

DS 6 Analyse - Arithmétique

Correction

Simon Dauguet simon.dauguet@gmail.com

Mercredi 29 Janvier 2025

On définie la fonction f par $f(x) = \frac{1}{1+x+x^2}$.

1. Préliminaires.

Soit $a \in \mathbb{R}$ et g définie sur $[a, +\infty[$ et dérivable sur $]a, +\infty[$. On suppose g(a) = 0 et $g(x) \xrightarrow[x \to +\infty]{} 0$.

1.(a) On pose, $\forall x \in [\arctan(a), \pi/2[, \varphi(x) = g(\tan(x)).$

On sait $\tan \in \mathcal{C}^{\infty}(]-\pi/2,\pi/2[,\mathbb{R})$. Or $\arctan:\mathbb{R}\to]-\pi/2,\pi/2[$. Donc $\arctan(a)\in]-\pi/2,\pi/2[$. Donc \tan est en particulier \mathcal{C}^{∞} sur $[\arctan(a),\pi/2[$.

Par continuité de tan et par le TVI, on sait donc que $\tan([\arctan(a),\pi/2[)$ est intervalle. Comme tan est strictement croissante, par stricte monotonie, on sait que $\tan([\arctan(a),\pi/2[)$ est un intervalle de même type (donc semi ouvert) et la croissance nous donne en plus, grâce au théorème de la limite monotone, $\tan([\arctan(a),\pi/2[)=[\tan(\arctan(a)),\lim_{x\to\pi/2}\tan(x)[=[a,+\infty[.$

Donc $\tan \in \mathcal{C}^{\infty}([\arctan(a),\pi/2[,[a,+\infty[).\ \text{Or}\ g\in\mathcal{D}^1([a,+\infty[,\mathbb{R}),\ \text{donc par composition},\ \varphi\in\mathcal{D}^1([\arctan(a),\pi/2[).\ \text{En particulier},\ \varphi\in\mathcal{C}^0([\arctan(a),\pi/2[,\mathbb{R}).\ \text{Mais, par composition dans les limites,}\ \varphi(x)=g(\tan(x))\xrightarrow[x\to\pi/2]{}0=\varphi(\pi/2)\ \text{car}\ g(x)\xrightarrow[x\to+\infty]{}0\ \text{par hypothèse.}\ \text{Donc}\ \varphi\ \text{est prolongeable par continuit\'e en}\ \pi/2\ \text{en posant}\ \varphi(\pi/2)=0.$

On renomme alors

$$\begin{aligned} & [\arctan(a), \pi/2] & \to & \mathbb{R} \\ \varphi : & & \\ \varphi : & & \\ x & \mapsto & \begin{cases} g(\tan(x)) & x \neq \pi/2 \\ 0 & x = \pi/2 \end{cases} \end{aligned}$$

Alors $\varphi \in \mathcal{C}^0([\arctan(a), \pi/2], \mathbb{R})$.

1.(b) D'après la question précédente, $\varphi \in \mathcal{C}^0([\arctan(a), \pi/2], \mathbb{R}) \cap \mathcal{D}^1(]\arctan(a), \pi/2[, \mathbb{R})$. Et

$$\varphi(a) = g(\tan(\arctan(a))) = g(a) = 0 = \varphi(\pi/2).$$

Donc, par le théorème de Rolle, $\exists c \in]\arctan(a), \pi/2[$ tel que $\varphi'(c) = 0.$

1.(c) Soit $c \in \arctan(a), \pi/2[$ tel que $\varphi'(c) = 0$ (qui existe, d'après la question précédente). φ est dérivable sur $\arctan(a), \pi/2[$ et $\forall x \in \arctan(a), \pi/2[$, $\varphi'(x) = (1 + \tan(x)^2)g'(\tan(x))$. Donc $\varphi'(c) = 0 \iff (1 + \tan(c)^2)g'(\tan(c)) = 0 \iff g'(\tan(c)) = 0$ car $1 + \tan(c)^2 \neq 0$.

On pose alors $d = \tan(c)$. Donc g'(d) = 0. Et $c \in \arctan(a), \pi/2[\implies d = \tan(c) \in]a, +\infty[$ par croissance de tan.

2. Étude de f.

2.(a) Le discriminant du polynôme $1+X+X^2$ est $\Delta=1-4=-3<0$. Donc le polynôme $1+X+X^2$ n'a pas de racines réelles, *i.e.* $\forall x \in \mathbb{R}$, $1+x+x^2 \neq 0$.

Donc f est l'inverse d'une fonction définie sur \mathbb{R} qui ne s'annule pas, donc f est bien définie sur \mathbb{R} .

