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 L’AUTEUR 

engendre un certain nombre de résultats faciles à 
conjecturer puis à démontrer, mais d’autre part il 
regorge de beaux et difficiles théorèmes, et même 
d’énigmes encore irrésolues.

Commençons par fixer les règles de la version 
la plus simple du jeu. Ce dernier se déroule sur un 
graphe fini non orienté, c’est-à-dire un réseau de 
sommets et d’arêtes qui les relient. On supposera 
qu’il y a au plus une arête entre deux sommets dif-
férents et que chaque sommet est lié à lui-même. 
Pour simplifier les dessins, nous ne représenterons 
pas les arêtes liant un sommet à lui-même.

Au voleur !
Deux camps s’opposent%: d’une part les gen-

darmes, au nombre de k – avec k un entier stricte-
ment positif – et d’autre part le voleur qui tente de 
leur échapper. Les acteurs occupent des sommets 
du graphe, et peuvent être à plusieurs sur un même 
sommet. À chaque instant, ils disposent tous d’une 
information parfaite sur la situation%: ils connaissent 
entièrement le graphe et savent où sont placés les 
autres joueurs. Le voleur et les gendarmes jouent 
à tour de rôle. Au début du jeu, les k gendarmes se 
placent là où ils le souhaitent, puis le voleur choi-
sit son sommet de départ. Ensuite, les k gendarmes 
se déplacent simultanément, chacun en suivant une 
arête du graphe – chacun ne peut donc se rendre que 
sur un sommet adjacent à sa position de départ. Le 
voleur se déplace ensuite, lui aussi en suivant une 
arête du graphe. Puis c’est de nouveau au tour des 
gendarmes de se déplacer, etc. Rester sur place est 
toujours possible pour les gendarmes comme pour 
le voleur, puisque nous avons supposé que chaque 
sommet est lié à lui-même par une arête du graphe. 

Courses-poursuites  
mathématiques

La théorie des « jeux des gendarmes et du voleur », où fugitif 
et poursuivants jouent à cache-cache sur les sommets  

d’un graphe, est un champ mathématique riche, toujours très actif.

nous avons toutes et tous vu des dizaines de 
séquences de films présentant des courses- poursuites 
aux rebondissements spectaculaires. À pied, à moto, 
au volant d’autos et même à bord d’avions, le cinéma 
adore ces scènes d’action. Rien de très mathéma-
tique à première vue… pourtant, cette dynamique 
de traque a inspiré des problèmes sur les graphes, 
qui se sont révélés constituer un domaine particu-
lièrement intéressant de la théorie des jeux. Dans le 
monde anglo-saxon, ce domaine se nomme la théo-
rie des games of cops and robbers, ce qu’en français 
on traduira par «%jeux des gendarmes et du voleur%».

Dès 1917, Henry Dudeney, créateur anglais de 
casse-tête mathématiques, expose un cas particu-
lier d’un tel jeu, mais c’est en 1978 que le domaine 
naît véritablement, dans la thèse de doctorat d’Alain 
Quilliot. La théorie est reprise en 1983 par Richard 
Nowakowski, aujourd’hui à l’université Dalhousie, 
à Halifax, au Canada, et Peter Winkler, alors à l’uni-
versité Emory, à Atlanta, aux États-Unis. Depuis, elle 
a donné lieu à des dizaines d’articles scientifiques 
ainsi qu’à plusieurs thèses et livres, en particulier 
du fait de l’existence de nombreuses variantes des 
problèmes considérés. À l’heure actuelle, elle fait 
toujours l’objet de recherches, en particulier autour 
de la «%conjecture de Meyniel%» que nous évoquerons 
plus loin. Le sujet est remarquable car d’une part il 

©
 P

o
u

r 
la

 S
c

ie
n

c
e

 d
’a

p
rè

s
 J

e
a

n
-P

a
u

l 
D

e
la

h
a

y
e

 Jean-Paul Delahaye 

PLS0579-logiqueetcalcul.indd   70PLS0579-logiqueetcalcul.indd   70 05/12/2025   17:0305/12/2025   17:03



