engendré par une suite périodique de pliages
pave le plan. N’importe quel dragon est en effet
composé de deux parties identiques liées 'une a
lautre et tournées d’un angle droit I'une par rap-
port a lautre, car le premier pli de la construc-
tion a superposé la partie droite et la partie

gauche de labande et par la suite les deux parties
ont été soumises exactement aux mémes pliages.
En revanche, ces deux sous-parties ne sont, a
priori, pas nécessairement identiques au dragon
dans son ensemble. Cependant, si la suite qui a
engendré le dragon est périodique, en décompo-
sant de la méme facon chacun des deux demi-
dragons en deux autres sous-parties, puis en
réitérant opération, on finira par trouver une
décomposition en 2* parties identiques au dra-
gon dans son ensemble, avec k la période de la
suite génératrice. Un tel dragon est donc pavé
par des dragons identiques a lui-méme mais plus
petits. Inversement, on peut donc assembler
2* exemplaires du dragon pour créer une forme
identique au dragon, mais en plus gros. En réité-
rant opération, on recouvre une partie du plan
de plus en plus grande avec un assemblage de
dragons. En particulier, on recouvre des disques
de taille de plus en plus grande, car le dragon de
départ couvre un disque de rayon non nul. Or un
résultat général concernant les pavages indique
que si des assemblages de copies d’un pavé P
couvrent des disques de rayons aussi grands
qu’on le veut, alors P pave le plan tout entier. Par
conséquent, chacun des dragons obtenus a partir
d’une suite périodique de pliages pave le plan. Ce
résultat fournit une infinité de pavés a 2 dimen-
sions et a frontiere fractale.

Nous avons décrit quelques procédés per-
mettant de paver le plan avec des fractales ou des
formes a frontieres fractales, mais ce champ des
mathématiques ne s’arréte pas la. Régulierement
de nouvelles constructions sont proposées et
étudiées, ce qui entraine des développements
parfois tres riches mathématiquement. Si les
pavages fractals, en définitive, ne sont pas rares,
leur intérét mathématique est indiscutable. m
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