2.(b) Comme $x\mapsto 1+x+x^2\in\mathcal{C}^\infty(\mathbb{R},\mathbb{R})$ en tant que fonction polynomiale et comme $\forall x\in\mathbb{R},\ 1+x+x^2\neq 0$, on a donc $f\in\mathcal{C}^\infty(\mathbb{R},\mathbb{R})$.

Et
$$\forall x \in \mathbb{R}$$
, $f'(x) = \frac{-1-2x}{(1+x+x^2)^2}$. Donc $\forall x \in \mathbb{R}$, $(f'(x) \ge 0 \iff 1+2x \le 0 \iff x \le -1/2)$.

Et aussi,
$$\forall x \in \mathbb{R}$$
, $f''(x) = -\frac{2(1+x+x^2)^2 - 2(1+2x)^2(1+x+x^2)}{(1+x+x^2)^4} = \frac{6x(1+x)}{(1+x+x^2)^3}$

D'où le tableau de variations

x	$-\infty$	-1	$-\frac{1}{2}$	0	$+\infty$
f''(x)	+	0	_	0	+
f'	0	1	0	-1	0
f'(x)		+	0	_	
f	0		$\frac{4}{3}$		0

2.(c) On considère la fonction g définie par g(x)=f(x)-x pour tout $x\in\mathbb{R}$. Alors g est dérivable sur \mathbb{R} en tant que combinaison linéaire d'applications dérivables et $\forall x\in\mathbb{R},\ g'(x)=f'(x)-1$. D'après le tableau de variations précédente, $\forall x\in\mathbb{R},\ f'(x)\leq 1$. Donc $\forall x\in\mathbb{R},\ g'(x)\leq 0$. Donc g est décroissante sur \mathbb{R} .

En fait, on a même $\forall x \in \mathbb{R} \setminus \{-1\}$, f'(x) < 1, donc $\forall x \neq -1$, g'(x) < 0. Donc g est strictement décroissante sur \mathbb{R} . Donc g est injective.

Par ailleurs, g est continue et $g(x) \xrightarrow[x \to -\infty]{} +\infty$ et $g(x) \xrightarrow[x \to +\infty]{} -\infty$ par linéarité de la limite. Donc $g(\mathbb{R}) = \mathbb{R}$. Donc $0 \in g(\mathbb{R})$, donc par définition, $\exists \alpha \in \mathbb{R}$, tel que $g(\alpha) = 0$.

Mais par injectivité de g, α est unique. Donc $\exists!\alpha\in\mathbb{R}$ tel que $g(\alpha)=0$. Autrement dit, $\exists!\alpha\in\mathbb{R}$, $f(\alpha)=\alpha$.

On notera que g(1) = f(1) - 1 = 1/3 - 1 = -2/3 < 0 et que g(1/3) = f(1/3) - 1/3 = 9/13 - 1/3 = 14/39 > 0. Donc, par décroissance de g, on en déduit $\alpha \in [1/3, 1]$.

2.(d) On sait que f' est continue sur \mathbb{R} . Donc en particulier sur [1/3,1]. Par le théorème des bornes atteintes, f' est donc bornée et atteint ses bornes sur [1/3,1]. Autrement dit, par le théorème des bornes atteintes, $\exists a \in [1/3,1]$ tel que $\forall x \in [1/3,1], |f'(x)| \leq |f'(a)|$. Et $f'(a) \neq 0$ car f' non constante.

Par ailleurs, d'après le tableau de variations précédents, f' est croissante sur [1/3,1] et f'(1/3) = -135/169 et f'(1) = -1/3. Donc $\forall x \in [1/3,1]$, $f'(x) \in [f'(1/3),f'(1)]$. Donc $\forall x \in [1/3,1]$, |f'(x)| < 1. Donc $\exists C \in]0,1[$ (avec C = |f'(a)|) tel que $\forall x \in [1/3,1]$, $|f'(x)| \leq C$.

2.(e) On pose $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

Toujours d'après le tableau de variations précédent, f est décroissante sur \mathbb{R}_+ , donc en particulier sur [1/3,1]. Par continuité et décroissance, on a donc $f([1/3,1]) \subset [f(1),f(1/3)] = [1/3,9/13] \subset [1/3,1]$. Donc l'intervalle [1/3,1] est intervalle stable par f.

Or $u_0 \in [1/3, 1]$. Donc la suite (u_n) est bien définie et $\forall n \in \mathbb{N}, u_n \in [1/3, 1]$.

2.(f) D'après la question précédente, $\forall x \in [1/3,1], |f'(x)| \leq C$. Or f est dérivable sur [1/3,1]. Donc, par l'inégalité des accroissements finis, $\forall a,b \in [1/3,1], |f(b)-f(a)| \leq C|b-a|$.