71Logique & calcul

| 71POUR LA SCIENCE N° 579 JANVIER 2026

1. Premiers exemples
Au jeu des gendarmes  

et du voleur, k gendarmes  
se positionnent où ils le 

souhaitent sur les sommets  

d’un graphe. Le voleur choisit 

ensuite son sommet de départ, 

puis chaque gendarme peut  

se déplacer sur un sommet 

adjacent à son sommet  

de départ. Ensuite, le voleur,  

qui cherche à échapper  

à ses poursuivants, peut à son 

tour se déplacer sur un sommet 

adjacent à sa position, et ainsi  

de suite. On appelle cop number 

d’un graphe le nombre minimum 

de gendarmes nécessaire  

pour garantir que le voleur sera 

attrapé, quand le jeu se déroule 

sur ce graphe.

Pour le graphe a, un seul 

gendarme suffit : il suffit qu’il  
se place tout en bas de l’arbre.  

Le voleur, où qu’il décide d'aller, 

finira coincé par le gendarme  

qui avancera sur la branche qu’a 
choisi le bandit, jusqu’à l’attraper. 

Pour le graphe b, deux gendarmes 

sont nécessaires et suffisants.  
À cause des cycles de longueur 4 
présents dans le graphe, le voleur 

placé sur l’un de ces cycles peut 

en effet échapper à un gendarme 

seul en tournant en rond 

indéfiniment. En revanche, avec 
deux gendarmes, le voleur ne peut 

pas s’échapper car une fois dans 

un cycle les gendarmes peuvent  

l’y bloquer et s’approcher de lui 

jusqu’à le saisir. Pour le graphe c, 

la réponse est encore deux :  
il faut placer les deux gendarmes 

sur la ligne du milieu, 

respectivement sur le deuxième  

et le cinquième sommet. Sur  

le graphe d, un gendarme seul 

peut attraper le voleur en  

s’en approchant progressivement. 

Pour e, deux gendarmes sont 

nécessaires et suffisants pour 
coincer le voleur dans un coin.

(morceaux non reliés entre eux) G1, G2, …, Gm, il est 
évident que c(G)%=%c(G1)%+%…+%c (Gm). Nous nous res-
treindrons donc, à partir de maintenant, à l’étude 
des graphes connexes, suffisante pour retrouver 
l’ensemble des cas.

Si le graphe est une ligne finie – un sommet s1 lié 
à un sommet s2, lui-même lié à un sommet s3, etc., 
jusqu’à un sommet sn –, on se convainc aisément 
qu’un seul gendarme attrape le voleur, car ce dernier 
finit coincé à une extrémité de la ligne. Une ligne 
finie est par conséquent un graphe «%gagnant pour 
un gendarme%», et a donc un cop number de 1.

Si le graphe est un cycle de 4 sommets ou plus 
(s1 lié à s2, s2 lié à s3, …, sn lié à s1, et aucune autre 
arête), alors le voleur gagne s’il n’y a qu’un gen-
darme, et perd s’il y a deux gendarmes. En effet, 
dans le cas où il n’y a qu’un seul gendarme, le vo-
leur réussit à lui échapper en maintenant toujours au 
moins un sommet vide entre son poursuivant et lui. 

Le voleur qui tente d’échapper aux gendarmes est 
capturé si un gendarme réussit à occuper le même 
sommet du graphe que lui. S’il existe une méthode 
de jeu permettant au voleur de ne jamais se faire at-
traper, le graphe est dit «%gagnant pour le voleur face à 
k gendarmes%». Sinon le graphe est dit «%gagnant pour 
k gendarmes%».

