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La théorie des «jeux des gendarmes et du voleury, ou fugitif
et poursuivants jouent & cache-cache sur les sommets
d'un graphe, est un champ mathématique riche, toujours frés actif.

ous avons toutes et tous vu des dizaines de
séquences de films présentant des courses-poursuites
aux rebondissements spectaculaires. A pied, 3 moto,
au volant d’autos et méme a bord d’avions, le cinéma
adore ces scenes d’action. Rien de tres mathéma-
tique a premiére vue... pourtant, cette dynamique
de traque a inspiré des problemes sur les graphes,
qui se sont révélés constituer un domaine particu-
lierement intéressant de la théorie des jeux. Dans le
monde anglo-saxon, ce domaine se nomme la théo-
rie des games of cops and robbers, ce qu’en francais
on traduira par «jeux des gendarmes et du voleur».
Des 1917, Henry Dudeney, créateur anglais de
casse-téte mathématiques, expose un cas particu-
lier d’un tel jeu, mais c’est en 1978 que le domaine
nait véritablement, dans la thése de doctorat d’Alain
Quilliot. La théorie est reprise en 1983 par Richard
Nowakowski, aujourd’hui a 'université Dalhousie,
a Halifax, au Canada, et Peter Winkler, alors a 'uni-
versité Emory, a Atlanta, aux Etats-Unis. Depuis, elle
a donné lieu a des dizaines d’articles scientifiques
ainsi qu’a plusieurs theses et livres, en particulier
du fait de ’existence de nombreuses variantes des
problemes considérés. A I'heure actuelle, elle fait
toujours 'objet de recherches, en particulier autour
de la «conjecture de Meyniel» que nous évoquerons
plus loin. Le sujet est remarquable car d’une part il
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engendre un certain nombre de résultats faciles a
conjecturer puis a démontrer, mais d’autre part il
regorge de beaux et difficiles théorémes, et méme
d’énigmes encore irrésolues.

Commencons par fixer les regles de la version
la plus simple du jeu. Ce dernier se déroule sur un
graphe fini non orienté, c’est-a-dire un réseau de
sommets et d’arétes qui les relient. On supposera
qu’il y a au plus une aréte entre deux sommets dif-
férents et que chaque sommet est lié a lui-méme.
Pour simplifier les dessins, nous ne représenterons
pas les arétes liant un sommet a lui-méme.

Au voleur!

Deux camps s’opposent: d'une part les gen-
darmes, au nombre de k — avec k un entier stricte-
ment positif — et d’autre part le voleur qui tente de
leur échapper. Les acteurs occupent des sommets
du graphe, et peuvent étre a plusieurs sur un méme
sommet. A chaque instant, ils disposent tous d’une
information parfaite sur la situation: ils connaissent
entierement le graphe et savent ol sont placés les
autres joueurs. Le voleur et les gendarmes jouent
a tour de role. Au début du jeu, les k gendarmes se
placent la ou ils le souhaitent, puis le voleur choi-
sit son sommet de départ. Ensuite, les k gendarmes
se déplacent simultanément, chacun en suivant une
aréte du graphe - chacun ne peut donc se rendre que
sur un sommet adjacent a sa position de départ. Le
voleur se déplace ensuite, lui aussi en suivant une
aréte du graphe. Puis c’est de nouveau au tour des
gendarmes de se déplacer, etc. Rester sur place est
toujours possible pour les gendarmes comme pour
le voleur, puisque nous avons supposé que chaque
sommet est lié a lui-méme par une aréte du graphe.
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Le voleur qui tente d’échapper aux gendarmes est
capturé si un gendarme réussit a occuper le méme
sommet du graphe que lui. $il existe une méthode
de jeu permettant au voleur de ne jamais se faire at-
traper, le graphe est dit «gagnant pour le voleur face a
k gendarmes». Sinon le graphe est dit «gagnant pour
k gendarmes».

D’innombrables variantes sont possibles: quand
c’est son tour, le voleur pourrait suivre deux arétes ou
plus (voleur rapide) ; 'information dont disposent les
gendarmes et/ou le voleur pourrait étre imparfaite;
plusieurs gendarmes pourraient étre exigés pour cap-
turer le voleur; le graphe pourrait présenter des sens
uniques (un graphe orienté, dans lequel certaines
arétes ne peuvent étre parcourues que dans un sens) ;
certaines parties du graphe pourraient étre réservées
aux gendarmes, etc. Nous nous contenterons, ici, de
considérer le cas le plus classique du jeu.