En particulier, $\forall n \in \mathbb{N}$, $|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)| \le C|u_n - \alpha|$, car $\alpha \in [1/3, 1]$ d'après 2.(c).

On a évidemment, $|u_0-\alpha|\leq C^0|u_0-\alpha|$. Si $\exists n\in\mathbb{N}$ tel que $|u_n-\alpha|\leq C^n|u_0-\alpha|$, alors $|u_{n+1}-\alpha|\leq C|u_n-\alpha|\leq C^{n+1}|u_0-\alpha|$.

Donc, par principe de récurrence, on vient de montrer que $\forall n \in \mathbb{N}, |u_n - \alpha| \leq C^n |u_0 - \alpha|$.

Mais $u_0=1$ et $\alpha\in[1/3,1]$, donc $|u_0-\alpha|=|1-\alpha|\leq 2/3\leq 1$. Donc finalement, $\forall n\in\mathbb{N},\ |u_n-\alpha|\leq C^n$.

Comme $C\in]0,1[$ d'après la question précédente, on a $C^n\xrightarrow[n\to +\infty]{}0$ par convergence des suites géométriques. Donc, par un corollaire du théorème des gendarmes, $u_n\xrightarrow[n\to +\infty]{}\alpha.$ Donc $(u_n)_{n\in\mathbb{N}}$ est une suite convergente vers α , le point fixe de f.

3. Création d'une suite de polynômes.

3.(a) f est de classe \mathcal{C}^{∞} en tant qu'inverse d'une fonction \mathcal{C}^{∞} qui ne s'annule pas sur \mathbb{R} .

On a déjà calculé $\forall x \in \mathbb{R}$, $f'(x) = \frac{-1 - 2x}{(1 + x + x^2)^2}$ et $f''(x) = \frac{6x(1 + x)}{(1 + x + x^2)^3}$. En posant donc $P_0(X) = 1$, $P_1(X) = -1 - 2X$ et $P_2(X) = 6X(1 + X)$, on a donc $P_0, P_1, P_2 \in \mathbb{R}[X]$ et $\forall n \in \{0, 1, 2\}$, $\forall x \in \mathbb{R}$, $f^{(n)}(x) = \frac{\widetilde{P_n}(x)}{(1 + x + x^2)^{n+1}}$.

On remarque également que $(1+X+X^2)P_0'(X)-(0+1)(2X+1)P_0(X)=-(1+2X)=P_1(X)$ et $(1+X+X^2)P_1'(X)-(1+1)(2X+1)P_1(X)=-2(1+X+X^2)+2(2X+1)^2=6X^2+6X=6X(X+1)=P_2(X)$.

Supposons maintenant que $\exists n \in \mathbb{N}$ tel que $\exists P_n \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}$, $f^{(n)}(x) = \frac{\widetilde{P_n}(x)}{(1+x+x^2)^{n+1}}$. Alors :

$$\forall x \in \mathbb{R}, \ f^{(n+1)}(x) = \frac{\widetilde{P_n}'(x)(1+x+x^2)^{n+1} - (2x+1)(n+1)(1+x+x^2)^n \widetilde{P_n}(x)}{(1+x+x^2)^{2n+2}}$$
$$= \frac{\widetilde{P_n}'(x)(1+x+x^2) - (n+1)(2x+1)\widetilde{P_n}(x)}{(1+x+x^2)^{n+2}}.$$

On pose alors $P_{n+1}(X) = P_n'(X)(1+X+X^2) - (n+1)(2X+1)P_n(X)$. Alors $P_{n+1} \in \mathbb{R}[X]$ car $(\mathbb{R}[X], +, \times)$ est une anneau. Et de plus, $\forall x \in \mathbb{R}$, $f^{(n+1)}(x) = \frac{\widehat{P_{n+1}(x)}}{(1+x+x^2)^{n+2}}$.

Donc, par principe de récurrence, $\forall n \in \mathbb{N}$, $\exists P_n \in \mathbb{R}[X]$ tq $\forall x \in \mathbb{R}$, $f^{(n)}(x) = \frac{\widetilde{P_n}(x)}{(1+x+x^2)^{n+1}}$.

3.(b) La question précédente, montre que $deg(P_n) = n$ et $coeff dom(P_n) = (-1)^n (n+1)!$ pour $n \in \{0,1,2\}$.

Supposons que $\exists n \in \mathbb{N}^*$, $\deg(P_n) = n$. Alors $\deg(P_n) = n-1$ car $n \geq 1$. Et donc $\deg((1+X+X^2)P_n'(X)) = 2 + \deg(P_n') = \deg(P_n) + 1 = n+1$, par degré d'un produit. Et $\deg((2X+1)P_n(X)) = \deg(P_n) + 1 = n+1$. Donc, par degré d'une somme, $\deg(P_{n+1}) \leq n+1$.