D’innombrables variantes sont possibles%: quand 
c’est son tour, le voleur pourrait suivre deux arêtes ou 
plus (voleur rapide)%; l’information dont disposent les 
gendarmes et%/%ou le voleur pourrait être imparfaite%; 
plusieurs gendarmes pourraient être exigés pour cap-
turer le voleur%; le graphe pourrait présenter des sens 
uniques (un graphe orienté, dans lequel certaines 
arêtes ne peuvent être parcourues que dans un sens)%; 
certaines parties du graphe pourraient être réservées 
aux gendarmes, etc. Nous nous contenterons, ici, de 
considérer le cas le plus classique du jeu.

Pour tout graphe fini, en plaçant un gendarme à 
chaque sommet le voleur est immédiatement attra-
pé%: cela signifie que pour un graphe G ayant n som-
mets, il existe un plus petit entier 1%≤%k%≤% n tel que 
k gendarmes attrapent le voleur. 

« Cop number »
Ce nombre est appelé le cop number de G, et sera 

noté c(G). Le problème principal de la théorie consiste 
à déterminer ce nombre pour chaque graphe G. Si un 
graphe G possède plusieurs composantes connexes 

Le graphe de Robertson 
comporte 19 sommets  
et possède un cop number 
de 4. On sait que 19 est  
le nombre minimal  
de sommets d’un graphe 
dont le cop number est 4, 
mais on ignore si le graphe 
de Robertson est le seul 
graphe à 19 sommets ayant 
un tel cop number.

a

b

c

d

e
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En  1898, le mathématicien danois Julius 
Petersen introduit un graphe qui porte aujourd’hui 
son nom (voir l’encadré 2). Initialement construit 
pour aborder un problème de coloriage, ce graphe à 
10 sommets s’est révélé particulièrement intéressant 
pour notre jeu. Une équipe de chercheurs autour de 
William Baird, de l’université Ryerson, à Toronto, au 
Canada, a en effet démontré, en 2014, qu’il s’agit du 
plus petit graphe, en termes de nombre de sommets, 
dont le cop number est 3, et que c’est l’unique graphe 
à 10 sommets dont le cop number est 3.

La recherche de la taille du plus petit graphe ayant 
un cop number de 4 est loin d’être facile. Dès 1964, le 
mathématicien américain Neil Robertson présente 
un tel graphe à 19 sommets, qui porte aujourd’hui 
son nom (voir la figure page 71). Pourtant, ce n’est 
qu’en 2021 que Jérémie Turcotte et Samuel Yvon 
démontrent que ce nombre de 19 sommets est mi-
nimal%: ils établissent qu’aucun graphe possédant 
18 sommets ou moins ne peut atteindre un cop num-
ber de 4. On ignore encore aujourd’hui si le graphe 

S’il y a deux gendarmes, il suffit que l’un parcoure 
le cycle dans le sens des aiguilles d’une montre et 
l’autre dans le sens inverse pour que cela piège le 
voleur. Le cop number d’un cycle C de 4 sommets ou 
plus est donc 2%: c(C)%=%2.

Un arbre est un graphe connexe ne comportant 
aucun cycle. Le cop number d’un tel graphe est tou-
jours 1, car si le gendarme se place à la racine de 
l’arbre, quelle que soit la branche que choisit le vo-
leur, le poursuivant pourra s’y rendre et il finira par 
coincer le fugitif tout au bout de la branche.

Notons que ce jeu des gendarmes et du voleur 
pourrait être envisagé sur des graphes infinis. Les 
résultats, même les plus simples, sont alors très 
différents. En particulier, sur un arbre infini, il peut 
exister des branches de longueur infinie. Dans ce cas, 
en se plaçant sur une telle branche suffisamment loin 
des gendarmes, un voleur pourra toujours s’échap-
per, quel que soit le nombre de ses poursuivants. 
Dans l’ensemble de ce texte, les résultats évoqués 
ne concernent que les graphes finis et connexes.

Le graphe de Petersen, qui possède 

10 sommets, est le plus petit graphe, en 
termes de nombre de sommets, dont le cop 

number est 3. C’est de plus le seul graphe  
à 10 sommets ayant un tel cop number. 

 Il est représenté dans la figure ci-contre.

