

Chapitre 8 - TD Groupes - Anneaux - Corps

Simon Dauguet simon.dauguet@gmail.com

12 novembre 2025

1 Groupes

Exercice 1 (Loi de composition) :

On définit une loi de composition interne \star sur $\mathbb R$ par

$$\forall a, b \in \mathbb{R}, \ a \star b = \ln(e^a + e^b).$$

Quelle sont les propriétés de cette loi (associativité, commutativité)? Y a-t-il un élément neutre?

Exercice 2:

Dire si les ensembles suivants sont des groupes ou non :

- 1. L'ensemble des bijections continues de $\mathbb R$ dans $\mathbb R$ muni de la loi \circ
- 2. L'ensemble des bijections dérivables de $\mathbb R$ dans $\mathbb R$ muni de la loi \circ
- 3. $\{a + \omega b, \ a, b \in \mathbb{Z}\}$ et $\omega \in \mathbb{C}$ muni de la loi +
- 4. $\{a^n, n \in \mathbb{Z}\}, a \in \mathbb{C}^*, \text{ muni de } \times$
- 5. $\{f_{a,b}: z \mapsto az + b, \ a \in \mathbb{C}^*, \ b \in \mathbb{C}\}$ muni de \circ

Exercice 3:

Déterminer si les ensembles H suivants sont des sous-groupes du groupe G:

- 1. $G = (\mathbb{Z}, +)$, H est l'ensemble des nombres pairs
- 2. $G = (\mathbb{Z}, +), H$ est l'ensemble des nombres impairs
- 3. $G = (\mathbb{R}, +), H = [-1, +\infty[$
- 4. $G = (\mathbb{R}^*, \times)$, $H = \mathbb{Q}^*$
- 5. $G = (\mathcal{S}(E), \circ), H = \{f \in \mathcal{S}(E), f(x_0) = x_0\}$ où E est un ensemble non vide et $x_0 \in E$ fixé.
- 6. $G=(\mathcal{S}(E),\circ)$, $H=\{f\in\mathcal{S}(E),\ f(x_0)=y_0\}$ où E est un ensemble non vide et $x_0,y_0\in E$ fixés avec $x_0\neq y_0$.

Exercice 4 (Partie stable) :

On pose,

$$\forall x, y \in [0, 1], \ x \star y = x + y - xy$$

- 1. Montrer que \star est une LCI sur [0,1].
- 2. * est-elle commutative? Associative?

- 3. Existe-t-il un élément neutre? Quels sont les éléments symétrisables?
- 4. Montrer que $\forall a \in [0,1]$, $E_a = [a,1]$ est une partie stable.

Exercice 5 (**):

Soit E un ensemble muni d'une LCI \star associative. On suppose $\exists a \in E$ tel que $f: E \to E$ définie par $f(x) = a \star x \star a$ est surjective. On note b un antécédent de a par f.

- 1. Montrer $e=a\star b$ est un élément neutre à gauche et $e'=b\star a$ est élément neutre à droite pour \star . En déduire que e=e'.
- 2. Montrer que a est symétrisable et que f est bijective.

Exercice 6 (Caractérisation de la symétrisabilité par la bijectivité) :

Soit E un ensemble muni d'une LCI \star associative et d'un élément neutre e.

Montrer que $a \in E$ est symétrisable pour \star si, et seulement si, $f: x \mapsto a \star x$ est bijective.

Exercice 7 (Commutativité forcée) :

Soit (G, \times) un groupe notée multiplicativement et e l'élément neutre. On suppose que $\forall x \in G, \ x^2 = e$.

- 1. Montrer que G est un groupe abélien.
- 2. Soit $a \in G$, $a \neq e$. On définit la relation $\sim \operatorname{sur} G$ par

$$\forall x, y \in G, \ x \sim y \iff (x = y \text{ ou } x = ay)$$

Montrer que \sim est une relation d'équivalence sur G. Montrer que toutes les classes d'équivalences contiennent deux éléments.

3. On définit une relation \star sur l'ensemble $\mathrm{Cl}(G) = \{\mathrm{Cl}(x), \ x \in G\} \subset \mathcal{P}(G)$ des classes d'équivalences par

$$\forall x, y \in G, \ \mathrm{Cl}(x) \star \mathrm{Cl}(y) = \mathrm{Cl}(xy).$$

Montrer que $(Cl(G), \star)$ est un groupe abélien dans lequel chaque élément est son propre symétrique.