D'autres part, coeff $\operatorname{dom}((1+X+X^2)P_n'(X)) = \operatorname{coeff} \operatorname{dom}(P_n') = \operatorname{deg}(P_n) \operatorname{coeff} \operatorname{dom}(P_n) = (-1)^n n(n+1)!$. Et coeff $\operatorname{dom}((n+1)(2X+1)P_n(X)) = 2(n+1) \operatorname{coeff} \operatorname{dom}(P_n) = (-1)^n 2(n+1)(n+1)!$. Alors coeff $\operatorname{dom}((1+X+X^2)P_n'(X)) - \operatorname{coeff} \operatorname{dom}((n+1)(2X+1)P_n(X)) = (-1)^n n(n+1)! - 2(n+1)(-1)^n (n+1)! = (-1)^n (n+1)!(n-2n-2) = (-1)^{n+1}(n+2)! \neq 0$.

On en déduit donc $deg(P_{n+1}) = n + 1$ et $deg(P_{n+1}) = (-1)^{n+1}(n+2)!$.

Et finalement, par principe de récurrence, $\forall n \in \mathbb{N}^*$, $\deg(P_n) = n$ et $\operatorname{coeff} \operatorname{dom}(P_n) = (-1)^n (n+1)!$. Or c'est encore vrai pour n=0, donc $\forall n \in \mathbb{N}$, $\deg(P_n) = n$ et $\operatorname{coeff} \operatorname{dom}(P_n) = (-1)^n (n+1)!$.

3.(c) Soit $n \in \mathbb{N}$. Supposons $\exists P_n, Q_n \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}$, $\frac{\widetilde{P_n}(x)}{(1+x+x^2)^{n+1}} = f^{(n)}(x) = \frac{\widetilde{Q_n}(x)}{(1+x+x^2)^{n+1}}$. Alors, $\forall x \in \mathbb{R}$, $\widetilde{P_n}(x) = (1+x+x^2)f^{(n)}(x) = \widetilde{Q_n}(x)$. Et donc le polynôme $P_n - Q_n$ a une infinité de racines, et donc $P_n - Q_n = 0$ et donc $P_n = Q_n$.

D'où l'unicité de P_n .

4. Des relations de récurrences vérifiées par $(P_n)_{n\in\mathbb{N}}$.

4.(a) On pose $g(x)=1+x+x^2$ pour tout $x\in\mathbb{R}$. Alors $g\in\mathcal{C}^\infty(\mathbb{R},\mathbb{R})$ car polynomiale. Donc $fg\in\mathcal{C}^\infty\mathbb{R}$. Et

$$\forall k \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ g^{(k)}(x) = \begin{cases} 1 + x + x^2 & k = 0\\ 1 + 2x & k = 1\\ 2 & k = 2\\ 0 & k \ge 3 \end{cases}$$

Par la formule de Leibniz, on a donc

$$\forall n \ge 2, \ (fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} g^{(k)}(x) f^{(n-k)}(x)$$
$$= g(x) f^{(n)}(x) + ng'(x) f^{(n-1)}(x) + \frac{n(n-1)}{2} g''(x) f^{(n-2)}(x)$$

$$= (1+x+x^2)\frac{\widetilde{P_n}(x)}{(1+x+x^2)^{n+1}} + \frac{n(2x+1)\widetilde{P_{n-1}}(x)}{(1+x+x^2)^n} + \frac{n(n-1)\widetilde{P_{n-2}}(x)}{(1+x+x^2)^{n-1}}$$

$$= \frac{\widetilde{P_n}(x) + n(2x+1)\widetilde{P_{n-1}}(x) + n(n-1)(1+x+x^2)\widetilde{P_{n-2}}(x)}{(1+x+x^2)^n}.$$

Or $\forall x \in \mathbb{R}$, g(x)f(x) = 1, donc $\forall n \geq 1$, $\forall x \in \mathbb{R}$, $(gf)^{(n)}(x) = 0$.

On en déduit donc

$$\forall n \geq 2, \ \forall x \in \mathbb{R}, \ \frac{\widetilde{P_n}(x) + n(2x+1)\widetilde{P_{n-1}}(x) + n(n-1)(1+x+x^2)\widetilde{P_{n-2}}(x)}{(1+x+x^2)^n} \iff \forall n \geq 2, \ \forall x \in \mathbb{R}, \ \widetilde{P_n}(x) + n(2x+1)\widetilde{P_{n-1}}(x) + n(n-1)(1+x+x^2)\widetilde{P_{n-2}}(x) = 0$$

Donc $\forall n \geq 2$, le polynôme $P_n(X) + n(2X+1)P_{n-1}(X) + n(n-1)(1+X+X^2)P_{n-2}(X)$ a une infinité de racines et donc on en déduit $\forall n \geq 2$, $P_n(X) + n(2X+1)P_{n-1}(X) + n(n-1)(1+X+X^2)P_{n-2}(X) = 0$.