Sur ce graphe, un unique gendarme ne 

suffit pas à attraper le voleur. En effet, quel 
que soit l’endroit où il se place, le voleur 

peut, en choisissant un des cinq sommets 

extérieurs, se mettre à distance 2 du 

gendarme. Ensuite, après chaque 

mouvement du gendarme, le voleur peut 

rétablir cette distance 2, soit en restant  
à sa place soit en passant à un sommet 

extérieur voisin. Il ne sera ainsi jamais 

attrapé.

Deux gendarmes sont également 

insuffisants. En effet, où qu’ils se placent, 
le voleur pourra se positionner à distance 2 
de chacun d’eux. On vérifie ensuite  
que, quels que soient les mouvements  

des gendarmes, le voleur peut se déplacer 

et rétablir cette distance de 2 entre chacun  
de ses poursuivants et lui.

Trois gendarmes, en revanche, peuvent 

toujours attraper le voleur. Il suffit pour 
cela qu’ils se placent sur les sommets 

marqués G dans le dessin ci-contre.  
Le voleur ne peut alors échapper aux 

gendarmes qu’en choisissant l’un des 

deux sommets marqués V (par exemple, 

celui à gauche, comme sur le dessin 1 

ci-dessous). L’un des gendarmes du bas 
s’avance alors pour le menacer (dessin 2), 
ce qui force le voleur à aller sur l’autre 

case marquée V (dessin 3). Le gendarme 

resté en bas s’avance alors (dessin 4)  
ce qui oblige le voleur à se déplacer vers 

l’extérieur (dessin 5). Le gendarme du haut 

s’approche alors du voleur (dessin 6),  
ce qui ne lui laisse plus aucune issue.

2. Le graphe de Petersen

Graphe de Petersen

G

G G

VV

G

G G

G G G G

G G

G

G GG GGG

G

V V V V

V V

1 2 3 4 5 6
G
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de Robertson est le seul graphe à 19 sommets dont 
le cop number est 4.

Démontage, rétraction  
et genre

Dès le début des recherches sur le jeu, aussi 
bien en France qu’en Amérique du Nord, on a su 
caractériser les graphes G où le voleur se fait attra-
per par un gendarme seul%: ce sont les graphes dits 
«%démontables%».

Dans un graphe, on dit qu’un sommet s est un 
coin s’il existe un autre sommet s’ qui a pour voisins 
tous les voisins de s (y compris s). Un graphe est dit 
démontable si et seulement si on peut lui retirer un 
à un des coins jusqu’à obtenir un graphe réduit à un 
sommet unique – on dit qu’on «%démonte%» le graphe. 
Les graphes dont le cop number est 1 sont exacte-
ment les graphes démontables (voir l’encadré 3).

L’idée qu’en fusionnant des sommets d’un 
graphe on rend ce dernier plus favorable aux gen-
darmes est naturelle. Cette intuition est effective-
ment formalisée dans un beau résultat, qui repose 
sur la notion de «%rétraction%» de la théorie des 
graphes (voir l’encadré 4)*: on démontre que si H est 
une rétraction de G, alors c(H)%≤%c(G). On déduit de 
cette inégalité un cas particulier très utile%: puisque 
tout cycle de longueur au moins 4 a un cop number 
de 2, si un graphe G peut être rétracté en un tel cycle, 
alors son cop number sera au moins 2.

Une surprise du domaine fut la démonstration, 
dès 1984, par Martin Aigner et Michael Fromme, 
de l’université de Berlin, d’un énoncé remarqua-
blement simple%: si un graphe est planaire – c’est-
à-dire dessinable sur un plan sans que les arêtes se 
croisent –, alors son cop number est au plus 3.

