

DS 5 Applications Linéaires

Correction

Simon Dauguet simon.dauguet@gmail.com

Mercredi 08 Janvier 2025

Problème 1 (Algèbre : Autour des pseudo-inverses) :

Partie A: Un exemple

Soit

$$f: \frac{\mathbb{R}^3}{(x,y,z)} \xrightarrow{\mapsto} (x-y+3z, 2x-2y+2z, x-y+z).$$

A.1 Soit $(x, y, z), (x', y', z') \in \mathbb{R}^3$, $\lambda \in \mathbb{R}$. Alors :

$$\begin{split} &f(\lambda(x,y,z)+(x',y',z'))\\ &=f(\lambda x+x',\lambda y+y',\lambda z+z')\\ &=\left((\lambda x+x')-(\lambda y+y')+3(\lambda z+z'),2(\lambda x+x')-2(\lambda y+y')+2(\lambda z+z'),(\lambda x+x')-(\lambda y+y')+(\lambda z+z')\right) & \text{def opé } \mathbb{R}^3\\ &=\left(\lambda(x-y+3z)+(x'-y'+3z'),\lambda(2x-2y+2z)+(2x'-2y'+2z'),\lambda(x-y+z)+(x'-y'+z')\right) & \mathbb{R} \text{ ann comm}\\ &=\lambda(x-y+3z,2x-2y+2z,x-y+z)+(x'-y'+3z',2x'-2y'+2z',x'-y'+z') & \text{def opé } \mathbb{R}^3\\ &=\lambda f(x,y,z)+f(x',y',z') \end{split}$$

Donc, par définition, $f \in \mathcal{L}(\mathbb{R}^3)$.

A.2 Il est facile de voir que f(1,1,0)=0. Donc $\mathrm{Vect}(1,1,0)\subset \ker(f)$ par linéarité de f. Donc $\dim(\ker(f))\geq 1$. Et donc, par théorème du rang, $\mathrm{rg}(f)=\dim(\mathbb{R}^3)-\dim(\ker(f))\leq 2$. Or f(1,0,0)=(1,2,1) et f(0,0,1)=(3,2,1). Soit $\lambda,\mu\in\mathbb{R}$.

$$\lambda(1,2,1) + \mu(3,2,1) = 0 \iff (\lambda + 3\mu, 2\lambda + 2\mu, \lambda + \mu) = 0$$
 def opé \mathbb{R}^3
$$\iff \begin{cases} \lambda + 3\mu = 0 \\ \lambda + \mu = 0 \end{cases}$$
 liberté base canonique \mathbb{R}^3
$$\iff \begin{cases} 2\mu = 0 \\ \lambda + \mu = 0 \end{cases}$$

$$\iff \lambda = \mu = 0$$

Donc la famille ((1,2,1),(3,2,1)) est libre. Donc $\operatorname{rg}(f) \geq 2$. Donc $\operatorname{rg}(f) = 2$. Et donc, par caractérisation des bases en dimension finie, ((1,2,1),(3,2,1)) est une base de $\operatorname{Im}(f)$.

De plus, par théorème du rang, $\dim(\ker(f)) = 3 - \operatorname{rg}(f) = 1$. Or $(1,1,0) \in \ker(f)$ et $(1,1,0) \neq 0$. Donc $\ker(f) = \operatorname{Vect}((1,1,0))$ et ((1,1,0)) est une base de $\ker(f)$.

A.3 Soit $\lambda, \mu, \gamma \in \mathbb{R}$.

