

DM 2 Arg! Des ch!

Simon Dauguet simon.dauguet@gmail.com

Pour le Mardi 14 Octobre 2025

Partie I : Généralités autours des fonctions hyperboliques

1. Fonction argsh

- (a) Déterminer les limites de sh aux bornes de son domaine de définition.
- (b) Montrer que la fonction sh établit une bijection de $\mathbb R$ dans $\mathbb R$.
- (c) En résolvant l'équation sh(x) = y, déterminer une expression simple de argsh.

2. Fonction argch

- (a) Déterminer les limites de ch en $+\infty$ et $-\infty$.
- (b) Montrer que ch est bijection sur \mathbb{R}_+ dans un ensemble que l'on déterminera. On appellera argch la bijection réciproque de $\operatorname{ch}|_{\mathbb{R}_+}$.
- (c) Soit $x \ge 0$ et $y \ge 1$ tels que $\operatorname{ch}(x) = y$. Montrer alors que $e^x = y + \sqrt{y^2 1}$ ou $e^x = y \sqrt{y^2 1}$.
- (d) En déduire une expression simple de argch.

Partie II : Étude d'une fonction particulière

On considère la fonction f définie par

$$f(x) = \arcsin(x) - 2\arctan\left(\sqrt{\frac{1+x}{1-x}}\right).$$

On se propose de donner une expression simple de f par trois méthodes différentes.

- 3. Première méthode : Étude de fonction
 - (a) Déterminer le domaine de définition de f.
 - (b) Déterminer le domaine de dérivabilité de f et calculer f'.
 - (c) En déduire une expression simple de f.
- 4. Deuxième méthode : Avec des fonctions hyperboliques
 - (a) Montrer que $th = \frac{sh}{ch}$ est définie sur \mathbb{R} à valeur dans]-1,1[.
 - (b) Montrer que th est bijective. On appellera argth sa réciproque et en donner une expression simple (à l'aide seulement du \ln).
 - (c) Soit $y \in \mathbb{R}$. Déterminer un réel z simple dépendant de y tel que $\frac{1+\operatorname{th}(y)}{1-\operatorname{th}(y)}=e^z$.
 - (d) Montrer que pour tout $x \in \mathbb{R}$, $\cos(2\arctan(e^x)) = -\operatorname{th}(x)$.
 - (e) Retrouver l'expression simple de f de la question 3c.
- 5. Troisième méthode : Avec des fonctions circulaires.
 - (a) Soit $x \in [-1, 1[$. Montrer qu'il existe un unique $\theta \in]0, \pi]$ tel que $x = \cos(\theta)$.
 - (b) Exprimer f en fonction de θ et retrouver une expression simple de f.