NOM : Prénom :

Interrogation 5 Équations Différentielles

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Définition d'une équation différentielle linéaire d'ordre 1 et d'être solution de cette équation.

Soit $I\subset\mathbb{R}$ un intervalle non vide et non réduit à un point. Soit $a,b:I\to\mathbb{K}$ continue. Alors l'équation y'+a(x)y=b(x) est une équation différentielle linéaire d'ordre 1 définie sur I. Et une fonction $f:I\to\mathbb{K}$ est solution de cette équation différentielle si f est dérivable sur I et $\forall x\in I$, f'(x)+a(x)f(x)=b(x).

2. Solutions d'une équation différentielle linéaire d'ordre 1 homogène.

Soit $a:I\to\mathbb{K}$ continue et l'équation différentielle linéaire homogène y'+a(x)y=0. Soit $A:I\to\mathbb{K}$ une primitive de a. Alors l'ensemble des solutions de y'+a(x)y=0 est

$$\begin{cases} I & \to & \mathbb{K} \\ x & \mapsto & \lambda e^{-A(x)}, \lambda \in \mathbb{R} \end{cases}.$$

3. Principe de superposition dans le cas d'une équation différentielle linéaire d'ordre 1.

Soit $a,b_1,b_2:I\to\mathbb{K}$ continues. Soit $f_1:I\to\mathbb{K}$ une solution de l'équation différentielle $y'+a(x)y=b_1(x)$ et $f_2:I\to\mathbb{K}$ une solution de $y'+a(x)y=b_2(x)$. Alors f_1+f_2 est solution de $y'+a(x)y=b_1(x)+b_2(x)$.

4. Solutions de y'' + ay' + by = 0 avec $a, b \in \mathbb{R}$.

Soit $a,b\in\mathbb{R}$, $\Delta=a^2-4b$ et l'équation différentielle linéaire y''+ay'+by=0 homogène d'ordre 2 à coefficients constants réels. Alors :

• Si $\Delta>0$ et $\alpha,\beta\in\mathbb{R}$ les solutions de l'équation caractéristique $r^2+ar+b=0$, alors l'ensemble des solutions de y''+ay'+by=0 est :

$$\left\{
\begin{array}{ll}
\mathbb{R} & \to & \mathbb{R} \\
x & \mapsto & \lambda e^{\alpha x} + \mu e^{\beta x}, \ \lambda, \mu \in \mathbb{R}
\end{array}
\right\}.$$

• Si $\Delta=0$ et α est la solution réelle de l'équation caractéristique $r^2+ar+b=0$, alors l'ensemble des solutions de y''+ay'+by=0 est :

$$\left\{
\begin{array}{ll}
\mathbb{R} & \to & \mathbb{R} \\
x & \mapsto & (\lambda x + \mu)e^{\alpha x}, \ \lambda, \mu \in \mathbb{R}
\end{array} \right\}.$$

• Si $\Delta < 0$ et $\alpha \pm i\omega$ sont les deux solutions non réelles conjuguées de l'équation caractéristique $r^2 + ar + b = 0$, alors l'ensemble des solutions des y'' + ay' + by = 0 est :

$$\begin{cases}
\mathbb{R} & \to \mathbb{R} \\
x & \mapsto (\lambda \cos(\omega x) + \mu \sin(\omega x))e^{\alpha x}, \ \lambda, \mu \in \mathbb{R}
\end{cases}.$$

Exercice 2:

Résoudre l'équation différentielle $y' - 2xy = e^{x+x^2}$.

L'équation $(E): y'-2xy=e^{x+x^2}$ est une équation différentielle linéaire d'ordre 1 définie sur $\mathbb R$. Une primitive de $x\mapsto 2x$ sur $\mathbb R$ est $x\mapsto x^2$. Donc l'ensemble des solutions de l'équation différentielle linéaire homogène associée à (E) est :

$$\left\{
\begin{array}{ccc}
\mathbb{R} & \to & \mathbb{R} \\
x & \mapsto & \lambda e^{x^2}, & \lambda \in \mathbb{R}
\end{array}
\right\}.$$

Soit $h: \mathbb{R} \to \mathbb{R}$ dérivable et $f: x \mapsto h(x)e^{x^2}$. Alors f est dérivable sur \mathbb{R} par produit de fonctions dérivables. Et :

$$\iff \forall x \in \mathbb{R}, \ f'(x) - 2xf(x) = e^{x+x^2}$$

$$\iff \forall x \in \mathbb{R}, \ h'(x)e^{x^2} + 2xh(x)e^{x^2} - 2xh(x)e^{x^2} = e^{x+x^2}$$

$$\iff \forall x \in \mathbb{R}, \ h'(x) = e^x$$

On choisit alors $h: x\mapsto e^x$. Et donc $f: x\mapsto e^{x+x^2}$ est solution de (E) sur $\mathbb R$. Donc l'ensemble des solutions de (E) sur $\mathbb R$ est :

$$\left\{ \begin{matrix} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & (\lambda + e^x)e^{x^2}, \ \lambda \in \mathbb{R} \end{matrix} \right\}.$$