

Interrogation 14

Dérivabilité

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Définition de la dérivabilité.

Soit $f:I\to\mathbb{C},\ a\in I.$ On dit que f est dérivable en a si $\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$ existe et est finie. Dans ce cas, on note f'(a) la valeur de cette limite et f'(a) est le nombre dérivée de f en a.

2. Définition d'une fonction lipschitzienne.

Soit $f: I \to \mathbb{R}$. On dit que f est lipschitzienne si $\exists \lambda \geq 0$ tel que $\forall x,y \in I, \ |f(x)-f(y)| \leq \lambda |x-y|.$

3. Théorème de Rolle.

Soit $a, b \in \mathbb{R}$, a < b, $f \in \mathcal{C}^0([a, b], \mathbb{R}) \cap \mathbb{D}^1(]a, b[, \mathbb{R})$ telle que f(a) = f(b). Alors $\exists c \in]a, b[$ tel que f'(c) = 0.

4. Théorème des accroissements finis.

Soit $a,b \in \mathbb{R}$, a < b, $f \in \mathcal{C}^0([a,b],\mathbb{R}) \cap \mathbb{D}^1(]a,b[,\mathbb{R})$. Alors $\exists c \in]a,b[$, $f'(c) = \frac{f(b)-f(a)}{b-a}$.

5. Inégalités des accroissements finis.

Soit $f \in \mathbb{D}^1(I,\mathbb{R})$. Si $\exists m,M\geq 0$ tel que $\forall x\in I,\ m\leq f(x)\leq M$, alors $\forall a,b\in I,\ a\leq b,\ m(b-a)\leq f(b)-f(a)\leq M(b-a)$.

6. Définition d'une fonction convexe.

Soit $f: I \to \mathbb{R}$. On dit que f est convexe sur I, si $\forall x, y \in I$, $\forall t \in [0,1]$, $f(tx+(1-t)y) \leq tf(x)+(1-t))f(y)$.

7. Théorème de recherche d'extremums.

Soit $f \in \mathbb{D}^1(]a,b[,\mathbb{R})$ et $c \in]a,b[$. Si f admet un extremum en c, alors f'(c)=0.

8. Inégalité de Jensen.

Soit $f:I\to\mathbb{R}$ convexe. Alors $\forall x_1,\ldots,x_n\in I$, $\forall \lambda_1,\ldots,\lambda_n\in[0,1]$ tel que $\sum_{k=1}^n\lambda_k=1$,

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k).$$

Exercice 2:

Soit $f: \mathbb{R}^* \to \mathbb{R}$ définie par f(0) = 0 et $\forall x \neq 0$, $f(x) = e^{-\frac{1}{x^2}}$. Étudier f en 0.

 $x\mapsto\in\mathcal{C}^\infty(\mathbb{R}^*,\mathbb{R})$ et $\exp\in\mathcal{C}^\infty(\mathbb{R},\mathbb{R})$, donc $f\in\mathcal{C}^\infty(\mathbb{R}^*,\mathbb{R})$ par composition. De plus, $\frac{1}{x^2}\xrightarrow[x\to 0]{}+\infty$, donc $f(x)\xrightarrow[x\to 0]{}0=f(0)$. Donc f est continue en 0. Donc $f\in\mathcal{C}^0(\mathbb{R},\mathbb{R})\cap\mathbb{D}^1(\mathbb{R}^*,\mathbb{R})$. Or

$$\forall x \in \mathbb{R}^*, \ f'(x) = \frac{2}{x^3}e^{-1/x^2} = 2(1/x^2)^{3/2}e^{-1/x^2}.$$

Par croissance comparée, $y^{3/2}e^y \xrightarrow[y \to -\infty]{} 0$. Donc $f'(x) \xrightarrow[x \to 0]{} 0$.

Donc, par théorème satanique, f est dérivable en 0 et f'(0)=0. Or f' continue sur \mathbb{R}^* , donc $f'(x) \xrightarrow[x \to 0]{} f'(0)$. Donc f' continue en 0. Donc $f \in \mathcal{C}^1(\mathbb{R},\mathbb{R})$.