Ce résultat a fait l’objet d’une généralisation. En 
topologie, on s’intéresse aux surfaces S compactes 
(c’est-à-dire fermées et bornées), connexes (deux 
points différents de S sont toujours joignables par 
un chemin continu dans S) et sans bord (autour 
de tout point de S, il existe un disque entièrement 
contenu dans S). On définit le genre d’une telle sur-
face comme son nombre de «%trous%»%: la sphère est de 
genre 0, le tore est de genre 1, etc. On dit alors qu’un 
graphe G est de genre k si k est le genre minimal d’une 
surface sur laquelle on peut dessiner G sans que deux 
de ses arêtes ne se croisent. Les graphes planaires, par 
exemple, sont de genre 0, car tout graphe fini dessi-
nable sur le plan l’est aussi sur la sphère.

En  2001, Bernd Schröder, de l’université de 
Louisiana Tech, aux États-Unis, a démontré que 
pour tout graphe  G de genre  g, on a l’inégalité%: 
c(G)%≤%[3g*/*2]%+%3, où [x] désigne la partie entière 

On dit qu’un sommet s d’un 

graphe G est un « coin » de G s’il 

existe un sommet s’ de G ayant 

pour voisins tous les voisins de s et 

éventuellement plus. Dans la 

figure a, le sommet s a pour voisins 

les sommets s, a, s’ et c.  

Le sommet s’ a quant à lui pour 

voisins les sommets s’, c, s, a et e.  

Donc s est un coin. Pour ce graphe,  
c’est le seul coin.

Par définition un graphe G est 

« démontable » si l’on peut 
numéroter ses sommets, s

1
, s

2
, 

…, s
n
 de sorte que s

1
 soit un coin 

de G, s
2
 un coin de G – {s

1
}, s3  

un coin de G – {s
1
, s

2
}, etc., jusqu’à 

ce qu’il ne reste plus que s
n
.  

La figure b présente un tel graphe.

On démontre qu’un graphe G a un 

cop number de 1 si et seulement 
si G est démontable.

Les arbres finis sont démontables,  
de même que les graphes tirés du 

pavage du plan par des triangles 

équilatéraux en ne gardant  

qu’un nombre fini de triangles,  
et en vérifiant que l’ensemble  
des triangles conservés n’a pas  

de trou. La figure c montre un 

exemple de tel graphe. La figure d 

montre, au contraire, un graphe 

qui présente un trou, et dont  

on peut vérifier qu’il n’est pas 
démontable.

3. Graphes démontables

s
s3

s7

s9

s5

s1

s4s8
s2 s6 s10

a

d

e

b

c
s’

a b

c

d
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La notion de « rétraction » pour  
les graphes est au cœur d’un 

remarquable résultat de la théorie  

du jeu des gendarmes et du voleur. 

Un graphe H est une rétraction  

d’un graphe G si et seulement  

si H est obtenu à partir de G  

à la suite d’une opération de fusion 

entre sommets suivie d’une 

opération de « nettoyage » : 

– Fusion : On identifie certains 
sommets entre eux, sans supprimer 

d’arête.

– Nettoyage : Si des arêtes sont 

maintenant en double, on ne garde 

qu’une arête de chaque type. De 

même, puisque c’est la convention 

adoptée dans tout cet article,  

on ne représente pas les arêtes 

liant un sommet à lui-même.

Dans la figure ci-dessous, entre 
l’étape 1 et l’étape 2, on fusionne  
le sommet a avec le sommet b,  

le sommet c avec le sommet e  

et le sommet f avec le sommet g. 

Puis, entre l’étape 2 et l’étape 3,  
on effectue l’opération de nettoyage 

et l’on obtient un graphe H qui est 

une rétraction du graphe initial G.

En 1993, une équipe réunie autour 
d’Alessandro Berarducci, de 

l’université de Pise, démontre que 

si H est une rétraction de G, alors 

le cop number de H est inférieur ou 

égal à celui de G.

Supposons en effet que c(G) = k,  

et soit H une rétraction de G. Une 

partie jouée dans H peut être 

considérée comme jouée dans G, 

puisque H est un sous-graphe de G. 

Cependant la stratégie des 
gendarmes dans G pourrait ne pas 

être suffisante dans H : pour 
attraper le voleur, les gendarmes 

pourraient avoir besoin qu’il 

quitte H et se fasse coincer ailleurs. 

