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FLOCONS ET 
DRAGONS POUR 
PAVER LE PLAN

Les fractales sont des objets mathématiques qui défient 
l’intuition. Certaines d’entre elles poussent l’exotisme  
jusqu’à s’emboîter parfaitement pour former  
de beaux pavages du plan.

point A – et pas l’autre, ce qu’on note S$=$[A,$B[. 
Il est clair qu’en alignant des copies de ce seg-
ment les unes contre les autres, on obtient un 
pavage parfait de la droite D qui porte le seg-
ment  [A,$B]. En pavant de la même façon 
chaque droite parallèle à D dans le plan, on 
obtient un pavage du plan tout entier n’utili-
sant que des copies de S. Bien sûr, le nombre 
de copies de S utilisé pour ce pavage est infini 
non dénombrable, mais il s’agit bien d’un 
pavage au sens le plus strict, car tout point du 
plan est couvert par exactement une copie de S. 
On appelle «$pavage fin$» un tel découpage du 
plan en une quantité indénombrable de sous-
parties disjointes d’intérieur vide. La question 
qui nous intéresse en premier lieu est celle de 
l’existence de pavages fins du plan utilisant non 
pas un segment, mais une forme fractale. De 
tels pavages existent bel et bien, et un premier 
exemple provient du tout premier objet fractal 
introduit en mathématiques$: le graphe de la 
fonction de Weierstrass.

PAVAGES FINS
En 1872, le mathématicien allemand Karl 

Weierstrass présente à ses collègues de l’Aca-
démie des sciences de Berlin un exemple de 
fonction continue sur tout ℝ, l'ensemble des nombres réels, mais qui n’est pourtant déri-
vable en aucun point, ce qu’on pensait alors 
impossible. Plus précisément, il présente une 
famille de telles fonctions, famille indexée sur 
deux paramètres réels. Pour tous nombres a et b 

Il existe une grande variété de formes 
fractales, engendrées par de nombreux procédés. 
En dépit de leur frontière ciselée à l’extrême, cer-
taines d’entre elles pavent parfaitement le plan$: 
on peut emboîter des copies d’une telle forme 
pour recouvrir entièrement le plan, sans laisser de 
trou et sans aucun chevauchement. Un tel recou-
vrement parfait du plan par des briques de base 
parfaitement emboîtées est appelé «$pavage$».

En toute rigueur, une fractale est une 
forme du plan dont la dimension ne vaut pas 1 
(comme pour un cercle) ni 2 (comme pour 
un disque), mais un nombre réel non entier. 
Dans le cas où la dimension est comprise stric-
tement entre 1 et 2, cela signifie qu’on a affaire 
à une forme de nature intermédiaire entre 
une courbe usuelle et une forme d’aire non 
nulle. La dimension non entière d’une frac-
tale en fait un objet «$infiniment découpé$», 
et la plupart des fractales ont de plus la pro-
priété d’être «$autosimilaires$»$: en zoomant 
ou dézoomant autant qu’on le veut sur une 
partie quelconque de la forme, on observera 
toujours les mêmes motifs. C’est par exemple 
le cas de la célèbre courbe définissant le bord 
du flocon de von Koch (voir l’encadré 1), du 
tapis de Sierpinski, ou encore de la fractale 
de Mandelbrot.

Un des pavages les plus simples du plan, 
même si l’on oublie souvent de le mentionner, 
est celui qu’on obtient en exploitant un seg-
ment de droite S entre deux points A et B, dont 
on conserve une extrémité – par exemple, le ©
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Le flocon de von Koch est défini à partir de la 
courbe présentée dans le dessin (a), qui est 
construite de manière itérée. On part d’un 
segment de longueur 1. On en retire le tiers 
central, qu’on remplace par deux sommets d’un 
triangle équilatéral de côté 1#/#3. On reproduit 
 ces mêmes étapes de construction sur chacun 
des quatre segments de la figure obtenue, et on 
recommence le procédé indéfiniment. La courbe 
finalement obtenue est de longueur infinie, 
puisqu’à chaque itération de la construction on 
multiplie la longueur de la courbe par 4#/#3#>#1. 
Elle est également autosimilaire#: si l’on zoome 
autant qu’on le veut sur n’importe quelle portion 
de cette courbe, ce qu’on obtiendra ressemblera  
à la courbe dans sa totalité.