4.(b) D'après la formule précédente, on a $\forall n \in \mathbb{N}^*$, $P_{n+1} + (n+1)(2X+1)P_n(X) + n(n+1)(1+X+X^2)P_{n-1}(X) = 0$.

Par définition de la suite $(P_n)_{n\in\mathbb{N}}$, on a également

$$\forall n \in \mathbb{N}^*, \ (1+X+X^2)P_n'(X) = P_{n+1}(X) + (n+1)(2X+1)P_n(X) = -n(n+1)(1+X+X^2)P_{n-1}(X).$$

Or $1+X+X^2\neq 0$, donc on en déduit $\forall n\in\mathbb{N}^*$, $P_n'(X)=-n(n+1)P_{n-1}(X)$.

5. Étude des racines réelles de P_n .

- 5.(a) Soit $\beta \in \mathbb{R}$. Supposons $\exists n_0 \geq 2$ tel que β racine de P_n et P_{n-1} . D'après la question 4.(a), on a $P_{n_0}(X) + n_0(2X+1)P_{n_0-1} + n_0(n_0-1)(1+X+X^2)P_{n_0-2}(X) = 0$. Donc $0 = P_{n_0}(\beta) + n_0(2\beta+1)P_{n_0-1}(\beta) + n_0(n_0-1)(1+\beta+\beta^2)P_{n_0-2}(\beta) = 0$. Et donc $P_{n_0-2}(\beta) = n_0(n_0-1)(1+\beta+\beta^2)P_{n_0-2}(\beta) = 0$. Et donc $P_{n_0-2}(\beta) = n_0(n_0-1)(1+\beta+\beta^2)P_{n_0-2}(\beta) = 0$. Et donc $P_{n_0-2}(\beta) = n_0(n_0-1)(1+\beta+\beta^2)P_{n_0-2}(\beta) = 0$.
- 5.(b) Soit $n \in \mathbb{N}$. Supposons que P_n et P_{n+1} ont une racine en commun. Donc $\exists \beta \in \mathbb{R}$ tel que $\widetilde{P_n}(\beta) = 0 = \widehat{P_{n-1}}(\beta)$. D'après la question précédente, on en déduit donc que β est aussi une racine de P_{n-1} . Donc β est une racine de P_n et P_{n-1} . Et par itération, β est une racine de P_{n+1} , P_n , P_{n-1} , ..., P_0 . Or $P_0(X) = 1$. Donc P_0 n'a pas de racines et donc on a une contradiction.
- 5.(c) Soit $n \in \mathbb{N}^*$. D'après la question précédente, P_n et P_{n-1} n'ont pas de racines réelles en commun. Donc P_n et $n(n+1)P_{n-1}$ n'ont pas de racines réelles en communs. Donc P_n et P'_n n'ont pas de racines réelles en commun, d'après 4.(b). Et donc les racines réelles de P_n ne sont pas des racines de P'_n . (Autrement dit, les racines réelles de P_n sont simples.)

6. Factorisation de P_n .

6.(a) On a $P_1(X)=-1-2X$. Donc P_1 n'a qu'une seule racine sur $\mathbb R$ qui est 1/2. Or $\forall x\in \mathbb R$, $f'(x)=\frac{\widetilde{P_1}(x)}{(1+x+x^2)^2}$. Donc f' ne s'annule qu'en 1/2.

On a aussi $P_2(X)=6X(X+1)$. Donc P_2 ne s'annule qu'en 0 et -1. Or $\forall x\in\mathbb{R}$, $f''(x)=\frac{\widetilde{P}_2(x)}{(1+x+x^2)^3}$. Donc f'' ne s'annule qu'en 0 et -1.

- 6.(b) Soit $n \in \mathbb{N}$ avec $n \geq 2$. On suppose que $f^{(n)}$ s'annule en $\alpha_1 < \cdots < \alpha_n$.
- 6.(b).i) On a montré plus haut que $\deg(P_n)=n$ et $\operatorname{coeff} \operatorname{dom}(P_n)=(-1)^n(n+1)!$.