Pour obtenir une stratégie 

gagnante pour les gendarmes 

valable dans H, nous définissons la 
« stratégie image » de leur stratégie 
gagnante dans G. Lorsqu’un 

sommet x de G a été fusionné avec  

un sommet y qui reste dans H, 

nous dirons que x a pour image y. 

Dans la stratégie image dans H, les 

k gendarmes commencent sur les 
sommets de H qui sont les images  

des points de départ de la stratégie 

gagnante dans G. Ils jouent  

ensuite en se déplaçant sur  

les images des sommets prescrits  

par la stratégie gagnante dans G : 
si, dans G, un gendarme doit  

se déplacer d’un sommet u vers  

un sommet v, alors dans H le 

gendarme doit se déplacer depuis 

l’image de u vers l’image de v.  

Ces déplacements sont toujours 
possibles, car les arêtes n’ont pas 

été supprimées quand on a opéré 

les fusions de la rétraction.

Cette stratégie image dans H  

est gagnante pour les k gendarmes. 
En effet, supposons que les 

k gendarmes soient sur le point 
d’attraper le voleur dans G ;  
cela signifie que le sommet où se 
trouve le voleur ainsi que chacun 

de ses voisins sont adjacents, 

dans G, à un sommet où se trouve 

un gendarme. Comme toutes  
les arêtes ont été gardées dans  

la rétraction, cela signifie que  
le sommet où se trouve le voleur 

dans H et chacun de ses voisins 

dans H sont adjacents à un 

sommet dans H où se trouve  

un gendarme image. Le voleur perd 

donc la partie jouée dans H.

Notons que la stratégie image 

n’est peut-être pas celle utilisant 
le moins de gendarmes possible. 

Ce qu’établit ce raisonnement, 
c’est que le nombre de gendarmes 

nécessaire pour assurer une 

stratégie gagnante dans H est 

inférieur ou égal à celui nécessaire 

dans G : c(H) ≤ c(G).

Une conséquence simple de ce 

résultat est que si une rétraction 

de G est un cycle de longueur 

supérieure ou égale à 4, alors le 
graphe est gagnant pour le voleur 

face à un seul gendarme.

4. Rétraction

Après nettoyage
des arêtes en double  
et des boucles

On fusionne 
a et b, c et e, f et g

Bien sûr, plusieurs rétractions successives peuvent être opérées. Dans la figure ci-dessous, on fusionne d’abord 
u et u’ ainsi que s et s’ (entre les étapes E1 et E2) puis w, w’ et w’’ ainsi que v et v’ et enfin x et x’ (entre les étapes E2 

et E3) et finalement tous les sommets autres que les quatre formant un carré (entre les étapes E3 et E4).
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Étape 1

E1 E2 E3 E4

Étape 2 Étape 3

d
b

a

c

s

s'

u u' v'

w

w''

w' x'

x

v

e

g

c=e

a=b

d

c

b
d

f
hh

f=g
h

f
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que pour tout entier n, c(n)%≤%D%×%n*/%2(1-g(n))%×%√log2(n). Ce 
résultat reste cependant très éloigné de ce qu’af-
firme la conjecture%: pour n%=%1%000%000, l’inégalité 
assure que c(1%000%000) est inférieur à 42 millions, 
alors que la conjecture indique une majoration 
par 32%000.

Puisque la conjecture résiste, les spécialistes 
se sont penchés sur une version affaiblie, la soft 
Meyniel conjecture. Cette dernière affirme seu-
lement qu’il existe une constante positive  E et 
une constante e comprise entre 0 et 1 telles que 
pour tout entier n, c(n)%≤%E%×%ne. Pour l’heure, cette 
conjecture reste elle aussi hors de portée.

Sous-catégories de graphes
En se limitant à certaines catégories de graphes, 

divers résultats ont toutefois été établis. On sait 
par exemple que si G est un graphe tel que la dis-
tance entre deux sommets est au plus 2 (on parle 
de graphe de diamètre 2), alors pour tout entier n, 
c(G)%≤%2%×%(–%1%+%√n).