Pour tout graphe fini, en placant un gendarme a
chaque sommet le voleur est immédiatement attra-
pé: cela signifie que pour un graphe G ayant n som-
mets, il existe un plus petit entier 1<k< n tel que
k gendarmes attrapent le voleur.

«Cop number»

Ce nombre est appelé le cop number de G, et sera
noté ¢(G). Le probléme principal de la théorie consiste
a déterminer ce nombre pour chaque graphe G. Si un
graphe G possede plusieurs composantes connexes

1. Premiers exemples

Le graphe de Robertson
comporte 19 sommets

et posséde un cop number
de 4. On sait que 19 est

le nombre minimal

de sommets d'un graphe
dont le cop number est 4,
mais on ignore si le graphe
de Robertson est le seul
graphe a 19 sommets ayant
un tel cop number.

Au jeu des gendarmes

et du voleur, kK gendarmes

se positionnent ou ils le
souhaitent sur les sommets
d’un graphe. Le voleur choisit
ensuite son sommet de départ,
puis chaque gendarme peut

se déplacer sur un sommet
adjacent a son sommet

de départ. Ensuite, le voleur,

qui cherche a échapper

a ses poursuivants, peut a son
tour se déplacer sur un sommet
adjacent a sa position, et ainsi
de suite. On appelle cop number
d’un graphe le nombre minimum
de gendarmes nécessaire

pour garantir que le voleur sera
attrapé, quand le jeu se déroule
sur ce graphe.

Pour le graphe a, un seul
gendarme suffit : il suffit qu'il
se place tout en bas de I'arbre.
Le voleur, ou qu'il décide d'aller,
finira coincé par le gendarme
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qui avancera sur la branche qua
choisi le bandit, jusqu'a I'attraper.
Pour le graphe b, deux gendarmes
sont nécessaires et suffisants.

A cause des cycles de longueur 4
présents dans le graphe, le voleur
placé sur I'un de ces cycles peut
en effet échapper a un gendarme
seul en tournant en rond
indéfiniment. En revanche, avec
deux gendarmes, le voleur ne peut
pas s'échapper car une fois dans
un cycle les gendarmes peuvent
I'y bloquer et s'approcher de ui
jusqu’a le saisir. Pour le graphe c,
la réponse est encore deux :

il faut placer les deux gendarmes
sur la ligne du milieu,
respectivement sur le deuxieme
et le cinquieme sommet. Sur

le graphe d, un gendarme seul
peut attraper le voleur en

s’en approchant progressivement.
Pour e, deux gendarmes sont
nécessaires et suffisants pour
coincer le voleur dans un coin.

(morceaux non reliés entre eux) G, G,, ..., G, , il est
évident que c(G)=c(G)) +...+c (G, ). Nous nous res-
treindrons donc, a partir de maintenant, a ’étude
des graphes connexes, suffisante pour retrouver
I’ensemble des cas.

Sile graphe est une ligne finie - un sommet s, lié
a un sommet s,, lui-méme lié a un sommet s,, etc.,
jusqu’a un sommet s, -, on se convainc aisément
qu’un seul gendarme attrape le voleur, car ce dernier
finit coincé a une extrémité de la ligne. Une ligne
finie est par conséquent un graphe «gagnant pour
un gendarme », et a donc un cop number de 1.

Si le graphe est un cycle de 4 sommets ou plus
(sl liéas,s,li€as, ..,z li€as, et aucune autre
aréte), alors le voleur gagne il n’y a qu’un gen-
darme, et perd s’il y a deux gendarmes. En effet,
dans le cas ot il n’y a qu’un seul gendarme, le vo-
leur réussit a lui échapper en maintenant toujours au
moins un sommet vide entre son poursuivant et lui.
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S’il y a deux gendarmes, il suffit que 'un parcoure
le cycle dans le sens des aiguilles d’'une montre et
l’autre dans le sens inverse pour que cela piege le
voleur. Le cop number d’un cycle C de 4 sommets ou

plus est donc 2: ¢(C) =2.