Pour obtenir le flocon de von Koch complet, on 
prend trois exemplaires de cette courbe, qu’on 
joint à leurs extrémités autour d’un triangle 
équilatéral, comme montré dans le dessin (b).
C’est une forme fractale#: sa dimension, non 
entière, vaut log(4)#/#log(3) = 1,261#859…

La dimension d’un sous-ensemble E du plan ou 
de l’espace peut être définie de plusieurs façons, 
qui heureusement coïncident dans la plupart des 
cas. L’une des méthodes de calcul de la 
dimension, appelée «#méthode de Minkowski-
Bouligand#», ou «#méthode box-counting#», 

consiste à recouvrir E par des ensembles de  
taille décroissante. Si le nombre minimum de 
morceaux de taille inférieure ou égale à e – avec 
e un nombre réel strictement positif – nécessaires 
pour recouvrir E est N(e), alors la dimension D 
de E est la limite, quand e tend vers zéro, 
de log(N(e))#/#log(1#/#e).
Ainsi, comme il faut N(1#/#n)#=#n segments de 
taille 1#/#n pour recouvrir un segment de droite  
de longueur 1, on calcule que 
log(N(1#/#n))#/#log(1#/#(1#/#n))#=#log(n)#/#log(n)#=#1. 
Donc la dimension du segment est 1. De même, 
comme il faut N(1#/#n)#=#n2 carrés de côté 1#/#n 
pour recouvrir un carré plein de côté 1, le calcul 
montre que le carré plein de côté 1 est de 
dimension 2.
Pour calculer la dimension de la courbe qui sert  
à construire le flocon de von Koch, on considère 
par exemple une suite de triangles isocèles dont 
la base est de longueur en#=#(1#/#3)n, qui recouvrent 
la courbe, comme dans les figures du dessin (c). Il 
faut N(1)#=#1 triangle de base e0#=#1 pour recouvrir 
la courbe#; puis N(1#/#3)#=#4 triangles de 
base e1#=#1#/#3#; puis N(1#/#9)#=#16 triangles de 
longueur e2 #=#1#/#9#; etc. De manière générale, il 
faut N(1#/#3n)#=#4n triangles de longueur en#=#(1#/#3)n 
pour la courbe. On calcule donc que 
log(N(en))#/#log(1#/#en)#=#log(4n)#/#log(1#/#(1#/#3n))#= 
(n#×#log(4))#/#(n#×#log(3))#=#log(4)#/#log(3)#= 
1,261#859… En faisant tendre n vers +#∞ – donc  
en faisant tendre la taille des triangles de la 
construction vers 0 –, on obtient que la limite  
de log(N(en))#/#log(1#/#en) vaut 
log(4)#/#log(3)#=#1,261#859… C’est la dimension, 
non entière, de la courbe définissant le flocon  
de von Koch. Cela justifie son caractère fractal.

1
FLOCON DE VON KOCH ET DIMENSION FRACTALE
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À gauche, le graphe de la fonction de 
Weierstrass fa,b sur l’intervalle [0, 2[ avec les 
paramètres a = 1 / 2 et b = 3. Il s’agit d’une forme 
fractale, qui pave par translation la bande 
verticale entre les droites d’équation x =  0 
et x = 2, comme le montre la figure de droite.  
En translatant vers la droite et vers la gauche  
la bande verticale ainsi obtenue, on pave alors 
parfaitement le plan tout entier avec le graphe 
fractal de Weierstrass. C’est un pavage fin du plan.

f(x) f(x)
2 2

2 2

1 1

-1 -1

-2 -2

1 1

tels que a est compris entre 0 et 1, et b est un 
entier impair tel que ab$>$1$+$(3π$/$2), la fonc-
tion fa,b de Weierstrass est définie par$:

fa,b(x)$=$Σn%≥$ 0 an$×$cos(bnπx),
pour tout nombre réel x.

Chaque fonction utilisée dans cette 
somme infinie décrit une oscillation pério-
dique, de plus en plus rapide à mesure que 
n augmente, ce qui explique la non dérivabilité 
de la somme.