En 2020, Peter Bradshaw, de l’université Simon 
Fraser, au Canada, a démontré la conjecture de 
Meyniel pour une classe de graphes utilisée en algèbre 
appelée «%classe de graphes de Cayley%». En  2025, 
Arindam Biswas, qui travaille pour l’entreprise fran-
çaise Polynom, et Jyoti Prakash Saha, chercheur à 
l’Institut indien d’enseignement et de recherche 
scientifiques de Bhopal, en Inde, ont démontré la 
version faible de la conjecture pour les «%graphes al-
gébriques%», qui apparaissent en théorie des groupes.

Une multitude d’autres résultats concernant 
soit le jeu des gendarmes et du voleur soit ses var-
iantes contribuent au bouillonnement de ce do-
maine où, partant d’une question élémentaire, on 
en vient à étudier des problèmes mathématiques 
difficiles, exigeant l’utilisation de méthodes issues 
de domaines variés et parfois très éloignés. ■

de x (c’est-à-dire le plus grand entier inférieur ou 
égal à x). En 2021, ce résultat a été amélioré par 
une équipe de chercheurs réunie autour de Florian 
Lehner, de l’université d’Auckland, en Nouvelle-
Zélande%: on sait maintenant que si G est un graphe 
de genre g, alors c(G)%≤%[4g%/%3]%+%10%/%3.

Une question naturelle est de savoir s’il existe 
une limite supérieure au nombre de gendarmes 
nécessaires pour attraper un voleur sur un graphe 
quelconque%–%autrement dit, s’il existe un nombre K 
tel que, pour tout graphe  G, on ait c(G)%≤%K. La 
réponse est non%: pour tout entier k, il existe des 
graphes dont le cop number dépasse k. Plus préci-
sément, si un graphe G ne possède pas de cycle de 
taille 4 ou moins, alors son cop number est supérieur 
ou égal au nombre minimum de voisins (différents 
de lui-même) d’un sommet de G. Cela permet de 
construire des graphes dont le cop number est aussi 
grand qu’on le veut.

Conjecture de Meyniel
On peut préciser encore ce résultat en étudiant 

certains graphes construits à partir d’objets géomé-
triques particuliers%: les plans projectifs finis. On dé-
montre que ces graphes ont un nombre de sommets 
de la forme 2q2%+%2q*+%2 avec q un entier, et que le cop 
number d’un tel graphe est alors q%+%1. Cela signifie 
que le cop number maximal pour un graphe à n som-
mets augmente au moins proportionnellement à √n, 
quand n augmente.

Puisque les graphes à n sommets sont en nombre 
fini, pour tout entier n il existe un nombre c(n) qui 
est le cop number maximum pour ces graphes. Le 
résultat précédent et les graphes dont on a pu éva-
luer exactement le cop number suggèrent qu’il pour-
rait exister une constante positive C telle que pour 
tout n et tout graphe à n sommets, c(n)%≤%C√n. Cette 
affirmation est la «%conjecture d’Henri Meyniel%». 
C’est une très belle et intrigante conjecture, la plus 
difficile peut-être de la théorie. Si elle est vraie cela 
signifie que le nombre de gendarmes nécessaires 
pour garantir qu’un voleur se fait attraper sur un 
graphe quelconque à n sommets augmente bien 
moins vite que n.

La conjecture est encore ouverte à l’heure actuelle, 
néanmoins certaines avancées ont été faites au cours 
des dernières décennies. Depuis  1989, on sait par 
exemple qu’il existe une constante positive C telle que, 
pour tout entier n, c(n)%≤%C%×%n%×%log(log(n))%/%log(n). Un 
autre résultat a été publié en 2012 par trois équipes 
de recherche indépendantes les unes des autres%: il 
existe une constante positive D et une fonction g dé-
finie sur les entiers, qui tend vers 0 à l’infini, telles 
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