4. On suppose que G est fini. Montrer que le nombre d'éléments de G est une puissance de 2.

Exercice 8 ((*) Transport de loi) :

Soit (G,\star) un groupe et E un ensemble. Soit $\varphi:G\to E$ bijective. On définit la loi \diamond sur E par

$$\forall x, y \in E, \ x \diamond y = \varphi\left(\varphi^{-1}(x) \star \varphi^{-1}(y)\right).$$

Monter que (E, \diamond) est un groupe.

Exercice 9 (Addition des vitesses en théorie de la relativité) :

Soit c > 0. On poe I =]-c, c[. On pose

$$\forall x, y \in I, \ x \star y = \frac{x+y}{1 + \frac{xy}{c^2}}.$$

Montrer que (I, \star) est une groupe abélien.

Remarque

Si c est la vitesse de la lumière, cette loi correspond à l'addition des vitesses portées par un même axes en théorie de la relativité.

2

Exercice 10 (Produit cartésien de groupes) :

Soit (G,\star) et (H,\triangle) deux groupes. Montrer que si on munit $G\times H$ de la LCI

$$(g,h) \diamond (g',h') = (g \star g', h \triangle h')$$

 $G \times H$ devient alors un groupe.

Exercice 11 (Produit idempotent):

Soit G un groupe noté multiplicativement et e sont élément neutre. Soit $a,b\in G$ et $n\in\mathbb{N}.$ Montrer

$$(ab)^n = e \implies (ba)^n = e$$

Exercice 12 (() Translations surjectives):**

Soit G un ensemble non vide muni d'une LCI associative \star telle que

$$\forall a, b \in G, \ \exists x, y \in G, \ a = x \star b = b \star y.$$

Montrer que (G, \star) est une groupe.

Exercice 13 (Sous-groupes emboîtés):

Soit (G,\star) un groupe. Pour H et K deux sous-groupes de G, on note $H\star K=\{h\star k,\ (h,k)\in H\times K\}.$ Soit H,K,L trois sous-groupes de G tels que $H\subset K,\ H\cap L=K\cap L$ et $H\star L=K\star L.$ Montrer que H=K.

Exercice 14 (Sous-groupes des racines de l'unité) :

Montrer que

$$\mathbb{V} = \{ z \in \mathbb{C}, \ \exists n \in \mathbb{N}^*, \ z^n = 1 \}$$

est un groupe multiplicatif.

Exercice 15 (Exemple de groupe) :

On pose $E = \mathbb{R} \setminus \{0, 1\}$ et on définies les applications

$$i(x) = x, \ f(x) = 1 - x, \ g(x) = \frac{1}{x}, \ h(x) = \frac{x}{x - 1}, \ k(x) = \frac{x - 1}{x}, \ \ell(x) = \frac{1}{1 - x}.$$

Montrer que ces applications sont des bijections sur E et que $G = \{i, h, g, h, k, \ell\}$ est un groupe non abélien pour la composition.

Exercice 16 ((*) Sous-groupe de \mathbb{R}^*):

Monter que

$$G = \{x + y\sqrt{3}, \ x, y \in \mathbb{Z}, \ x^2 - 3y^2 = 1\}$$

est un sous-groupe de (\mathbb{R}^*, \times) .

Exercice 17 (Produit de sous-groupe) :

Soit G un groupe noté multiplicativement et H et K deux sous-groupes de G. On note

$$HK = \{hk, (h, k) \in H \times K\}$$
 et $KH = \{kh, (h, k) \in H \times K\}.$

Montrer que

$$HK$$
 sous-groupe $G \iff KH \subset HK$

puis que dans ce cas, HK = KH.

Exercice 18 (Caractérisation des groupes abélien $[\checkmark]$):

Soit G un groupe noté multiplicativement et e sont élément neutre.

- 1. Montrer qu'on a équivalence entre :
 - (a) G est abélien
 - (b) $\forall a, b \in G, (ab)^2 = a^2b^2$
 - (c) $\forall a, b \in G, (ab)^{-1} = a^{-1}b^{-1}$
- 2. En déduire que si $\forall x \in G, \ x^2 = e$, alors G est abélien.