Conjecturée par Benoît Mandelbrot et 
démontrée seulement en 2017 par le mathé-
maticien allemand Gerhard Keller, et indé-
pendamment par le mathématicien chinois 
Weixiao Shen, la dimension fractale du graphe 
de la fonction fa,b est donnée par la formule$: 
D$=$2$+$log(a)$/$log(b). En prenant, par exemple, 
a%=$1$/$2 et b%=$3, on a donc$: D$=$2$+$log(1$/$2)$/$log(3)$=$
1,269$0071…

Le fait que le graphe de fa,b pave le plan est 
assez simple à démontrer. En translatant le 
graphe de la fonction  fa,b verticalement de h, 
pour h un nombre réel quelconque non nul, on 
obtient le graphe de la fonction fa,b,h définie par 
fa,b,h(x)$=$fa,b(x)$+$h, qui ne coupe le graphe de fa,b 
en aucun point. L’ensemble des translatés du 
graphe quand on fait varier h de –$∞ à +$∞ pave 
donc parfaitement le plan. Ce pavage par le 
graphe d’une fonction continue n’est en rien 
extraordinaire$: on a la même chose pour le 
graphe de toute fonction définie et continue 
sur ℝ. Toutefois, ce qui est étonnant dans ce 
cas précis, c’est que le graphe n’a pas une 
dimension égale à 1.

Notons que dans ce pavage, la brique de 
base – la courbe de fa,b – est de taille infi-
nie, ce qu’on peut juger insatisfaisant. C’est 
cependant facile à corriger, car la fonc-
tion  fa,b est périodique de période  2$: pour 
tout nombre réel  x, fa,b(x %+$2)$=$fa,b(x). Pour 
définir un pavage par des formes bornées, il 
suffit donc de ne retenir que le morceau du 

graphe correspondant aux abscisses de l’in-
tervalle [0,$2[. Cela fournit un morceau du 
graphe qui pave le graphe de la fonction  fa,b 
tout entier –$de la même manière que le seg-
ment [A,$B[ pave toute la droite qui le porte. 
Avec les translations verticales, cela permet 
donc de paver tout le plan (voir la figure ci-
dessus). Cette méthode s’adapte à tout graphe 
fractal d’une fonction continue définie sur un 
intervalle borné de nombres réels.

Il existe cependant des courbes fractales 
qui ne sont pas des graphes de fonctions défi-
nies sur  ℝ ou sur un intervalle. C’est par 
exemple le cas de la frontière du célèbre flocon 
de von Koch, qui est une courbe de dimen-
sion log(4)$/$log(3) (voir l’encadré 1). Est-il pos-
sible de paver le plan avec cette courbe$?

On peut prouver qu’un cercle de rayon non 
nul, même si l’on accepte d’en faire varier la 
taille, ne pave pas le plan. Le raisonnement 
s’adapte facilement pour démontrer que la 
frontière du flocon de von Koch ne pave pas 
non plus le plan. Peut-on, en revanche, y par-
venir si l’on ne prend qu’une partie de cette 
courbe –  par exemple son tiers supérieur$? 
Cette question est plus subtile. Pour chercher 
à y répondre, on peut s’autoriser à n’utiliser 
que des copies exactes de ce tiers supérieur, ou 
au contraire s’autoriser à utiliser des copies de 
tailles différentes. Dans aucun des deux cas je 
ne connais la réponse$: voilà un beau défi pour 
les lecteurs et lectrices qui souhaiteraient se 
pencher sur la question$!

PAVAGES GÉNÉRALISÉS
Poursuivons avec le flocon de von Koch, 

mais en le considérant cette fois-ci avec son 
intérieur. Nous noterons  vK la forme ainsi 
obtenue. Ce flocon rempli n’est pas une forme 
fractale, car il contient un disque de rayon 
non nul – donc sa dimension est supérieure 
ou égale à 2 – et qu’il est par ailleurs contenu 
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dans le plan – sa dimension est donc inférieure 
ou égale à 2. Il est par conséquent de dimen-
sion exactement 2. Toutefois, sa frontière, elle, 
est fractale. Que se passe-t-il si l’on cherche à 
paver le plan avec de telles formes aux bords 
infiniment découpés$?

Précisons tout d’abord que, lorsqu’on parle 
de pavage du plan par une forme F de dimen-
sion 2, on considère qu’on réalise un pavage si 
chaque point du plan est recouvert par au 
moins une copie de F, mais l’on accepte que les 
points sur la frontière des copies de la forme F 
soient couverts plusieurs fois. C’est le cas 
quand on considère le pavage du plan par des 
carrés pleins$: la frontière de chaque carré est 
couverte deux fois, et les coins des carrés sont 
même couverts quatre fois.

La forme vK ne pave pas le plan$: on constate 
aisément qu’il n’existe aucune façon de placer 
côte à côte deux copies de vK sans laisser d’es-
pace non couvert entre elles. En revanche, et 
c’est une chose tout à fait étonnante, en com-
binant des copies de vK et des copies de vK de 
taille 1$/$√3, on peut paver le plan (voir l’enca-
dré 2). Cette utilisation de la même forme mais 
dans deux tailles différentes amène la notion 
de «$pavage généralisé$».