$$\lambda(1,2,1) + \mu(3,2,1) + \gamma(1,1,0) = 0 \iff (\lambda + 3\mu + \gamma, 2\lambda + 2\mu + \gamma, \lambda + \mu) = 0$$
 opé \mathbb{R}^3
$$\iff \begin{cases} \lambda + 3\mu + \gamma = 0 \\ 2\lambda + 2\mu + \gamma = 0 \\ \lambda + \mu = 0 \end{cases}$$
 liberté base canonique \mathbb{R}^3
$$\iff \begin{cases} 2\mu + \gamma = 0 \\ \gamma = 0 \\ \lambda + \mu = 0 \end{cases}$$

$$\iff \lambda = \mu = \gamma = 0$$

Donc la famille ((1,2,1),(3,2,1),(1,1,0)) est libre. Donc, par caractérisation des bases en dimension finie, ((1,2,1),(3,2,1),(1,2

$$\mathbb{R}^3 = \text{Vect}((1,2,1),(3,2,1),(1,1,0)) = \text{Vect}((1,2,1),(3,2,1)) \oplus \text{Vect}((1,1,0)) = \text{Im}(f) \oplus \ker(f).$$

Donc $\ker(f)$ et $\operatorname{Im}(f)$ sont supplémentaires dans \mathbb{R}^3 .

A.4 Soit $(x, y, z) \in \mathbb{R}^3$.

$$\begin{split} f^2(x,y,z) &= f(x-y+3z,2x-2y+2z,x-y+z) \\ &= \left((x-y+3z)-(2x-2y+2z)+3(x-y+z), \right. \\ &\left. 2(x-y+3z)-2(2x-2y+2z)+2(x-y+z), \right. \\ &\left. (x-y+3z)-(2x-2y+2z)+(x-y+z) \right) \\ &= \left(2x-2y+4z,4z,2z\right) \end{split}$$

Donc

$$f^2: \begin{matrix} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ (x, y, z) & \mapsto & (2x - 2y + 4z, 4z, 2z) \end{matrix}$$

A.5 On a donc

$$\begin{split} &\operatorname{Im}(f^2) = \operatorname{Vect}(f^2(1,0,0), f^2(0,1,0), f^2(0,0,1)) \\ &= \operatorname{Vect}((2,0,0), (-2,0,0), (4,4,2)) \\ &= \operatorname{Vect}((1,0,0), (1,1,2)) \end{split} \qquad \text{substitution et \'elimination} \end{split}$$

Or il est assez clair que ((1,0,0),(1,1,2)) est libre (système facile à résoudre). Donc ((1,0,0),(1,1,2)) est une base de $\text{Im}(f^2)$. Et donc, par définition de la dimension, $\text{rg}(f^2)=2=\text{rg}(f)$.

A.6 On pose
$$g:(x,y,z)\mapsto \left(\frac{x-y+3z}{2},x-y+z,\frac{x-y+z}{2}\right)$$
.

- (a) Alors $g=\frac{1}{2}f$. Or $\mathcal{L}(\mathbb{R}^3)$ est un \mathbb{R} -ev. Donc $g\in\mathcal{L}(\mathbb{R}^3)$.
- (b) On commence par calculer f^3 : Soit $(x, y, z) \in \mathbb{R}^3$.

$$\begin{split} f^3(x,y,z) &= f(2x-2y+4z,4z,2z) \\ &= ((2x-2y+4z)-4z+6z,2(2x-2y+4z)-8z+4z,(2x-2y+4z)-4z+2z) \\ &= (2x-2y+3z,4x-4y+4z,2x-2y+2z) \\ &= 2f(x,y,z) \end{split}$$

Donc $f\circ g\circ f=\frac{1}{2}f^3=f$. Et $g\circ f\circ g=\frac{1}{4}f^3=\frac{1}{2}f=g$. Et enfin $g\circ f=\frac{1}{2}f^2=f\circ g$, par linéarité à droite et à gauche de la composition.

Donc, par définition, g est le pseudo-inverse de f.