Un arbre est un graphe connexe ne comportant
aucun cycle. Le cop number d’un tel graphe est tou-
jours 1, car si le gendarme se place a la racine de
I’arbre, quelle que soit la branche que choisit le vo-
leur, le poursuivant pourra s’y rendre et il finira par
coincer le fugitif tout au bout de la branche.

Notons que ce jeu des gendarmes et du voleur
pourrait étre envisagé sur des graphes infinis. Les
résultats, méme les plus simples, sont alors tres
différents. En particulier, sur un arbre infini, il peut
exister des branches de longueur infinie. Dans ce cas,
en se placant sur une telle branche suffisamment loin
des gendarmes, un voleur pourra toujours s’échap-
per, quel que soit le nombre de ses poursuivants.
Dans ’ensemble de ce texte, les résultats évoqués
ne concernent que les graphes finis et connexes.

2. Le graphe de Petersen

Le graphe de Petersen, qui possede

10 sommets, est le plus petit graphe, en
termes de nombre de sommets, dont le cop
number est 3. C'est de plus le seul graphe

a 10 sommets ayant un tel cop number.

Il est représenté dans la figure ci-contre.

Sur ce graphe, un unique gendarme ne
suffit pas a attraper le voleur. En effet, quel
que soit I'endroit ou il se place, le voleur
peut, en choisissant un des cinqg sommets
extérieurs, se mettre a distance 2 du
gendarme. Ensuite, aprés chaque
mouvement du gendarme, le voleur peut
rétablir cette distance 2, soit en restant

a sa place soit en passant a un sommet
extérieur voisin. Il ne sera ainsi jamais
attrapé.

Deux gendarmes sont également
insuffisants. En effet, ou qu'ils se placent,
le voleur pourra se positionner a distance 2
de chacun d’eux. On vérifie ensuite

que, quels que soient les mouvements

des gendarmes, le voleur peut se déplacer
et rétablir cette distance de 2 entre chacun
de ses poursuivants et lui.

Trois gendarmes, en revanche, peuvent
toujours attraper le voleur. Il suffit pour
cela qu'ils se placent sur les sommets
marqués G dans le dessin ci-contre.

Le voleur ne peut alors échapper aux
gendarmes qu’en choisissant I'un des
deux sommets marqués V (par exemple,
celui a gauche, comme sur le dessin 1
ci-dessous). Lun des gendarmes du bas
s'avance alors pour le menacer (dessin 2),
ce qui force le voleur a aller sur l'autre
case marquée V (dessin 3). Le gendarme
resté en bas s'avance alors (dessin 4)

ce qui oblige le voleur a se déplacer vers
I'extérieur (dessin 5). Le gendarme du haut
s’approche alors du voleur (dessin 6),

ce qui ne lui laisse plus aucune issue.

En 1898, le mathématicien danois Julius
Petersen introduit un graphe qui porte aujourd’hui
son nom (voir Pencadré 2). Initialement construit
pour aborder un probléme de coloriage, ce graphe a
10 sommets s’est révélé particulierement intéressant
pour notre jeu. Une équipe de chercheurs autour de
William Baird, de 'université Ryerson, a Toronto, au
Canada, a en effet démontré, en 2014, qu’il s’agit du
plus petit graphe, en termes de nombre de sommets,
dont le cop number est 3, et que c’est 'unique graphe
a 10 sommets dont le cop number est 3.

Larecherche dela taille du plus petit graphe ayant
un cop number de 4 est loin d’étre facile. Des 1964, le
mathématicien américain Neil Robertson présente
un tel graphe a 19 sommets, qui porte aujourd’hui
son nom (voir la figure page 71). Pourtant, ce n’est
qu’en 2021 que Jérémie Turcotte et Samuel Yvon
démontrent que ce nombre de 19 sommets est mi-
nimal: ils établissent qu’aucun graphe possédant
18 sommets ou moins ne peut atteindre un cop num-
ber de 4. On ignore encore aujourd’hui si le graphe

Graphe de Petersen
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3. Graphes démontables

On dit qu'un sommet s d'un

graphe G est un « coin » de G s'il
existe un sommet s’ de G ayant
pour voisins tous les voisins de s et
éventuellement plus. Dans la

figure a, le sommet s a pour voisins
les sommets s, a, s’ et c.

