

Chapitre 6 - TD : Relations d'Ordres

Indications

Simon Dauguet simon.dauguet@gmail.com

7 octobre 2025

1 Relations d'ordre et applications

Exercice	Indications
1	Application directe du cours
2	Application directe du cours
3	Application directe du cours. Le but est de commencer à manipuler le max et min et les inégalités avec la valeur absolue.
4	Commencer par faire des disjonctions de cas pour la question 1. On peut encore le faire pour la 2, mais il faut commencer à trouver une autre méthode. Il commence à y avoir trop de cas. Cette évolution doit amener à faire la 3 sans faire de disjonction de cas (qui ne sont plus rentables) pour appliquer une méthode plus générale. Pour cela, il faut exploiter la définition du min et max.
5	Application directe du cours
6	Cet exercice est en lien avec l'exo 3, il est dans le prolongement mais avec des fonctions cette fois.
7	C'est la généralisation de l'exo 4. Il faut naturellement réutiliser la technique trouvé pour la question 3 de l'exo 4.

2 Borne sup, Borne inf

Exercice	Indications
8	Application directe du cours. Attention à bien utiliser les définitions. Il faut des ε .
9	Applications directe du cours. Voir un exemple du cours qui ressemble.
10	Faire un raisonnement par l'absurde et construire un sous-ensemble de ${\cal E}$ non majoré.
11	Faire un raisonnement par l'absurde.
12	Il suffit de suivre les questions. Attention à ne pas se perdre dans les différentes inégalités.
13	Voir exercice 7. C'est le même avec des fonctions. Le principe est le même.

3 Partie entière

Exercice	Indications
14	La 1 se fait directement. Une disjonction de cas est conseillé pour la 2. La 3 est une question
	de cours.
15	Faire une disjonction de cas. Le problème est de connaître $\lfloor 2x \rfloor$ selon la position de x .
16	Commencer par réduire l'intervalle d'étude de f (par exemple, en étudiant sa périodicité).
17	La question 1 un bon souvenir. Et la 2 se fait facilement à partir de la 1.
18	Pour la dernière question, regarder les reste possibles des carrés modulo 4.
19	Il suffit d'utiliser le théorème des gendarmes.
20	Faire une disjonction de cas selon la parité de $n+m$.
21	Commencer par faire le changement d'indice $j=k-q$ dans la question 2.
22	Faire une disjonction de cas sur la position de a .

4 Densité

Exercice	Indications
23	Se ramener à le densité des rationnels dans les réels.
24	Utiliser le principe des tiroirs avec la partie entière pour fabriquer un élément comme on veut. S'inspirer de la démo de la proposition correspondante du cours.

5 Exo dur

Exercice	Indications
25	L'exercice est normalement suffisamment détaillé.
26	L'exercice est dur, mais il est détaillé. Il faut suivre les questions.
27	Exercice difficile. Beaucoup de ε et η partout. Mais il "suffit" de suivre les questions.
28	Commencer par montrer que $\forall q \in \mathbb{N}^*$, $\exists (a,b) \in \mathbb{Z} \times \{1,\ldots,q\}$ tel que $ bx-a < \frac{1}{q}$. Pour cela, utiliser le principe des tiroirs avec les $x_k = kx - \lfloor kx \rfloor$ pour $k \in \{1,\ldots,q+1\}$. Puis, en déduire la proposition voulue.