Partie B : Définition, premières propriétés

B.1 Soit $f \in \mathcal{L}(\mathbb{R}^n)$ pseudo-inversible. Soit $g_1, g_2 \in \mathcal{L}(\mathbb{R}^n)$ deux pseudo-inverses de f. Alors

$$\begin{split} f\circ g_1 &= (f\circ g_2\circ f)\circ g_1 & g_2 \text{ pseudo-inverse de } f \\ &= (f\circ g_2)\circ (f\circ g_1) & \text{associativit\'e} \\ &= (g_2\circ f)\circ (g_1\circ f) & \text{commutativit\'e des pseudo-inverses} \\ &= g_2\circ (f\circ g_1\circ f) & \text{associativit\'e} \\ &= g_2\circ f & \text{pseudo-inverse} \\ &= f\circ g_2 & \text{commutativit\'e des pseudo-inverses} \end{split}$$

et donc

$$\begin{array}{lll} g_1=g_1\circ f\circ g_1 & \text{pseudo-inverse}\\ =g_1\circ (f\circ g_1) & \text{associativit\'e}\\ =g_1\circ (f\circ g_2) & \text{car } f\circ g_1=f\circ g_2\\ =(g_1\circ f)\circ g_2 & \text{associativit\'e}\\ =(g_1)\circ g_2 & \text{commutativit\'e pseudo-inverses}\\ =(f\circ g_2)\circ g_2 & \text{car } f\circ g_1=f\circ g_2\\ =(g_2\circ f)\circ g_2 & \text{commutativit\'e pseudo-inverses}\\ =g_2. \end{array}$$

D'où l'unicité du pseudo-inverse, s'il existe.

- B.2 Quelques exemples.
- (a) Soit $f \in GL(\mathbb{R}^n)$. Alors, par définition de l'inverse, $f \circ f^{-1} = \operatorname{Id}_{\mathbb{R}^n} = f^{-1} \circ f$. Et $f^{-1} \circ f \circ f^{-1} = \operatorname{Id}_{\mathbb{R}^n} \circ f^{-1} = f^{-1}$ et $f \circ f^{-1} \circ f = f \circ \operatorname{Id}_{\mathbb{R}^n} = f$. Donc f est pseudo-inversible et $f^* = f^{-1}$.
 - (b) Soit $f \in \mathcal{L}(\mathbb{R}^n)$ telle que $f^2 = f$. Alors $f^3 = f \circ f^2 = f^2 = f$. Donc f est pseudo-inversible et $f^* = f$.
 - (c) Soit $u \in \mathcal{L}(\mathbb{R}^n)$ pseudo-inversible et nilpotent.
 - i. On a:

$$\begin{array}{ll} \forall k \geq 2, \ u^* \circ u^k = (u^* \circ u) \circ u^{k-1} & \text{associativit\'e} \\ &= (u \circ u^*) \circ u^{k-1} & \text{comm pseudo-inverse} \\ &= (u \circ u^* \circ u) \circ u^{k-2} & \text{associativit\'e} \\ &= u^{k-1} & \text{pseudo-inverse} \end{array}$$

- ii. Soit p l'indice de nilpotence de u. Donc $u^p=0$ et $u^{p-1}\neq 0$. Alors $0=u^*\circ u^p=u^{p-1}\neq 0$. Donc a. Donc un endomorphisme nilpotent n'est pas pseudo-inversible.
 - B.3 Soit $f \in \mathcal{L}(\mathbb{R}^n)$. On suppose f pseudo-inversible.
- (a) On a donc $f \circ f^* = f^* \circ f$ et $f^* \circ f \circ f^* = f^*$ et $f \circ f^* \circ f = f$. Par commutativité, on en déduit donc aussi $f^* \circ f^2 = f$. D'où $\operatorname{Im}(f) = \operatorname{Im}(f^* \circ f^2) \subset \operatorname{Im}(f^*)$.

De même, la commutativité nous fournit $f \circ (f^*)^2 = f^*$ et donc $\operatorname{Im}(f^*) = \operatorname{Im}(f \circ (f^*)^2) \subset \operatorname{Im}()$.

D'où l'on déduit $Im(f) = Im(f^*)$.

(b) D'après la question précédente et le théorème du rang, on a $\dim(\ker(f)) = n - \operatorname{rg}(f) = n - \operatorname{rg}(f^*) = \dim(\ker(f^*))$.

Et aussi $\ker(f^*) \subset \ker(f^2 \circ f^*) = \ker(f \circ f^* \circ f) = \ker(f)$ par commutativité et pseudo-inversibilité.