Le sommet s’ a quant a lui pour
voisins les sommets s’,c, s,a ete.
Donc s est un coin. Pour ce graphe,
c'est le seul coin.

Par définition un graphe G est
«démontable » si 'on peut
numeéroter ses sommets, s,, s,,
_Sh de sorte que s, soit un coin
de G,s,un coinde G - {s }, s,

un coin de G - {s,, s,}, etc., jusqu'a
ce qu'il ne reste plus que s, .

La figure b présente un tel graphe.

On démontre qu'un graphe G a un
cop number de 1 si et seulement
si G est démontable.

Les arbres finis sont démontables,
de méme que les graphes tirés du
pavage du plan par des triangles
équilatéraux en ne gardant

qu’un nombre fini de triangles,

et en vérifiant que I'ensemble

des triangles conservés n'a pas
de trou. La figure c montre un
exemple de tel graphe. La figure d
montre, au contraire, un graphe
qui présente un trou, et dont

on peut vérifier qu'il n’est pas
démontable.

de Robertson est le seul graphe a 19 sommets dont
le cop number est 4.

Démontage, rétraction
et genre

Des le début des recherches sur le jeu, aussi
bien en France qu’en Amérique du Nord, on a su
caractériser les graphes G ou le voleur se fait attra-
per par un gendarme seul: ce sont les graphes dits
«démontables».

Dans un graphe, on dit qu'un sommet s est un
coin s’il existe un autre sommet s’ qui a pour voisins
tous les voisins de s (y compris s). Un graphe est dit
démontable si et seulement si on peut lui retirer un
aun des coins jusqu’a obtenir un graphe réduit a un
sommet unique - on dit qu’on «démonte» le graphe.
Les graphes dont le cop number est 1 sont exacte-
ment les graphes démontables (voir Pencadré 3).

L’idée qu’en fusionnant des sommets d’un
graphe on rend ce dernier plus favorable aux gen-
darmes est naturelle. Cette intuition est effective-
ment formalisée dans un beau résultat, qui repose
sur la notion de «rétraction» de la théorie des
graphes (voir Pencadré4) : on démontre que si H est
une rétraction de G, alors c(H) <c(G). On déduit de
cette inégalité un cas particulier tres utile: puisque
tout cycle de longueur au moins 4 a un cop number
de 2, siun graphe G peut étre rétracté en un tel cycle,
alors son cop number sera au moins 2.

Une surprise du domaine fut la démonstration,
des 1984, par Martin Aigner et Michael Fromme,
de l'université de Berlin, d’'un énoncé remarqua-
blement simple: si un graphe est planaire - c’est-
a-dire dessinable sur un plan sans que les arétes se
croisent —, alors son cop number est au plus 3.

Ce résultat a fait 'objet d’une généralisation. En
topologie, on s’intéresse aux surfaces S compactes
(c’est-a-dire fermées et bornées), connexes (deux
points différents de S sont toujours joignables par
un chemin continu dans S) et sans bord (autour
de tout point de S, il existe un disque entierement
contenu dans S). On définit le genre d’une telle sur-
face comme son nombre de «trous»: la sphere est de
genre 0, le tore est de genre 1, etc. On dit alors qu'un
graphe G est de genre k si k est le genre minimal d’une
surface sur laquelle on peut dessiner G sans que deux
de ses arétes ne se croisent. Les graphes planaires, par
exemple, sont de genre 0, car tout graphe fini dessi-
nable sur le plan P’est aussi sur la sphere.

En 2001, Bernd Schroder, de 'université de
Louisiana Tech, aux Etats-Unis, a démontré que
pour tout graphe G de genre g, on a l'inégalité:
c(G)=[3g/2]+3, ou [x] désigne la partie entiere
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4. Rétraction

La notion de « rétraction » pour

les graphes est au cceur d'un
remarquable résultat de la théorie
du jeu des gendarmes et du voleur.
Un graphe H est une rétraction
d’'un graphe G si et seulement

si H est obtenu a partir de G

a la suite d’'une opération de fusion
entre sommets suivie d'une
opération de « nettoyage » :

- Fusion : On identifie certains
sommets entre eux, sans supprimer
d'aréte.

