
Chapitre 3

Codages des nombres en Python
Exercices

Simon Dauguet
simon.dauguet@gmail.com

15 octobre 2025

Exercice 1 :
Calculer (puis vérifier le résultat) la somme et le produit de :

1. 1324 et 10024.
2. 468 et 3078.
3. 0010 00112 et 0110 11002.

Exercice 2 :
Convertir en binaire et hexadécimal, les entiers :

1. 37, 487 et 1322.
2. 72, 761 et 3879.

Exercice 3 :
Déterminer la valeur décimale de :

1. 0001 11102, 1001 10112 et B716.
2. 1101 10002, 0110 1101 00112 et 12116.

Exercice 4 :
Convertir en complément à deux (binaire signé) sur 1 octet les entiers :

1. 54, −119, −43.
2. 121, −93 et −128.

Exercice 5 :
Déterminer la valeur décimale des binaires signés sur 1 octet en complément à 2 suivants :

1. 1001 00102 et 0111 10112.
2. 0001 10112 et 1001 10102.

1

Exercice 6 :
Déterminer la valeur décimale du flottant :

1. 0′1000 1111′1011 0001 0110 0100 1000 000 ?
2. 1′0111 1100′1110 0000 0000 0000 0000 000 ?

Exercice 7 :
Écrire les nombres suivant comme flottant simple précision, puis double précision :

1. 100
2. −999, 5.
3. −7, 21875.
4. −10, 67.

Exercice 8 :
Écrire le nombre ni = 1 + 2−i avec i ∈ N en tant que flottant 64 bits. À quelle condition sur i le flottant ni est-il
égal à 1 ?

Exercice 9 :
Expliquer pourquoi renvoie 2−51 + 2 ̸= 2 mais 2−51 + 4 = 4.

Exercice 10 :
Trouver la plus grande puissance de 2 de sorte qu’en x+1.==1, soit vraie. On considérera des flottants
double précision (64b, ceux qu’utilisent). Et avec des flottants simple précision ? Et avec x+1000.=1000

Exercice 11 :
On souhaite coder l’opérateur ET bit à bit qui, appliquer à deux entiers, consiste à renvoyer l’entier résultant
d’un ET entre chacun des bits des deux entiers. Par exemple, etbits(5, 6) renverra 4 car pour 5 = 1012 et
6 = 1102 le ET bit à bit donne 1002 (Remarque : & implémente le ET bit à bit ; i.e. 5&6 renvoie 4).

1. En faisant les calculs, que renvoie le ET bit à bit entre 14 et 12 ? entre 11 et 19 ?
2. Existe-t-il un élément neutre pour le ET bit à bit lorsque les entiers sont codés sur 8 bits ? Un élément

absorbant ?
3. Écrire une fonction etbits(x: int, y :int) -> int, qui réponde au problème sans utiliser &.

Exercice 12 (Codage de Lebesgue, (X-ENS 2017, partie III)) :
Le codage de Lebesgue d’un point de coordonnées entières (x, y) s’obtient en entrelaçant les bits des représentations
binaires de x et y en commençant par les bits de x. Ainsi pour encodage sur n = 3 bits, si x = 6 = 1102 et
y = 3 = 0112, le point (6, 3) est codé par 1011012 = 45.

De plus, on utilisera la notation décimale 0, 1, 2 et 3 pour représenter la base 002, 012, 102 et 112 respec-
tivement. On notera cn−1. . .c1c0

l la représentation en base 4 du codage de Lebesgue d’un point à coordonnées
entières. Par exemple, le point (6,3) s’écrit 102112012 = 231l et s’écrira en comme un tableau [2,3,1].

1. Soit n = 3, quel tableau représente le codage de Lebesgue du point (1, 6) ?
2. Écrire une fonction bits(x: int, k: int) -> int, qui renvoie la valeur du bit de coefficient 2k dans

la représentation binaire de x.

2

3. Écrire une fonction code(n: int, p: tuple) -> list, qui prend en arguments un entier strictement
positif n et un point p représenté par un tuple de longueur 2 représentant les coordonnées entières d’un
point. Cette fonction renvoie le codage de Lebesgue de p représenté sous la forme d’un tableau de longueur
n.

Exercice 13 (Système de numération avec chiffres négatifs (ENS 2012, partie IV)) :
On se place en base b = 3 avec comme symboles S = {−1, 0, 1}.

Un entier n =
k∑

i=0
aib

i sera représenté par le mot (ak. . .a1a0)3, où les ai ∈ S. Par convention, le mot vide

représente l’entier zéro. Pour simplifier les notations, on écrira 1 au lieu de −1. Ainsi le mot (1101111)3 représente
l’entier 36 − 35 − 33 − 32 + 3 + 1 = 454.

La représentation machine d’un nombre entier sera stocké dans un tableau T de sorte que ∀i, T [i] = ai.

1. Donner une représentation pour chaque entier de J−5, 5K

On appelle plus petite représentation de n, un mot sur S, ne commençant pas par zéro, et représentant
n. Le code suivant permet de l’obtenir et vous permettra de tester vos fonctions.

Pour comprendre comment elle fonctionne, vous pouvez la dérouler pour n = 454.

1 def representant3 (n: int) -> list:
2 if n==0: return []
3 sgn = 1 if n >= 0 else -1 # vaut 1 si n>=0, -1 sinon
4 p = ceil(log3(sgn*n))
5 if sgn*n < (3**p +1)/2: p-= 1
6 tab = []
7 while p >= 0:
8 N = 3**p
9 if abs(sgn*N-n) <= (N -1)/2:

10 tab += [sgn]
11 n -= sgn*N
12 else:
13 tab += [0]
14 p -= 1
15 sgn = 1 if n >= 0 else -1
16 return tab

2. Proposer une fonction nombre(rep: list) -> int, qui renvoie le nombre représenté par le tableau rep.

Pour les quatre dernières questions, on demande des algorithmes qui calculent directement à partir des
chiffres de représentations, sur le modèle de l’algorithme d’addition des représentations en base 10 enseigné
à l’école primaire. En particulier, il est interdit d’utiliser les fonctions multiplications et exponentiation du
langage, et a fortiori toute fonction plus évoluée. Seules l’addition et les structures de contrôle élémentaires
(tests, boucles, . . .) sont autorisées. L’efficacité des algorithmes sera un élément à considérer.

3. Écrire une fonction qui prend en entrée un tableau représentant un nombre entier et renvoie un tableau
représentant son opposé.

4. Écrire une fonction qui prend en entrée un tableau représentant un nombre entier et renvoie un tableau
représentant son successeur.

5. Écrire une fonction qui prend en entrée deux tableaux représentant deux nombres entiers et renvoie la
représentation de leur somme.

6. Écrire une fonction qui prend en entrée deux tableaux représentant deux nombres entiers et renvoie la
représentation de leur différence.

3