Donc $\exists a_0, \dots, a_{n-1} \in \mathbb{R}$ tel que $P_n(X) = (-1)^n (n+1)! X^n + \sum_{k=0}^n a_k X^k$. Et donc

$$\forall x \in \mathbb{R}^*, \ f^{(n)}(x) = \frac{(-1)^n (n+1)! x^n + \sum_{k=0}^n a_k x^k}{(1+x+x^2)^{n+1}} = \frac{(-1)^n (n+1)! + \sum_{k=0}^n a_k x^{k-n}}{(x+1+1/x)^n (1+x+x^2)} \xrightarrow[x \to \pm \infty]{} 0.$$

6.(b).ii) On a donc $f^{(n)}(\alpha_n)=0$ et $f^{(n)}(x)\xrightarrow[x\to+\infty]{}0$, $f^{(n)}$ est continue sur $[\alpha_n,+\infty[$ et $f^{(n)}$ est dérivable sur $]\alpha_n,+\infty[$. Donc, d'après la question 1., $\exists\beta\in]\alpha_n,+\infty[$ tel que $f^{(n+1)}(\beta)=(f^{(n)})'(\beta)=0$.

De la même manière, $f^{(n)}(x) \xrightarrow[x \to -\infty]{} 0$, $f^{(n)}(\alpha_1) = 0$, $f^{(n)} \in \mathcal{C}^0(]-\infty,\alpha_1]$, $\mathbb{R}) \cap \mathcal{D}^1(]-\infty,\alpha_1[,\mathbb{R})$, donc, toujours par la question 1., $f^{(n+1)}(\gamma) = 0$ pour un certain $\gamma \in]-\infty,\alpha_1[$.

6.(b).iii) Soit $k \in \{1,\ldots,n-1\}$. On a $f^{(n)} \in \mathcal{C}^0([\alpha_k,\alpha_{k+1}],\mathbb{R}) \cap \mathcal{D}^1(]\alpha_k,\alpha_{k+1}[,\mathbb{R})$ et $f^{(n)}(\alpha_k) = 0 = f^{(n)}(\alpha_{k+1})$. Donc par le théorème de Rolle, $\forall k \in \{1,\ldots,n-1\}$, $\exists \beta_k \in]\alpha_k,\alpha_{k+1}[$ tel que $f^{(n+1)}(\beta_k) = 0$.

On vient donc de trouver n-1 zéros distincts pour la fonction $f^{(n+1)}$.

De plus, d'après la question précédente, $f^{(n+1)}$ s'annule aussi sur $]-\infty,\alpha_1[$ et sur $]\alpha_n,+\infty[$. Donc finalement, on vient de montrer que $f^{(n+1)}$ s'annule n+1 fois distinctes (on a $\beta_0<\alpha_1<\beta_1<\alpha_2<\dots<\beta_{n-1}<\alpha_n<\beta_n$).

Problème 1 (Théorèmes de Wilson et Dickson) :

On notera \mathcal{P} l'ensemble des nombres premiers.

1. Généralités sur le PGCD.

- 1.(a) Soit $a,b,c\in\mathbb{Z}$ tels que a|b et $b\wedge c=1$. Soit $d=a\wedge c$. Alors d|a|b par transitivité de la divisibilité. Donc d|b et d|c, par définition du pgcd. Donc $d|(b\wedge c)$ par caractérisation du pgcd. Donc d|1. Or $d\geq 0$ par positivité du pgcd. Donc d=1, i.e. $a\wedge c=1$.
 - 1.(b) Soit $a, b, c \in \mathbb{N}^*$ tels que $a \wedge b = 1$.

Soit $d=a\wedge b$. Alors d|a et d|b|bc. Donc, par caractérisation du pgcd, $d|(a\wedge (bc))$. Inversement, si $\delta=a\wedge (bc)$, alors $\delta|a$ par définition du pgcd et $\delta|bc$. Or $\delta|a$ et $a\wedge b=1$. Donc, par la question précédente, $\delta\wedge b=1$. Donc, par le lemme de Gauss, $\delta|c$. On a donc $\delta|a$ et $\delta|c$. Donc $\delta|(a\wedge c)$ par caractérisation du pgcd. Donc $d|\delta$ et $\delta|d$. Donc, par positivité, $d=a\wedge b=a\wedge (bc)=\delta$.

On a $(a \wedge c)|a|ab$ et bien sûr $(a \wedge c)|c$. Donc $(a \wedge c)|((ab) \wedge c)$ par caractérisation du pgcd. Par symétrie du problème en a et b, en reprenant le raisonnement précédent et en échangeant a et b, on a aussi $(b \wedge c)|((ab) \wedge c)$. Or $a \wedge b = 1$ et $(a \wedge c)|a$ et $(b \wedge c)|b$. Donc $(a \wedge c) \wedge (b \wedge c) = 1$. Donc $((a \wedge c)(b \wedge c))|((ab) \wedge c)$.