- Nettoyage : Si des arétes sont
maintenant en double, on ne garde
qu’une aréte de chaque type. De
méme, puisque c’est la convention
adoptée dans tout cet article,

on ne représente pas les arétes
liant un sommet a lui-méme.

On fusionne

aeth,cete,

Dans la figure ci-dessous, entre
I'étape 1 et I'étape 2, on fusionne

le sommet a avec le sommet b,

le sommet ¢ avec le sommet e

et le sommet f avec le sommet g.
Puis, entre I'étape 2 et I'étape 3,

on effectue l'opération de nettoyage
et l'on obtient un graphe H qui est
une rétraction du graphe initial G.

f=g f

Aprés nettoyage
des arétes en double

fetg et des boucles

Bien s(r, plusieurs rétractions successives peuvent étre opérées. Dans la figure ci-dessous, on fusionne d’abord
u et u’ ainsi que s et s’ (entre les étapes E1 et E2) puis w, w’ et w” ainsi que v et v’ et enfin x et x’ (entre les étapes E2
et E3) et finalement tous les sommets autres que les quatre formant un carré (entre les étapes E3 et E4).

En 1993, une équipe réunie autour
d’Alessandro Berarducci, de
I'université de Pise, démontre que
si H est une rétraction de G, alors
le cop number de H est inférieur ou
égal a celui de G.

Supposons en effet que ¢(G) =k,

et soit H une rétraction de G. Une
partie jouée dans H peut étre
considérée comme jouée dans G,
puisque H est un sous-graphe de G.
Cependant la stratégie des
gendarmes dans G pourrait ne pas
étre suffisante dans H: pour
attraper le voleur, les gendarmes
pourraient avoir besoin qu'il

quitte H et se fasse coincer ailleurs.

Pour obtenir une stratégie
gagnante pour les gendarmes
valable dans H, nous définissons la
« stratégie image » de leur stratégie
gagnante dans G. Lorsqu’un
sommet x de G a été fusionné avec
un sommet y qui reste dans H,
nous dirons que x a pour image y.
Dans la stratégie image dans H, les
k gendarmes commencent sur les
sommets de H qui sont les images
des points de départ de la stratégie

gagnante dans G. lIs jouent
ensuite en se déplagant sur

les images des sommets prescrits
par la stratégie gagnante dans G :
si, dans G, un gendarme doit

se déplacer d'un sommet u vers
un sommet v, alors dans H le
gendarme doit se déplacer depuis
I'image de u vers I'image de v.
Ces déplacements sont toujours
possibles, car les arétes n'ont pas
été supprimées quand on a opéré
les fusions de la rétraction.

Cette stratégie image dans H

est gagnante pour les k gendarmes.
En effet, supposons que les

k gendarmes soient sur le point
d’attraper le voleur dans G;

cela signifie que le sommet ou se
trouve le voleur ainsi que chacun
de ses voisins sont adjacents,
dans G, a un sommet ou se trouve
un gendarme. Comme toutes

les arétes ont été gardées dans

la rétraction, cela signifie que

le sommet ou se trouve le voleur
dans H et chacun de ses voisins
dans H sont adjacents a un
sommet dans H ou se trouve

un gendarme image. Le voleur perd
donc la partie jouée dans H.

Notons que la stratégie image
n'‘est peut-étre pas celle utilisant

le moins de gendarmes possible.
Ce qu'établit ce raisonnement,
c’est que le nombre de gendarmes
nécessaire pour assurer une
stratégie gagnante dans H est
inférieur ou égal a celui nécessaire
dans G: c(H) = c(G).

Une conséquence simple de ce
résultat est que si une rétraction
de G est un cycle de longueur
supérieure ou égale a 4, alors le
graphe est gagnant pour le voleur
face a un seul gendarme.
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de x (c’est-a-dire le plus grand entier inférieur ou
égal a x). En 2021, ce résultat a été amélioré par
une équipe de chercheurs réunie autour de Florian
Lehner, de 'université d’Auckland, en Nouvelle-
Z¢élande: on sait maintenant que si G est un graphe
de genre g, alors ¢(G) <[4g/3]+10/3.

