

Chapitre 9 - TD : Espaces vectoriels

Simon Dauguet simon.dauguet@gmail.com

18 novembre 2025

1 Espaces Vectoriels

Exercice 1:

On définit sur \mathbb{R}^2 les lois suivantes :

$$\forall (x,y), (z,t) \in \mathbb{R}^2, \ (x,y) \star (z,t) = (x+z+1, y+t+1)$$

et

$$\forall (x,y) \in \mathbb{R}^2, \forall \lambda \in \mathbb{R}, \ \lambda@(x,y) = (\lambda x - (1-\lambda), \lambda y - (1-\lambda))$$

Montrer que $(\mathbb{R}^2, \star, @)$ est un \mathbb{R} -ev.

2 Sous-ev

Exercice 2:

Les parties suivantes sont-elles des sev de \mathbb{R}^2 ?

$$A = \{(x, y) \in \mathbb{R}^2, x \le y\}$$

$$C = \{(x, y) \in \mathbb{R}^2, x = y\}$$

$$E = \{(x, y) \in \mathbb{R}^2, x^2 - y^2 = 0\}$$

$$B = \{(x, y) \in \mathbb{R}^2, xy = 0\}$$

$$D = \{(x, y) \in \mathbb{R}^2, x + y = 1\}$$

$$F = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 = 0\}$$

Exercice 3:

Les espaces suivants sont-ils des espaces vectoriels?

$$A = \{f: [a,b] \to \mathbb{R} \text{ dérivable}, \ f'(a) = f'(b)\}$$

$$C = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ bornée}\}$$

$$E = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ monotone}\}$$

$$G = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_{n+2} = nu_{n+1} + u_n\}$$

$$B = \{f: [a,b] \to \mathbb{R} \text{ continue}, \ \int_a^b f = 0\}$$

$$D = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ arithmétique}\}$$

$$F = \{f: \mathbb{R} \to \mathbb{R}, \exists x \in \mathbb{R}, f(x) = 0\}$$

Exercice 4:

On considère les vecteurs

$$u = (1, 1, 1), \ v = (1, 0, -1) \in \mathbb{R}^3$$

Montrer que $\mathrm{Vect}(u,v)=\{(2a,a+b,2b),a,b\in\mathbb{R}\}$ et donner des $\mathrm{Vect}(u,v)$ en compréhension (donc donner des équations que doivent vérifier les coordonnées des vecteurs de $\mathrm{Vect}(u,v)$).

Exercice 5:

Dans \mathbb{R}^3 , on considère

$$x = (1, -1, 1)$$
 et $y = (0, 1, a), a \in \mathbb{R}$

Donner une condition nécessaire et suffisante sur a pour que $u=(1,1,2)\in \mathrm{Vect}(x,y)$. Comparer alors $\mathrm{Vect}(x,y)$, $\mathrm{Vect}(x,u)$ et $\mathrm{Vect}(y,u)$, puis donner des équations de ces espaces.

3 Opérations sur les sev

Exercice 6:

Soit

$$F = \{(x, y, z) \in \mathbb{R}^3, x + y - z = 0\}$$
 et $G = \{(a - b, a + b, a - 3b), a, b \in \mathbb{R}\}$

- 1. Montrer que F et G sont des sev de \mathbb{R}^3 .
- 2. Déterminer $F \cap G$.

Exercice 7 ($[\checkmark]$):

Soit E un \mathbb{K} -ev et F et G deux sev de E. Montrer

$$F \cap G = F + G \iff F = G$$

Exercice 8 (CNS de structure d'ev pour une réunion $\lceil \sqrt{\rceil}$):

Soit E un \mathbb{K} -ev et F,G deux sev de E.

Montrer que $F \cup G$ est un sev de E ssi $F \subset G$ ou $G \subset F$.

Exercice 9:

Soit F, G, H trois sev d'un \mathbb{K} -ev E.

Montrer

$$F \subset G \implies F + (G \cap H) = (F + G) \cap (F + H)$$

Exercice 10:

Soit

$$F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \text{ dérivable telle que } f(0) = f'(0) = 0 \}$$
 et $G = \{ x \mapsto ax + b, a, b \in \mathbb{R} \}$

Montrer que F et G sont des sev supplémentaires de $\mathcal{D}^1(\mathbb{R},\mathbb{R})=\{f:\mathbb{R}\to\mathbb{R} \text{ dérivable}\}.$

Exercice 11:

Soit
$$E=\{f:[0,\pi]\to\mathbb{R} \text{ continue}\}$$
, $F=\{f\in E, f(0)=f(\pi/2)=f(\pi)\}$ et $G=\mathrm{Vect}(\sin,\cos)$. Montrer que $E=F\oplus G$.

Exercice 12:

Soit $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), f(0) + f(1) = 0 \}.$

- 1. Montrer que F est un sev de $\mathcal{F}(\mathbb{R},\mathbb{R})$
- 2. Déterminer un supplémentaire de F dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 13:

Soit F, G, F', G' des sev d'une \mathbb{K} -ev E tels que $F \cap G = F' \cap G'$.