Exercice 19 (Automorphisme intérieur $[\checkmark]$):

Soit (G, \times) un groupe. On note :

$$\forall a \in G, \ \tau_a : \begin{matrix} G & \to & G \\ x & \mapsto & axa^{-1} \end{matrix}$$

- 1. Montrer que τ_a est un morphisme de groupe.
- 2. Montrer que $\forall a, b \in G$, $\tau_a \circ \tau_b = \tau_{ab}$.
- 3. Montrer que $\forall a \in G$, τ_a est bijective et déterminer sa réciproque.
- 4. En déduire que $\mathcal{T} = \{\tau_a, a \in G\}$ est un groupe pour la loi \circ .

Exercice 20:

Montrer:

- 1. $\{\frac{a}{b^k},\ a\in\mathbb{Z},\ k\in\mathbb{N}\}$ est dense dans \mathbb{R} , où $b\in\mathbb{N}$, $b\geq 2$.
- 2. [Bonus : arithmétique] Si $a,b\in\mathbb{R}^*$, $a\mathbb{Z}+b\mathbb{Z}=\{ap+bq,\ p,q\in\mathbb{Z}\}$ est dense dans \mathbb{R} si et seulement si $\frac{a}{b}\notin\mathbb{Q}$.

Exercice 21:

Déterminer les morphismes de groupes de $(\mathbb{Z},+)$ dans lui-même. Lesquels sont injectifs? Surjectifs?

Exercice 22:

Montrer qu'il n'existe pas de morphismes de groupes surjectifs de $(\mathbb{Q}, +)$ dans (\mathbb{Q}_+^*, \times) .

Exercice 23 (Groupes des automorphismes) :

Soit G un groupe multiplicatif. On note Aut(G) l'ensemble des automorphismes de G.

- 1. Montrer que Aut(G) est un groupe pour la loi \circ
- 2. Déterminer $Aut(\mathbb{Z})$.
- 3. Pour $a \in G$, on note $\varphi_a : G \to G$ définie par $\varphi_a(g) = aga^{-1}$. Montrer que $\varphi_a \in \operatorname{Aut}(G)$ et que $a \mapsto \varphi_a$ est un morphisme de groupes.
- 4. L'application $\varphi: a \mapsto \varphi_a$ est-il surjectif? A quelle condition est-il injectif?

4

2 Anneaux

Exercice 24:

Soit $(A, +, \times)$ un anneau.

Montrer que si $a \in A$ est inversible à droite et à gauche, alors $a \in A^{\times}$.

Exercice 25 (Entier de Gauss $[\checkmark]$):

On pose

$$\mathbb{Z}[i] = \{a + ib, \ a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

- 1. Montrer que $\mathbb{Z}[i]$ est un anneau. Déterminer les inversibles de $\mathbb{Z}[i]$.
- 2. Justifier que $\forall a \in \mathbb{Q}$, $[a-1/2, a+1/2] \cap \mathbb{Z} \neq \emptyset$.
- 3. Soit $u, v \in \mathbb{Z}[i]$ avec $v \neq 0$. Montrer que $\exists q, r \in \mathbb{Z}[i]$ tels que u = qv + r et |r| < |v|. A-t-on unicité?
- 4. On pose $\forall z \in \mathbb{Z}[i]$, $N(z) = |z|^2$. Déterminer le groupe des inversibles de $\mathbb{Z}[i]$.
- 5. Un élément $a \in \mathbb{Z}[i]$ est dit *irréductible* si : $(\exists u, v \in \mathbb{Z}[i], \ a = uv \implies u \in \mathbb{Z}[i]^{\times}$ ou $v \in \mathbb{Z}[i]^{\times}$). Montrer que 2 n'est pas irréductible dans $\mathbb{Z}[i]$.
- 6. On définit les rationnels de Gauss comme l'ensemble des complexes à coordonnées rationnelles : $\mathbb{Q}[i] = \mathbb{Q} + i\mathbb{Q} = \{a+ib,\ a,b\in\mathbb{Q}\}.$

Montrer que $\mathbb{Q}[i]$ est un corps.

Exercice 26:

On pose

$$\mathbb{Z}[\sqrt{2}] = \{x \in \mathbb{R}, \text{ t.q. } \exists a, b \in \mathbb{Z}, \ x = a + b\sqrt{2}\}.$$

