NOM : Prénom :

Interrogation 5 Équations Différentielles

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Définition d'une équation différentielle linéaire d'ordre 1 et d'être solution de cette équation.

Soit $a,b:I\to\mathbb{K}$ continue. L'équation y'+a(x)y=b(x) est une équation différentielle linéaire d'ordre 1 définie sur I. Une fonction $f:I\to\mathbb{K}$ est solution de cette équation différentielle ssi f est dérivable sur I et $\forall x\in I$, f'(x)+a(x)f(x)=b(x).

2. Solutions d'une équation différentielle linéaire d'ordre 1 homogène.

Soit $a:I\to\mathbb{K}$ continue et A une primitive de a sur I. Les solutions de l'équation différentielle linéaire d'ordre 1 homogène y'+a(x)y=0 sont les fonctions $x\mapsto \lambda e^{-A(x)}$ où $\lambda\in\mathbb{K}$.

3. Principe de superposition dans le cas d'une équation différentielle linéaire d'ordre 1.

Soit $a,b_1,b_2:I\to\mathbb{K}$ continues. Soit f_1 une solution de l'équation différentielle linéaire d'ordre 1 $y'+a(x)y=b_1(x)$ et f_2 une solution de l'équation différentielle linéaire d'ordre 1 $y'+a(x)y=b_2(x)$. Alors f_1+f_2 est solution de l'équation différentielle linéaire d'ordre 1 $y'+a(x)y=b_1(x)+b_2(x)$.

4. Solutions de y'' + ay' + by = 0 avec $a, b \in \mathbb{R}$.

Soit $r^2+ar+b=0$ l'équation caractéristique de l'équation différentielle linéaire homogène d'ordre 2. Soit $\Delta=a^2-4b$.

- Si $\Delta > 0$, l'éq caractéristique a deux solutions réelles distinctes α et β , et les solutions de l'eq diff homogène sont les $x \mapsto \lambda e^{\alpha x} + \mu e^{\beta x}$, avec $\lambda, \mu \in \mathbb{R}$.
- Si $\Delta=0$, l'éq caractéristique a une unique solution réelle α , et les solutions de l'éq diff homogène sont les $x\mapsto (\lambda x+\mu)e^{\alpha x},\ \lambda,\mu\in\mathbb{R}.$
- Si $\Delta < 0$, l'éq caractéristique a deux solutions complexes non réelles conjuguées $\alpha \pm i\omega$ $(\alpha, \omega \in \mathbb{R})$ et les solutions de l'éq homogène sont les $x \mapsto (\lambda\cos(\omega x) + \mu\sin(\omega x))e^{\alpha x}$, $\lambda, \mu \in \mathbb{R}$.

Exercice 2:

Résoudre l'équation différentielle $y' - 2xy = e^{x+x^2}$.

L'équation (E) $y'-2xy=e^{x+x^2}$ est une équation différentielle linéaire d'ordre 1 définie sur $\mathbb R$ (car $x\mapsto 2x$ et $x\mapsto e^{x+x^2}$ sont continues sur $\mathbb R$). Son équation homogène est y'-2xy=0. Une primitive de $x\mapsto -2x$ sur $\mathbb R$ est $x\mapsto -x^2$. Donc les solutions de l'équation homogène sont les $x\mapsto \lambda e^{x^2}$ avec $\lambda\in\mathbb R$.

Pour trouver une solution particulière, on utilise la méthode de la variation de la constante : soit $h: \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} . On pose $f: x \mapsto h(x)e^{x^2}$. Alors, par produit de fonctions dérivables sur \mathbb{R} , f est dérivable sur \mathbb{R} . Puis :

$$f \text{ solution de } (E)$$

$$\iff \forall x \in \mathbb{R}, \ f'(x) - 2xf(x) = e^{x+x^2}$$

$$\iff \forall x \in \mathbb{R}, \ h'(x)e^{x^2} + 2xh(x)e^{x^2} - 2xh(x)e^{x^2} = e^{x+x^2}$$

$$\iff \forall x \in \mathbb{R}, \ h'(x)e^{x^2} = e^{x+x^2}$$

$$\iff \forall x \in \mathbb{R}, \ h'(x) = e^x$$

déf être sol d'une ég diff

On choisit alors $h: x \mapsto e^x$ et donc $f: x \mapsto e^{x+x^2}$ est solution de (E).

D'où, les solutions de ${\cal E}$ sont les

$$\begin{array}{cccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & (\lambda + e^x)e^{x^2}, \ \lambda \in \mathbb{R}. \end{array}$$