

Interrogation 30

Variables Aléatoires

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Variance et espérance d'une loi de Bernoulli.

Soit $p \in [0,1]$ et $X \sim \mathcal{B}(p)$. Alors $\mathbb{E}(X) = p$ et $\mathbb{V}(X) = p(1-p)$.

2. Définition de la variance.

Soit X une variable aléatoire réelle sur un espace probabilisé fini (Ω, \mathbb{P}) . On définit la variance de X, par $\mathbb{V}(X) = \mathbb{E}\left((X - \mathbb{E}(X)^2\right)$.

- 3. Définition de deux variables aléatoires indépendantes. Soit (Ω, \mathbb{P}) un espace probabilisé fini, X et Y deux variables aléatoires réelles sur Ω . On dit que X et Y sont indépendantes (et on note $X \perp\!\!\!\perp Y$) si $\forall A \subset X(\Omega)$, $\forall B \subset Y(\Omega)$, $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$.
- 4. Inégalité de Markov.

Soit X une variable aléatoire réelle positive sur (Ω,\mathbb{P}) un espace probabilisé fini. Alors

$$\forall a \geq 0, \ \mathbb{E}(X) \geq a\mathbb{P}(X \geq a).$$

5. Définition d'un Schéma de Bernoulli.

Soit $p \in [0,1]$. Soit X_1, \ldots, X_n des VAIID suivant toutes une loi $\mathcal{B}(p)$. Alors $S = \sum_{k=1}^n X_k$ est un schéma de Bernoulli.

6. Définition de l'espérance d'une variable aléatoire.

Soit X une variable aléatoire réelle sur (Ω,\mathbb{P}) un espace probabilisé fini. On définit l'espérance de X, noté $\mathbb{E}(X)$, par

$$\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x).$$

7. Formule de transfert.

Soit (Ω, \mathbb{P}) un espace probabilisé fini, X une variable aléatoire sur $\Omega, f: X(\Omega) \to \mathbb{R}$. Alors

$$\mathbb{E}(f(X)) = \sum_{x \in X(\Omega)} f(x) \mathbb{P}(X = x).$$

8. Espérance d'un produit de n variables aléatoires.

Soit (Ω,\mathbb{P}) un espace probabilisé fini, X_1,\ldots,X_n des variables aléatoires réelles mutuellement indépendantes sur $\Omega.$ Alors

$$\mathbb{E}\left(\prod_{k=1}^{n} X_k\right) = \prod_{k=1}^{n} \mathbb{E}(X_k).$$

Exercice 2:

Soit $n \geq 2$. On considère des urnes U_1, \ldots, U_n de sorte que $\forall i \in \{1, \ldots, n\}$, U_i contient i boules numérotées de 1 à i. On choisit une urne au hasard, puis une boule dans cette urne. On pose X le numéro de l'urne et Y celui de la boule tirée.

Déterminer la loi de X, la loi conjointe de X et Y, puis la loi marginale de Y.

On suppose les urnes indiscernables. Donc il y a équiprobabilité sur l'ensemble des urnes. Alors $X \sim \mathbb{U}(n)$. $Y(\Omega) = \{1, \dots, n\}$ car Y correspond au numéro de la boule tirée.

Soit $i, k \in \{1, ..., n\}$. Si i < k, alors $\mathbb{P}(X = i, Y = k) = 0$ car il n'y a pas de boule numéro k dans l'urne i (l'urne i n'a que des boules jusqu'au numéro i).

Si $i \ge k$, alors $\mathbb{P}(X=i,\ Y=k) = \mathbb{P}(Y=k|X=i)\mathbb{P}(X=i) = \frac{1}{i} \times \frac{1}{n} = \frac{1}{ni}$, car $\mathbb{P}(X=i) = 1/n > 0$. D'où

$$\forall i, k \in \{1, \dots, n\}, \ \mathbb{P}(X = i, \ Y = k) = \begin{cases} \frac{1}{ni} & i \ge k \\ 0 & i < k \end{cases}$$

On peut alors retrouver la loi marginale de Y : soit $k \in \{1, \dots, n\}$. Alors

$$\mathbb{P}(Y = k) = \sum_{i=1}^{n} \mathbb{P}(Y = k, X = i) \qquad (\{X = i\})_{1 \le i \le n}$$

$$= \sum_{i=1}^{k} \mathbb{P}(Y = k, X = i) + \sum_{i=k+1}^{n} \mathbb{P}(Y = k, X = i)$$

$$= \sum_{i=1}^{k} \frac{1}{ni}$$

$$= \frac{1}{n} \sum_{i=1}^{k} \frac{1}{i}$$