À ce stade, précisons un peu le vocabulaire. 
Pour nous, «$un pavé$» P du plan désigne une 
forme bornée (c’est-à-dire qui tient dans un 
disque de rayon fini), fermée au sens topolo-
gique (elle contient sa frontière), qui a au moins 
un point intérieur p (i.e. il existe un disque de 
rayon non nul de centre p, entièrement contenu 
dans P) et qui est telle qu’un point est sur la 
frontière de P si et seulement s’il est la limite 
d’une suite de points intérieurs à P. Ainsi, un 
carré plein avec sa frontière ou un flocon de von 
Koch rempli constituent des pavés. Un 9 dont 
on remplit le trou, en revanche, n’en est pas un, 
car la queue du 9 est composée de points qui 
sont sur sa frontière mais ne sont pas la limite 
de suites de points intérieurs.

Un « $pavage généralisé $» d’un sous-
ensemble Q du plan (par exemple, le plan tout 
entier) par un pavé P est un pavage du plan 
obtenu non plus en emboîtant parfaitement 
des exemplaires de P, mais des exemplaires 
d’un ensemble fini de formes distinctes  P1, 
P2, …, Pn tel que chaque Pi est obtenu en appli-
quant une ou plusieurs opérations de rotation, 
de translation ou d’homothétie à P. Autrement 
dit, chaque Pi a la même forme que P, mais sa 
taille peut être différente. On exige aussi que 
deux formes du pavage n’aient en commun, au 
plus, que des points de leurs frontières, et que 
tout point de Q soit un point d’un des Pi ou la 
limite de points pris dans les Pi – cette dernière 
condition est un peu délicate, mais elle est 
importante, car il arrive que certains points ne 
soient pas inclus dans les Pi, mais soient seule-
ment limites de points inclus dedans.

Le flocon de von Koch avec son 
intérieur, qu’on note vK, permet de 
paver le plan si l’on s’autorise à utiliser 
deux tailles différentes de vK (taille 1 et 
taille 1#/#√3), comme le représente le 
dessin (a). La démonstration de ce 
résultat n’est pas évidente du tout, mais 
elle a été magistralement expliquée par 
Mickaël Launay dans une vidéo de sa 
chaîne YouTube «#Micmaths#».
En regardant attentivement ce pavage, 
on constate qu’un gros flocon est 
toujours entouré de 6 petits, et que 
l’ensemble de ces 7 flocons forme 
1#flocon encore plus 
gros. Réciproquement, cela signifie 
qu’un flocon peut être découpé en 
7 «#sous-flocons#»#: un gros au centre  
et 6 petits autour. On en déduit la 
construction d’un pavage du plan  
avec des vK de trois tailles différentes, 
comme le montre le dessin (b).
En réitérant le procédé on trouve 
bien sûr un pavage avec quatre tailles 
différentes de flocons, et l’on peut 
poursuivre et obtenir des pavages avec 
n tailles différentes de flocons, pour 
tout n#≥#2.
On en déduit également un pavage du 
flocon par lui-même avec des séries de 
flocons de plus en plus petits à mesure 
que l’on s’approche du centre – plus 
précisément, pour un flocon de taille 1, 
on obtient un pavage par des séries de 
flocons de taille (1#/#√3)n pour tout n ≥ 1, 
comme le montre le dessin (c). C’est un 
pavage généralisé de vK par vK.
Ces emboîtements parfaits de flocons 
de plus en plus petits permettent par 
ailleurs de paver n’importe quelle 
partie Q du plan «#ouverte#» au sens 
topologique#–#c’est-à-dire une partie Q 
du plan dont chaque point est le centre 
d’un disque entièrement contenu 
dans Q. Le dessin (d) montre, par 
exemple, le début d’un tel pavage  
pour un disque ouvert.

2 PAVAGES AVEC DES FLOCONS  
DE VON KOCH

b

c

d

a

On peut démontrer les deux étonnants 
résultats ci-dessous$:

(a)  Quel que soit le pavé P, il existe un 
pavage généralisé du plan par P.

(b) Si P et Q sont deux pavés, il existe un 
pavage généralisé de Q par P.

Revenons au flocon de von Koch plein, vK. 
En manipulant le pavage du plan par deux 
flocons de tailles respectives  1 et  1$/$√3, on 
obtient un pavage de vK par des flocons de plus 
en plus petits (voir l’encadré 2). Il s’agit bien 
d’un pavage généralisé de vK par vK, au sens 
indiqué ci-dessus.