De plus, en utilisant la relation de Bézout, $\exists u, v, n, m \in \mathbb{Z}$ tels que $au + cv = a \wedge c$ et $bn + cm = b \wedge c$. Donc

$$(a \wedge c)(b \wedge c) = (au + cv)(bn + cm) = abun + c(bvn + vcm + mau)$$

Or $(ab) \wedge c|ab$ et $(ab) \wedge c|c$, donc $(ab) \wedge c|(abun + c(bvn + vcm + mau))$, i.e. $(ab) \wedge c|(a \wedge c)(b \wedge c)$.

Puis, par positivité, on en déduit $(a \wedge c)(b \wedge c) = (ab) \wedge c$.

2. Théorème de Wilson.

Soit $p \in \mathbb{N}^*$.

2.(a) Supposons p non premier. Donc $\exists d \in \{2,\ldots,p-1\}$ tel que d|p. Alors d|(p-1)! car $(p-1)! = \prod_{k=1}^{p-1} k$.

Si $(p-1)!+1\equiv 0$ [p], alors par caractérisation de la divisibilité par les congruences (ou division euclidienne), p|((p-1)!+1). Et donc, par transitivité de la divisibilité, d|((p-1)!+1). Donc d|(((p-1)!+1)-(p-1)!)=1. Or $d\geq 2$. Donc \mathbb{Z} . Donc \mathbb{Z} . Donc \mathbb{Z} . Donc \mathbb{Z} .

On suppose p premier.

2.(b) Si p = 2, alors (p-1)! = 1! = 1. Donc $(p-1)! \equiv 1 \equiv 2-1 \equiv -1$ [2].

Si p=2, alors (p-1)!=2!=2=3-1. Donc $(p-1)!\equiv -1$ [3].

Supposons maintenant p premier et $p \geq 5$.

- 2.(c) Par définition de la primalité, $\forall k \in \{2\dots, p-2\}, \ k \wedge p=1 \ \text{car} \ p \not\mid k \ \text{et} \ p$ premier. Donc, par le théorème de Bézout, $\forall k \in \{2,\dots,p-2\}, \ \exists u_k,v_k \in \mathbb{Z} \ \text{tels} \ \text{que} \ pu_k+kv_k=1.$ Et donc, en passant aux congruences, $\forall k \in \{2,\dots,p-2\}, \ \exists v_k \in \mathbb{Z}, \ kv_k \equiv 1 \ [p].$
 - 2.(d) Soit $k \in \{2, \ldots, p-2\}$. Soit $v_k \in \mathbb{Z}$ tel que $kv_k \equiv 1$ [p] (cet entier v_k existe d'après la question précédente). Par division euclidienne, $\exists q_k, \alpha_k \in \mathbb{Z}$ tels que $v_k = pq_k + \alpha_k$ et $0 \le \alpha_k \le p-1$. Donc $v_k \equiv \alpha_k$ [p]. Alors

$$k\alpha_k \equiv kv_k \equiv 1$$
 [p]

De plus, si $\alpha_k = 0$, alors, $0 \equiv 1$ [p]. Donc p|1. Or p premier. Donc 2. Donc $\alpha_k \in \{1, \dots, p-1\}$.

Enfin, si $\alpha_k=1$, alors $k\alpha_k\equiv k\equiv 1$ [p]. Donc k-1 est divisible par p. Or $k-1\in\{1,\ldots,p-3\}$ et il n'y a pas de multiple de p dans cet ensemble. Donc $a_k\neq 1$. De même, si $a_k=p-1$, alors $1\equiv k\alpha_k\equiv -k$ [p]. Donc p|(k+1) mais $k+1\in\{3,\ldots,p-1\}$ qui ne contient toujours pas de multiple de p. Donc $a_k\neq p-1$.

Et donc $\alpha_k \in \{2, \ldots, p-2\}$.

On vient donc de montrer que $\forall k \in \{2, \dots, p-2\}$, $\exists \alpha_k \in \{2, \dots, p-2\}$, $k\alpha_k \equiv 1$ [p].

2.(e) On va montrer l'unicité associée à l'existence de la question précédente. Soit $k \in \{2, \dots, p-2\}$. Supposons qu'il existe $\alpha_k, \beta_k \in \{2, \dots, p-2\}$ tels que $k\alpha_k \equiv k\beta_k \equiv 1$ [p].