Une question naturelle est de savoir s’il existe
une limite supérieure au nombre de gendarmes
nécessaires pour attraper un voleur sur un graphe
quelconque-autrement dit, s’il existe un nombre K
tel que, pour tout graphe G, on ait ¢(G) <K. La
réponse est non: pour tout entier k, il existe des
graphes dont le cop number dépasse k. Plus préci-
sément, si un graphe G ne possede pas de cycle de
taille 4 ou moins, alors son cop number est supérieur
ou égal au nombre minimum de voisins (différents
de lui-méme) d’un sommet de G. Cela permet de
construire des graphes dont le cop number est aussi
grand qu’on le veut.

Conjecture de Meyniel

On peut préciser encore ce résultat en étudiant
certains graphes construits a partir d’objets géomé-
triques particuliers: les plans projectifs finis. On dé-
montre que ces graphes ont un nombre de sommets
de la forme 2¢*+2¢+2 avec g un entier, et que le cop
number d’un tel graphe est alors g+1. Cela signifie
que le cop number maximal pour un graphe a n som-
mets augmente au moins proportionnellement a vz,
quand 7 augmente.

Puisque les graphes a n sommets sont en nombre
fini, pour tout entier 7 il existe un nombre ¢(n) qui
est le cop number maximum pour ces graphes. Le
résultat précédent et les graphes dont on a pu éva-
luer exactement le cop number suggerent qu’il pour-
rait exister une constante positive C telle que pour
tout n et tout graphe a n sommets, ¢ () <CVn. Cette
affirmation est la «conjecture d’Henri Meyniel ».
C’est une tres belle et intrigante conjecture, la plus
difficile peut-étre de la théorie. Si elle est vraie cela
signifie que le nombre de gendarmes nécessaires
pour garantir qu’un voleur se fait attraper sur un
graphe quelconque a n sommets augmente bien
moins vite que n.

La conjecture est encore ouverte a ’heure actuelle,
néanmoins certaines avancées ont été faites au cours
des dernieres décennies. Depuis 1989, on sait par
exemple qu’il existe une constante positive C telle que,
pour tout entier 1, ¢ (1) <Cxnxlog(log(n)) /log(n). Un
autre résultat a été publié en 2012 par trois équipes
de recherche indépendantes les unes des autres: il
existe une constante positive D et une fonction g dé-
finie sur les entiers, qui tend vers 0 a I'infini, telles
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que pour tout entier 7, ¢(n) <Dxp 208 Vo, Ge
résultat reste cependant tres éloigné de ce qu’af-
firme la conjecture: pour n=1000000, I'inégalité
assure que c¢(1000000) est inférieur & 42 millions,
alors que la conjecture indique une majoration
par 32000.

Puisque la conjecture résiste, les spécialistes
se sont penchés sur une version affaiblie, la soft
Meyniel conjecture. Cette derniere affirme seu-
lement qu’il existe une constante positive E et
une constante e comprise entre 0 et 1 telles que
pour tout entier 1, ¢(n) <Exne. Pour I'heure, cette
conjecture reste elle aussi hors de portée.

Sous-catégories de graphes

En se limitant a certaines catégories de graphes,
divers résultats ont toutefois été établis. On sait
par exemple que si G est un graphe tel que la dis-
tance entre deux sommets est au plus 2 (on parle
de graphe de diametre 2), alors pour tout entier 7,
c(G)=2x(-1+Vn).

En 2020, Peter Bradshaw, de 'université Simon
Fraser, au Canada, a démontré la conjecture de
Meyniel pour une classe de graphes utilisée en algebre
appelée «classe de graphes de Cayley». En 2025,
Arindam Biswas, qui travaille pour I’entreprise fran-
caise Polynom, et Jyoti Prakash Saha, chercheur a
I'Institut indien d’enseignement et de recherche
scientifiques de Bhopal, en Inde, ont démontré la
version faible de la conjecture pour les «graphes al-
gébriques», qui apparaissent en théorie des groupes.

Une multitude d’autres résultats concernant
soit le jeu des gendarmes et du voleur soit ses var-
iantes contribuent au bouillonnement de ce do-
maine ou, partant d’une question élémentaire, on
en vient a étudier des problémes mathématiques
difficiles, exigeant l'utilisation de méthodes issues
de domaines variés et parfois tres éloignés. m
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