D'où $\ker(f) = \ker(f^*)$.

(c) Enfin,

$$(f \circ f^*)^2 = f \circ f^* \circ f \circ f^*$$
 def

$$= (f \circ f^* \circ f) \circ f^*$$
 associativité
$$= f \circ f^*$$

Donc $f \circ f^*$ est un projecteur, par caractérisation des projecteurs.

Partie C : Une caractérisation en dimension finie

Soit $f \in \mathcal{L}(\mathbb{R}^n)$.

- C.1 On suppose f pseudo-inversible.
- (a) En particulier, f et f^* commutent. Donc

$$\begin{array}{ll} f = f \circ f^* \circ f & f = f \circ f^* \circ f \\ = (f \circ f^*) \circ f & = f \circ (f^* \circ f) & \text{associativit\'e} \\ = (f^* \circ f) \circ f & = f \circ (f \circ f^*) & \text{commutativit\'e} \\ = f^* \circ f^2 & = f^2 \circ f^* & \end{array}$$

- (b) Soit $x \in \ker(f) \cap \operatorname{Im}(f)$. Alors $\exists y \in \mathbb{R}^n$ tel que x = f(y) (par définition de $\operatorname{Im}(f)$). Donc $0 = f(x) = f^2(y)$. En composant par f^* , on a alors $0 = f^*(0) = f^* \circ f^2(y) = f(y) = x$. D'où $\ker(f) \cap \operatorname{Im}(f) \subset \{0\}$.
 - Mais $\ker(f)$ et $\operatorname{Im}(f)$ sont des sev de \mathbb{R}^n . Donc $0 \in \ker(f) \cap \operatorname{Im}(f)$, donc $\ker(f) \cap \operatorname{Im}(f) = \{0\}$.
- (c) D'après la question précédente, on a $\ker(f) \cap \operatorname{Im}(f) = \{0\}$. Or, par théorème du rang, $\dim(\ker(f)) + \operatorname{rg}(f) = \dim(\mathbb{R}^n) = n$. Donc, par caractérisation des supplémentaires en dimension finie, $\ker(f)$ et $\operatorname{Im}(f)$ sont supplémentaires dans \mathbb{R}^n , i.e. $\mathbb{R}^n = \ker(f) \oplus \operatorname{Im}(f)$.
- (d) On a $f = f^2 \circ f^*$. Donc $rg(f) = rg(f^2 \circ f^*) \le rg(f^2)$. Et aussi $rg(f^2) = rg(f \circ f) \le rg(f)$. D'où, par antisymétrie de la relation d'ordre, $rg(f) = rg(f^2)$.
 - C.2 On suppose $rg(f) = rg(f^2)$.
- (a) On a $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$ (car $\operatorname{Im}(f^2) = f^2(\mathbb{R}^n) = f(f(\mathbb{R}^n)) \subset f(\mathbb{R}^n) = \operatorname{Im}(f)$). Or $\operatorname{rg}(f) = \operatorname{rg}(f^2)$. Donc $\operatorname{dim}(\operatorname{Im}(f)) = \operatorname{dim}(\operatorname{Im}(f^2))$. Donc $\operatorname{Im}(f) = \operatorname{Im}(f^2)$.
- (b) Si $x \in \ker(f)$, alors $f^2(x) = f(f(x)) = f(0) = 0$. Donc $x \in \ker(f)$. Donc $\ker(f) \subset \ker(f^2)$. D'autre part, par théorème du rang, $\dim(\ker(f)) = n \operatorname{rg}(f) = n \operatorname{rg}(f^2) = \dim(\ker(f^2))$. Donc $\ker(f) = \ker(f^2)$.
- (c) i. On a $f(x) \in \text{Im}(f)$. Or $\text{Im}(f) = \text{Im}(f^2)$ d'après C.2a. Donc $\exists y \in \mathbb{R}^n$ tel que $f(x) = f^2(y)$. Par linéarité, on en déduit f(x f(y)) = 0. Donc, par définition, $x f(y) \in \text{ker}(f)$. Donc $\exists y \in \mathbb{R}^n$ tel que $x f(y) \in \text{ker}(f)$.
- ii. On pose $z=x-f(y)\in \ker(f)$. Alors x=f(y)+z et $f(y)\in \operatorname{Im}(f)$ par définition et $z\in \ker(f)$ d'après la question précédente. Donc, par définition, $x\in \operatorname{Im}(f)+\ker(f)$. D'où $\mathbb{R}^n\subset \operatorname{Im}(f)+\ker(f)$.