Alors $k(\alpha_k-\beta_k)\equiv 0$ [p]. Donc $p|k(\alpha_k-\beta_k)$. Or $p\wedge k=1$ car $k\in\{2,\ldots,p-2\}$ et p premier. Donc, par lemme de Gauss, $p|(\alpha_k-\beta_k)$. Or $\alpha_k,\beta_k\in\{2,\ldots,p-2\}$. Donc $\alpha_k-\beta_k\in\{4-p,\ldots,p-4\}$. Donc $|\alpha_k-\beta_k|\in\{0,\ldots,p-4\}$. Et $p\mathbb{Z}\cap\{4-p,\ldots,p-4\}=\{0\}$. Donc $\alpha_k-\beta_k=0$. Donc $\alpha_k=\beta_k$.

D'où l'unicité. Autrement dit, $\forall k \in \{2, \dots, p-2\}$, $\exists ! \alpha_k \in \{2, \dots, p-2\}$ tel que $k\alpha_k \equiv 1$ [p].

2.(f) Notons que dans la question précédente, on a $\alpha_k \neq k$. En effet : soit $k \in \{1, \dots, p-1\}$. Supposons $k^2 \equiv 1$ [p]. Donc $p|(k^2-1)$ c'est-à-dire p|(k-1)(k+1). Or p est premier donc p|(k-1) ou p|(k+1). Mais $k-1 \in \{0, \dots, p-2\}$ et $k+1 \in \{2, \dots, p\}$. Donc k=1 ou k=p-1. Et la réciproque est évidente : si $k \in \{1, p-1\}$, alors $k \equiv \pm 1$ [p] et donc $k^2 \equiv 1$ [p].

 $\text{Donc si } k \in \{1,\dots,p-1\}, \ k^2 \equiv 1 \ [p] \iff k \in \{1,p-1\}.$

Donc $\forall k \in \{2, \dots, p-2\}$, $\exists ! \alpha_k \in \{2, \dots, p-2\}$ tel que $k\alpha_k \equiv 1$ [p] et $\alpha_k \neq k$.

Par conséquent, tous les entiers de $\{2, \ldots, p-2\}$ peuvent être regroupés par pair de la forme (k, α_k) dont le produit est congru à 1 modulo p. Et donc,

$$\prod_{k=2}^{p-2} k \equiv 1 \ [2]$$

en regroupant ces entiers par pairs. On notera d'ailleurs qu'il y a p-2-2+1=p-3 entiers entre 2 et p-2, et p-3 est pair car p est un nombre premier différent de 2 (donc p est impair).

On vient donc de montrer que $(p-2)! \equiv 1 \ [p]$.

2.(g) On obtient donc immédiatement $(p-1)! \equiv p-1 \equiv -1$ [p] à partir de la question précédente. Et donc p|((p-1)!+1).

3. Théorème de Disckson.

Soit $n \in \mathbb{N}$ avec $n \geq 2$. Supposons qu'il existe $m \in \{1, \ldots, n-1\}$ tel que $(m-1)!(n-m)! \equiv (-1)^m [n]$.

3.(a) Par hypothèse $(m-1)!(n-m)! \equiv (-1)^m \ [n]$. Donc, par définition des congruences, $\exists u \in \mathbb{Z}$ tel que $(m-1)!(n-m)! = (-1)^m + nu$. Et donc aussi $(-1)^m (m-1)!(n-m)! - (-1)^m un = 1$. D'où, par théorème de Bézout, $(n-m)! \wedge n = 1$.

Donc si $k \in \{1, \ldots, n-m\}$, alors k | (n-m)!. Or $n \wedge (n-m)! = 1$. Donc $n \wedge k = 1$.

3.(b) Soit $k \in \{n-m+1,\ldots,n-1\}$. Alors $n-k \in \{1,\ldots,m-1\}$. Or d'après le théorème de Bézout avec la relation $(m-1)!(n-m)! \equiv (-1)^m$ [n], on en déduit $(m-1)! \wedge n = 1$. Et (n-k)|(m-1)!. Donc $(n-k) \wedge n = 1$.

D'après le théorème de Bézout, $\exists u,v\in\mathbb{Z}$ tels que (n-k)u+nv=1. donc n(u+v)-uk=1. Et donc, de nouveau par le théorème de Bézout, $(n-k)\wedge k=1$.

3.(c) On vient de montrer que si $\exists m \in \{1, \dots, n-1\}$ tel que $(m-1)!(n-m)! \equiv (-1)^m [n]$, alors $\forall k \in \{1, \dots, n-1\}$, $n \land k = 1$. Donc n n'a pas de diviseurs non trivial. Et donc n est premier.

Réciproquement, si n est premier, d'après le théorème de Wilson, $(n-1)! \equiv -1$ [n]. Donc $(1-1)!(n-1)! \equiv (-1)^1$ [n]. Et donc $\exists m \in \{1, \ldots, n-1\}$ tel que $(m-1)!(n-m)! \equiv (-1)^m$ [n] en prenant m=1.