- 1. Montrer que pour $x \in \mathbb{Z}[\sqrt{2}]$, l'écriture précédente est unique.
- 2. Montrer que $\mathbb{Z}[\sqrt{2}]$ est un anneau.
- 3. Pour $x = a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$, on pose $n(x) = a^2 2b^2$. Montrer que $\forall x, y \in \mathbb{Z}[\sqrt{2}]$, n(xy) = n(x)n(y).
- 4. (a) Montrer que $x \in \mathbb{Z}[\sqrt{2}]$ est inversible si, et seulement si, $n(x) \in \{-1, 1\}$.
 - (b) Montrer que $1 + \sqrt{2}$ et $\sqrt{2} 1$ sont inversibles dans $\mathbb{Z}[\sqrt{2}]$.
 - (c) Montrer qu'il n'existe aucun élément inversible de $\mathbb{Z}[\sqrt{2}]$ dans $]1, 1 + \sqrt{2}[$.
 - (d) Montrer que les éléments inversibles de $\mathbb{Z}[\sqrt{2}]$ strictement supérieurs à 1 inversibles sont exactement les nombres de la forme $(1+\sqrt{2})^n$, $n\in\mathbb{N}^*$.
- 5. Montrer que $\mathbb{Z}[\sqrt{2}]$ est dense dans \mathbb{R} .
- 6. En déduire qu'entre π et $\pi+10^{-9}$, il y a un élément de la forme $p+\sqrt{2}q$ avec $p,q\in\mathbb{Z}$.

Exercice 27 (Anneau de Boole) :

Soit $(A,+,\times)$ un anneau de Boole 1 , c'est-à-dire un anneau tel que $\forall x\in A$, $x^2=x$.

- 1. Montrer que $\forall x \in A, 2x = 0_A$. En déduire que A est un anneau commutatif.
- 2. Montrer que l'on définit une relation d'ordre \leq sur A on posant

$$x \leq y \iff xy = x$$

Exercice 28 (Anneau de sous-parties) :

Soit E un ensemble. On définit la différence symétrique sur $\mathcal{P}(E)$ par $A\Delta B=(A\cup B)\cap (\overline{A\cap B})$. Montrer que $(\mathcal{P}(E),\Delta,\cap)$ est un anneau commutatif. Est-il intègre?

1. On notera que l'anneau de l'exercice 28 est un exemple non trivial d'anneau de Boole

Exercice 29 (Nilpotent dans un anneau):

Soit $(A, +, \times)$ un anneau. On dit que $x \in A$ est nilpotent si $\exists n \in \mathbb{N}^*$ tel que $x^n = 0_A$. Soit $x, y \in A$.

- 1. Montrer que si x est nilpotent et x et y commutent, alors xy est nilpotent.
- 2. Montrer que si xy est nilpotent, alors yx l'est aussi.
- 3. Montrer que si x et y sont nilpotents et commutent, alors x + y est aussi nilpotent.
- 4. Montrer que si x est nilpotent, alors $1_A x$ est inversible et préciser $(1_A x)^{-1}$.

Exercice 30:

Soit $(A, +, \times)$ un anneau et soit $a, b \in A$.

Montrer que si $1_A - ab$ est inversible, alors $1_A - ba$ l'est aussi.

Exercice 31 (Caractéristique d'un anneau) :

Soit $(A, +, \times)$ un anneau. On appelle *caractéristique de* A l'ordre de 1 dans (A, +), s'il existe et on dit que A est de caractéristique 0 sinon.

On suppose que A est de caractéristique $n \in \mathbb{N}^*$.

- 1. Montrer que $\forall x \in A$, $nx = 0_A$.
- 2. Montrer que si A est intègre, alors n est nombre premier.

Exercice 32:

Soit $(A, +, \times)$ et (B, \oplus, \otimes) deux anneaux et $f : A \to B$ un morphisme d'anneau.

- 1. Montrer que si f est surjective, alors $f(A^{\times}) = B^{\times}$.
- 2. Que penser de la réciproque?

3 Corps

Exercice 33:

On pose

$$\forall a, b \in \mathbb{R}, \ a \oplus b = a + b - 1$$
 et $a \odot b = ab - a - b + 2$.

Montrer que $(\mathbb{R}, \oplus, \odot)$ est un corps.

Exercice 34 (Produit cartésien) :

Soit $(A, +, \times)$ et (B, \oplus, \odot) deux anneaux.

1. Montrer qu'en munissant $A \times B$ des lois

$$(a,b) \boxplus (a',b') = (a+a',b \oplus b')$$
 et $(a,b) \boxdot (a',b') = (aa',b \odot b')$

 $A \times B$ devient un anneau.

2. Si A et B sont des corps, en est-il de même pour $A \times B$?

Exercice 35:

Soit $F = \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, \ a, b \in \mathbb{Q}\}$. Montrer que F est un sous-corps de \mathbb{R} .

6