Mais $\ker(f)$ et $\operatorname{Im}(f)$ sont des sevs de \mathbb{R}^n , donc $\operatorname{Im}(f) + \ker(f)$ est un sev de \mathbb{R}^n et donc $\operatorname{Im}(f) + \ker(f) \subset \mathbb{R}^n$. D'où $\mathbb{R}^n = \ker(f) + \operatorname{Im}(f)$.

- iii. D'après la question précédente, $\mathbb{R}^n = \ker(f) + \operatorname{Im}(f)$. Mais par théorème du rang, $\dim(\ker(f)) + \operatorname{rg}(f) = \dim(\mathbb{R}^n)$, donc, par caractérisation des supplémentaires en dimension fini, $\mathbb{R}^n = \ker(f) \oplus \operatorname{Im}(f)$ et donc $\ker(f)$ et $\operatorname{Im}(f)$ sont supplémentaires.
- iv. Soit $x \in \mathbb{R}^n$. D'après la question C.2(c)i, $\exists y \in \mathbb{R}^n$ tel que $x-f(y) \in \ker(f)$. Mais d'après la question précédente, $\mathbb{R}^n = \ker(f) \oplus \operatorname{Im}(f)$. Donc $\exists (y_0, y_1) \in \ker(f) \times \operatorname{Im}(f)$ tel que $y = y_0 + y_1$. Alors $f(y) = f(y_0) + f(y_1) = f(y_1)$, par linéarité. Donc $x f(y) = x f(y_1) \in \ker(f)$.

D'où $\exists y_1 \in \text{Im}(f)$ tel que $x - f(y_1) \in \text{ker}(f)$.

- v. Soit $x \in \mathbb{R}^n$. Supposons $\exists y_1, y_2 \in \operatorname{Im}(f)$ tel que $x f(y_1) \in \ker(f)$ et $x f(y_2) \in \ker(f)$. Alors, par structure d'ev de $\ker(f)$, $f(y_1) f(y_2) = (x f(y_2)) (x f(y_1)) \in \ker(f)$. Par linéarité, on en déduit $f(y_1 y_2) \in \ker(f)$. Donc $f^2(y_1 y_2) = 0$. Donc $y_1 y_2 \in \ker(f^2)$.
- Or $\ker(f^2) = \ker(f)$ d'après C.2b. Donc $y_1 y_2 \in \ker(f)$. Mais, par définition, $y_1, y_2 \in \operatorname{Im}(f)$. Donc, par structure d'ev de $\operatorname{Im}(f)$, on a $y_1 y_2 \in \operatorname{Im}(f)$. Finalement, $y_1 y_2 \in \ker(f) \cap \operatorname{Im}(f)$.

Mais, d'après C.2(c)iii, $\ker(f) \cap \operatorname{Im}(f) = \{0\}$. Donc $y_1 = y_2$. D'où l'unicité.

(d) On définit $f_0: \operatorname{Im}(f) \to \operatorname{Im}(f)$ par $f_0(x) = f(x)$.

i. On notera que f_0 est bien définie car $\forall x \in \text{Im}(f), f(x) \in \text{Im}(f)$.

Par ailleurs, f_0 hérite de la linéarité de $f: \forall x,y \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$, $\lambda x + y \in \operatorname{Im}(f)$ car $\operatorname{Im}(f)$ est un sev de \mathbb{R}^n et $f_0(\lambda x + y) = f(\lambda x + y) = \lambda f(x) + f(y) = \lambda f_0(x) + f_0(y)$ par définition de f_0 . Donc f_0 est linéaire. Donc $f_0 \in \mathcal{L}(\operatorname{Im}(f))$.