Montrer

$$(F + (G \cap F')) \cap (F + (G \cap G')) = F$$

Exercice 14:

On pose $E = \mathcal{C}^0([-1,1],\mathbb{R})$ et on considère les sous-espaces

$$F_1 = \{ f \in E, f \text{ constante} \}$$
 $F_2 = \{ f \in E, \forall t \in [-1, 0], f(t) = 0 \}$

$$F_3 = \{ f \in E, \forall t \in [0, 1], f(t) = 0 \}$$

Montrer

$$E = F_1 \oplus F_2 \oplus F_3$$

Exercice 15:

Soit F, F', G, G' des sev de E un \mathbb{K} -ev tels que

$$F \oplus G = F' \oplus G' = E$$
 et $F' \subset G$

Montrer

$$F \oplus F' \oplus (G \cap G') = E$$

Exercice 16:

Soit E un \mathbb{K} -ev et $E_1,\ldots,E_n,F_1,\ldots,F_n$ des sev de E tel que $\forall i\in\{1,\ldots,n\}$, $E_i\subset F_i$ et

$$\bigoplus_{i=1}^{n} E_i = \bigoplus_{i=1}^{n} F_i.$$

Montrer que $\forall i \in \{1, ..., n\}, E_i = F_i$.

4 Familles libres, Familles génératrices

Exercice 17:

Étudier l'indépendance linéaire des familles de \mathbb{R}^3 suivantes. Pour les familles liées, donner une combinaison linéaire non triviale nulle. Donner des équations des espaces engendrés par ces familles de vecteurs.

- 1. $x_1 = (1,0,1), x_2 = (1,2,2)$
- 2. $x_1 = (1, 2, 1), x_2 = (2, 1, -1), x_3 = (1, -1, -2)$
- 3. $x_1 = (1, -1, 1), x_2 = (2, -1, 3), x_3 = (-1, 1, -1).$
- 4. $x_1 = (1, 2, 3), x_2 = (1, -1, 0), x_3 = (1, 0, 2), x_4 = (2, 1, 0).$
- 5. $x_1 = (1, 1, -1), x_2 = (2, 0, 1), x_3 = (0, 1, 1).$

Exercice 18:

Soit $a, b \in \mathbb{R}$. On pose $x_1 = (1, a, b)$, $x_2 = (b, 1, a)$ et $x_3 = (a, b, 1)$.

Étudier l'indépendance linéaire de x_1 , x_2 et x_3 en fonction des paramètres a et b.

Exercice 19 ([√]):

Montrer que la famille suivantes est une famille libre de $\mathcal{F}(\mathbb{R},\mathbb{R})$:

$$f_1: x \mapsto \cos(x), \ f_2: x \mapsto x \cos(x), \ f_3: x \mapsto \sin(x), \ f_4: x \mapsto x \sin(x)$$

Exercice 20 ([√]):

 $\forall k \in \mathbb{N}$, on pose $f_k : x \mapsto e^{kx} \in \mathcal{F}(\mathbb{R}, \mathbb{R})$.

Montrer que $\forall n \in \mathbb{N}$, la famille $\mathcal{F}_n = (f_0, f_1, \dots, f_n)$ est une famille libre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 21:

Soit E un \mathbb{K} -ev et $x,y,z\in E$ trois vecteurs linéairement indépendants de E. On pose

$$u = y + z$$
, $v = z + x$, $w = x + y$

Montrer que (u, v, w) est encore une famille libre de E.

Exercice 22 ([√]):

Soit (x_1, \ldots, x_n) une famille libre d'un \mathbb{K} -ev E. Soit $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$. On pose

$$u = \sum_{i=1}^{n} \alpha_i x_i$$
 et $\forall 1 \le i \le n, y_i = x_i + u$

A quelle condition sur les α_i , la famille (y_1, \ldots, y_n) est-elle libre?

Exercice 23:

Soit (e_1,\ldots,e_p) une famille libre de E un \mathbb{K} -ev.

Montrer que $\forall a \in E \setminus \text{Vect}(e_1, \dots, e_p)$, la famille $(e_1 + a, \dots, e_p + a)$ est libre.

Exercice 24 (**):

Soit $(p_n)_{n\in\mathbb{N}^*}$ la suite strictement croissante de tous les nombres premiers (donc $p_1=2$, $p_2=3$, $p_3=5$, $p_4=7$ etc) Montrer que $\mathbb R$ est un $\mathbb Q$ -espace vectoriels et que $(\ln(p_n))_{n\in\mathbb{N}^*}$ est une famille libre de $\mathbb R$ vu comme un $\mathbb Q$ -ev.

Exercice 25:

Trouver des familles génératrices des sev suivants

$$A = \{(x, y, z) \in \mathbb{R}^3, x + y - 2z = 0\} \qquad C = \{(x, y, z, t) \in \mathbb{R}^4, x - y = x - z = x - t = 0\} \\ B = \{(x, y, z, t) \in \mathbb{R}^4, x + y = t - z = 0\} \qquad D = \{(x, y, z, t, u, v) \in \mathbb{R}^6, z - 2x - y + 3t + u - v = 0\}$$

Exercice 26 ([\checkmark]):

Soit E un \mathbb{K} -ev, (e_1, \ldots, e_p) une famille libre de vecteurs de E et $F = \text{Vect}(e_1, \ldots, e_p)$. Soit G un supplémentaire de F dans E. Pour tout $a \in G$, on pose

$$F_a = \operatorname{Vect}(e_1 + a, \dots, e_p + a)$$

- 1. Montrer que $\forall a \in G$, $F_a \oplus G = E$
- 2. Soit $a, b \in G$. Montrer que

$$a \neq b \implies F_a \neq F_b$$