Reste une question naturelle$: s’il n’existe 
pas de pavage du plan avec un unique flocon de 
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On peut obtenir un pavé à frontière fractale en partant 
d’un carré et en remplaçant ses côtés par des courbes 
fractales. En utilisant, pour ce faire, le tiers supérieur de  
la frontière du flocon de von Koch, il y a deux façons 
d’opérer cette substitution des côtés, montrées dans  
les dessins (a) et (b). Pour le dessin (a), on a orienté la 
courbe fractale « vers l’extérieur du carré » pour deux 
côtés adjacents, et « vers l’intérieur » pour les deux autres 
côtés. Pour le dessin (b), on a alterné « vers l’extérieur »  
et « vers l’intérieur ». Si l’on souhaite appliquer la même 
méthode en partant d’un triangle équilatéral, on peut 
exploiter une courbe fractale possédant un centre  
de symétrie, construite par substitutions répétées,  
comme le montre le dessin (c).

 
En appliquant le même procédé mais en 

partant, cette fois-ci, du pavage du plan par 
des hexagones réguliers, on obtient un autre 
pavé à frontière fractale. Cette méthode ne 
fonctionne pas, en revanche, si l’on part du 
pavage du plan par des triangles équilatéraux. 
En effet, 3 est un nombre impair, ce qui inter-
dit d’équilibrer la forme$: en utilisant cette 
méthode de substitution, on obtiendrait soit 
un pavé où la substitution se serait faite deux 
fois vers l’extérieur et une fois vers l’intérieur, 
soit un pavé où la substitution se serait faite 
deux fois vers l’intérieur et une fois vers l’ex-
térieur. Dans ces deux cas, les formes obte-
nues ne s’emboîtent pas pour paver le plan. 
En revanche, on peut exploiter ce pavage du 
plan par des triangles équilatéraux si l’on 
remplace les bords des triangles non pas par 
le tiers supérieur de la frontière de vK, mais 
par une courbe fractale possédant un centre 
de symétrie (voir la figure ci-contre). On peut 
facilement construire une telle courbe en 
utilisant une méthode de substitution répé-
tée, comme pour le flocon de von Koch, mais 
avec un motif de base possédant un centre de 
symétrie. Une telle courbe fractale symétrique 
permet d’ailleurs de construire des pavés à 
frontière fractale à partir de n’importe quel 
pavé polygonal ayant tous ses côtés de même 
longueur, même quand ce pavé polygonal a un 
nombre impair de côtés.

LES DRAGONS
Une méthode entièrement différente four-

nit une autre famille infinie de formes à fron-
tière fractale pavant le plan$: celle du «$dragon 
de Heighway$» et de ses variantes. Découvert 
en 1966 par John Heighway, Bruce Banks et 
William Harter, des physiciens de la Nasa, le 
«$dragon de Heighway$» a été popularisé en 1967 
par Martin Gardner, par le biais d’un article 
dans le magazine Scientific American. Il est tou-
jours l’objet de recherche à l’heure actuelle$: 
en 2025 de nouvelles propriétés lui ont encore 
été découvertes$!

Le procédé pour engendrer le dragon est élé-
mentaire. On part d’une bande de papier, qu’on 
plie en deux en rabattant «$par le dessus$» la 

a

b

c

von Koch, est-il néanmoins possible de paver 
le plan avec un unique pavé de dimension 2 à 
frontière fractale$? La réponse est positive, et 
l’on peut construire un tel pavé en utilisant la 
courbe définie par le tiers supérieur du flocon 
de von Koch. Les procédés permettant de 
construire de tels pavés fournissent en réalité 
une infinité de pavages du plan par des formes 
de dimension 2 à frontière fractale.

