NOM : Prénom :

Interrogation 6

Relations d'Ordre

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Définition d'une relation d'ordre.

Soit E un ensemble et $\mathcal R$ une relation binaire sur E. On dit que $\mathcal R$ est une relation d'ordre si $\forall x \in E, \ x\mathcal Rx$ ($\mathcal R$ est réflexive); $\forall x,y \in E, \ (x\mathcal Ry \text{ et } y\mathcal Rx \implies x=y)$ ($\mathcal R$ est antisymétrique); et $\forall x,y,z \in E, \ (x\mathcal Ry \text{ et } y\mathcal Rz \implies x\mathcal Rz)$ ($\mathcal R$ est transitive). On dit enfin que $\mathcal R$ est une relation d'ordre totale, si $\mathcal R$ est une relation d'ordre et $\forall x,y \in E, \ (x\mathcal Ry \text{ ou } y\mathcal Rx).$

2. Définition d'un majorant.

Soit (E, \mathcal{R}) un ensemble ordonné. Soit $A \subset E$ et $M \in E$. M est un majorant de A si $\forall a \in A$, $a\mathcal{R}M$.

3. Définition de la borne inf.

Soit (E,\mathcal{R}) un ensemble totalement ordonné. Soit $A\subset E$ et $m\in E$. On dit que m est la borne inf de A, noté inf A, si $\forall a\in A$, $m\mathcal{R}a$ (m est un minorant de A) et $\forall x\in E$, (x minorant de $A\Longrightarrow x\mathcal{R}m$).

4. Définition de la partie entière.

Soit $x \in \mathbb{R}$. La partie entière de x, noté $\lfloor x \rfloor$, est définie par $|x| = \max\{n \in \mathbb{Z}, \ n \leq x\}$.

5. Propriété de la borne inf de \mathbb{R} .

Toute partie non vide et minorée de $\ensuremath{\mathbb{R}}$ admet une borne inf.

6. Propriétés de la partie entière.

Soit $x,y\in\mathbb{R}$. Alors $x\leq y \Longrightarrow \lfloor x\rfloor \leq \lfloor y\rfloor$ (la partie entière est croissante). $x=\lfloor x\rfloor \iff x\in\mathbb{Z}$. Et enfin : $\forall k\in\mathbb{Z},\ |x+k|=|x|+k$.

7. Définition de la densité dans \mathbb{R} .

Soit $A \subset \mathbb{R}$ non vide. A est dite dense dans \mathbb{R} si $\forall a,b \in \mathbb{R}$, a < b, $]a,b[\cap A \neq \emptyset$. Autrement dit, si $\forall a,b \in \mathbb{R}$, $a < b \implies \exists x \in A, \ a < x < b$.

8. Caractérisation de la borne sup dans \mathbb{R} .

Soit $A \subset \mathbb{R}$ non vide, $\alpha \in \mathbb{R}$. Alors :

$$\alpha = \sup A \iff \begin{cases} \alpha \text{ majorant de } A \\ \forall \varepsilon > 0, \ \exists a \in A, \ \alpha - \varepsilon < a \leq \alpha \end{cases}$$

Exercice 2:

Soit $A \subset \mathbb{R}$ non vide admettant un minimum. Soit $f : \mathbb{R} \to \mathbb{R}$ décroissante. Montrer que $\max f(A)$ existe et que $\max f(A) = f(\min A)$.

Par définition du minimum (qui est un minorant), $\forall a \in A$, $\min A \leq a$. Or f est décroissante sur \mathbb{R} . Donc, $\forall a \in A$, $f(\min A) \geq f(a)$. Donc par définition, f(A) est majoré par $f(\min A)$.

De plus, $\min A \in A$ par définition du minimum. Donc $f(\min A) \in f(A)$.

Donc $f(\min A)$ est un majorant de f(A) dans f(A). Donc, par définition du maximum, $f(\min A)$ est un maximum de f(A). Et par unicité du maximum (car (\mathbb{R}, \leq) est un ensemble totalement ordonné), $f(\min A)$ est le maximum de f(A).