Soit $x \in \text{Im}(f)$ tel que $f_0(x) = 0$. Alors, par définition de f_0 , f(x) = 0. Donc $x \in \text{ker}(f)$. Mais par définition, $x \in \text{Im}(f)$. Donc $x \in \text{ker}(f) \cap \text{Im}(f) = \{0\}$ par C.2(c)iii. Donc x = 0. Et donc $\text{ker}(f_0) \subset \{0\}$. Mais comme f_0 est linéaire, on a aussi $0 \in \text{ker}(f_0)$ et donc $\text{ker}(f_0) = \{0\}$.

Finalement, par théorème de l'isomorphisme (car $\operatorname{Im}(f)$ est un ev de dimension finie en tant que sev d'un ev de dimension finie), $f_0 \in \operatorname{GL}(\operatorname{Im}(f))$.

ii. On définit $g: \mathbb{R}^n \to \mathbb{R}^n$ définie par $g(x) = (f_0)^{-1}(x_2)$ où $(x_1, x_2) \in \ker(f) \times \operatorname{Im}(f)$ tel que $x = x_1 + x_2$ (cf C.2(c)iii).

Soit $x,y\in\mathbb{R}^n$ et $\lambda\in\mathbb{R}$. On pose $(x_1,x_2),(y_1,y_2)\in\ker(f)\times\operatorname{Im}(f)$ tels que $x=x_1+x_2$ et $y=y_1+y_2$. Alors $\lambda x+y=(\lambda x_1+y_1)+(\lambda x_2+y_2)$ avec $\lambda x_1+y_1\in\ker(f)$ et $\lambda x_2+y_2\in\operatorname{Im}(f)$. Donc $(\lambda x_1+y_1,\lambda x_2+y_2)$ est la décomposition de $\lambda x+y$ dans $\ker(f)\oplus\operatorname{Im}(f)$, qui est unique.

Donc, par définition de g, $g(\lambda x + y) = (f_0)^{-1}(\lambda x_2 + y_2) = \lambda(f_0)^{-1}(x_2) + (f_0)^{-1}(y_2)$ car f_0 est linéaire et bijective, donc $(f_0)^{-1}$ est aussi linéaire. D'où $g(\lambda x + y) = \lambda g(x) + g(y)$. Donc g est linéaire.

iii. Soit $x \in \mathbb{R}^n$. Soit $(x_1, x_2) \in \ker(f) \times \operatorname{Im}(f)$ tel que $x = x_1 + x_2$. Alors

$$f \circ g(x) = f \circ (f_0)^{-1}(x_2)$$

$$= f_0 \circ (f_0)^{-1}(x_2)$$

$$= x_2.$$
par def f_0 et $(f_0)^{-1}(x_2) \in \text{Im}(f)$

De plus, on a $f(x) = f(x_1) + f(x_2) = f(x_2) \in \text{Im}(f)$. Donc la décomposition de $f(x_2)$ dans la somme directe $\ker(f) \oplus \text{Im}(f)$ est $(0, f(x_2))$. Donc

$$g\circ f(x)=g(f(x_2)) \qquad \qquad \text{lin\'earit\'e de } f \text{ et def } x_1$$

$$=(f_0)^{-1}(f_0(x_2)) \qquad \qquad \text{car } x_2\in \mathrm{Im}(f)$$

$$=x_2$$

Donc $f \circ g = g \circ f$. Donc f et g commutent.

De plus,

$$f\circ g\circ f(x)=f(g\circ f(x)) \qquad \qquad \text{associativit\'e} \\ =f(x_2) \qquad \qquad \text{cf calcul pr\'ec\'edent} \\ =f(x)$$

et

$$g\circ f\circ g(x)=g(f\circ g(x)) \qquad \text{associativit\'e}$$

$$=g(x_2)$$

$$=g(x) \qquad \text{par def } g$$

Donc $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

D'où q est le pseudo-inverse de f.