À PARTIR D’UN PAVAGE 
QUELCONQUE

Une première idée consiste à partir d’un 
pavage du plan par des carrés et à modifier les 
carrés en remplaçant chacun de leurs quatre 
côtés par le tiers supérieur de la frontière 
de vK. De la sorte, on obtient bien une forme 
de dimension 2 à frontière fractale. Pour que 
cette forme pave le plan, il faut de plus que 
les courbes fractales utilisées à la place des 
côtés du carré s’emboîtent, ce qu’on garantit 
en orientant ces morceaux de courbe alternati-
vement «$vers l’intérieur$» et «$vers l’extérieur$» 
du carré initial (voir la figure  ci-dessous).
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moitié droite de la bande. On recommence en 
rabattant «$par le dessus$» la moitié droite de la 
bande pliée. On recommence, par exemple, 
4 fois. On déplie alors la bande en s’arrangeant 
pour que chacun de plis marqués – en creux ou 
en bosse – forme un angle droit. La forme obte-
nue après n étapes de pliage puis le dépliage est 
une courbe continue qui ne se recoupe pas. 
Quand on fait tendre n vers l’infini on obtient le 
«$dragon de Heighway$» (voir l’encadré  3). 
Phénomène remarquable$: la forme obtenue à 
l’infini est de dimension 2. En effet, à force de 
«$se replier sur elle-même$» au fil des étapes de 
construction, la courbe finit par remplir com-
plètement une partie du plan d’intérieur non 
vide H, chaque point de H étant la limite d’une 
suite de points pris sur la courbe. Comme le 
flocon de von Koch, le dragon a une frontière 
fractale, de dimension$:

log2(1$/$3$×$[1$+$∛(73$–$6√87)$+$∛(73$+$6√87)]) = 
       1,5236…

Si, au lieu de plier «$par le dessus$» à chaque 
étape de la construction, on plie une fois sur 
deux «$par le dessus$» et une fois sur deux «$par 
le dessous$», on obtient à chaque étape une 
autre courbe qui ne se recoupe pas, qui à l’in-
fini fournit un autre dragon. Il y a bien évi-
demment une infinité de façons de choisir une 
suite alternant des pliages «$par le dessus$» et 
«$par le dessous$», ce qui donne une infinité de 
dragons différents.

Un très beau résultat assure que chaque dra-
gon engendré par une suite périodique de pliages 
pave le plan. N’importe quel dragon est en effet 
composé de deux parties identiques liées l’une à 
l’autre et tournées d’un angle droit l’une par rap-
port à l’autre, car le premier pli de la construc-
tion a superposé la partie droite et la partie 

gauche de la bande et par la suite les deux parties 
ont été soumises exactement aux mêmes pliages. 
En revanche, ces deux sous-parties ne sont, a 
priori, pas nécessairement identiques au dragon 
dans son ensemble. Cependant, si la suite qui a 
engendré le dragon est périodique, en décompo-
sant de la même façon chacun des deux demi-
dragons en deux autres sous-parties, puis en 
réitérant l’opération, on finira par trouver une 
décomposition en 2k parties identiques au dra-
gon dans son ensemble, avec k la période de la 
suite génératrice. Un tel dragon est donc pavé 
par des dragons identiques à lui-même mais plus 
petits. Inversement, on peut donc assembler 
2k exemplaires du dragon pour créer une forme 
identique au dragon, mais en plus gros. En réité-
rant l’opération, on recouvre une partie du plan 
de plus en plus grande avec un assemblage de 
dragons. En particulier, on recouvre des disques 
de taille de plus en plus grande, car le dragon de 
départ couvre un disque de rayon non nul. Or un 
résultat général concernant les pavages indique 
que si des assemblages de copies d’un pavé P 
couvrent des disques de rayons aussi grands 
qu’on le veut, alors P pave le plan tout entier. Par 
conséquent, chacun des dragons obtenus à partir 
d’une suite périodique de pliages pave le plan. Ce 
résultat fournit une infinité de pavés à 2 dimen-
sions et à frontière fractale.

Nous avons décrit quelques procédés per-
mettant de paver le plan avec des fractales ou des 
formes à frontières fractales, mais ce champ des 
mathématiques ne s’arrête pas là. Régulièrement 
de nouvelles constructions sont proposées et 
étudiées, ce qui entraîne des développements 
parfois très riches mathématiquement. Si les 
pavages fractals, en définitive, ne sont pas rares, 
leur intérêt mathématique est indiscutable. n

En pliant quatre fois «#par le dessus#» une bande 
de papier, puis en la dépliant en transformant les 
plis creux et bosses en angles droits, on obtient 
une courbe nommée «#courbe du dragon à 
l’ordre 4#».
En opérant la même série d’opération n fois au 
lieu de 4, pour tous les entiers n, on obtient une 
suite de courbes qui, à l’infini, converge vers une 
forme à deux dimensions et à frontière fractale#: 
le «#dragon de Heighway#».

3 LES DRAGONS

On observe qu’à tout ordre, un dragon est composé 
exactement de deux «#sous-dragons#» identiques,  
plus petits, orthogonaux l’un à l’autre#–#cela résulte  
de la construction. C’est ce constat qui permet de 
démontrer que le dragon de Heighway pave le plan.
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