NOM : Prénom :

Interrogation 8

Suites 2

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Définition de deux suites équivalentes.

Soit $u,v\in\mathbb{K}^{\mathbb{N}}$. On dit que u et v sont équivalentes en ∞ , et on note $u_n\underset{n\to+\infty}{\sim} v_n$, si $\frac{u_n}{v_n}\underset{n\to+\infty}{\longrightarrow} 1$ (si v ne s'annule pas à partir d'un certain rang).

2. Définition de la négligeabilité.

Soit $u,v\in\mathbb{K}^{\mathbb{N}}$ telle que v ne s'annule pas à partir d'un certain rang. On dit que u est négligeable devant v en $+\infty$, si $\frac{u_n}{v_n}\xrightarrow[n\to+\infty]{}0$, et note dans ce cas $u_n=o(v_n)$.

3. Caractérisation des \sim par les o.

Soit $u,v\in\mathbb{K}^{\mathbb{N}}.$ Alors :

$$u_n \underset{n \to +\infty}{\sim} v_n \iff u_n \underset{n \to +\infty}{=} v_n + o(v_n).$$

4. Premiers équivalents de références.

Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
 telle que $u_n \xrightarrow[n \to +\infty]{n \to +\infty} 1$. Alors $\sin(u_n) \underset{n \to +\infty}{\sim} u_n$, $\ln(1+u_n) \underset{n \to +\infty}{\sim} u_n$, $e^{u_n} - 1 \underset{n \to +\infty}{\sim} u_n$ et $\cos(u_n) - 1 \underset{n \to +\infty}{\sim} -\frac{u_n^2}{2}$.

1. Théorème de Bolzano-Weierstrass.

Si $u \in \mathbb{K}^{\mathbb{N}}$ est bornée, alors u admet au moins une sous-suite convergente (i.e. $\exists \varphi : \mathbb{N} \to \mathbb{N}$ extraction telle que $(u_{\varphi(n)})_{n \in \mathbb{N}}$ converge).

2. Composition des \sim par \ln .

Soit $u,v\in(\mathbb{R}_+^*)^{\mathbb{N}}$ telles que $u_n\underset{n\to+\infty}{\sim}v_n$ et $v_n\xrightarrow[n\to+\infty]{}\ell\in(\mathbb{R}_+\setminus\{1\})\cup\{+\infty\}.$ Alors $\ln(u_n)\underset{n\to+\infty}{\sim}\ln(v_n).$

3. Théorème de l'âne.

Soit
$$u \in \mathbb{K}^{\mathbb{N}}$$
. Si $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{K}^*$, alors $u_n \underset{n \to +\infty}{\sim} \ell$.

4. Équivalent de Stirling.

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

Exercice 2:

Soit $\alpha \in \mathbb{R}$. Étudier la limite de la suite $(u_n)_{n \in \mathbb{N}}$ définie par $\forall n \in \mathbb{N}^*$, $u_n = \cos\left(\frac{\alpha}{n}\right)^{n^2}$.

On notera que $\cos(\alpha/n) \xrightarrow[n \to +\infty]{} 1 > 0$. Donc $\exists n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, \ u_n > 0$. Alors

$$\forall n \ge n_0, \ u_n = e^{n^2 \ln(\cos(\alpha/n))}.$$

Or, par les premiers équivalents de références,

$$\ln(\cos(\alpha/n)) \underset{n \to +\infty}{\sim} \cos(\alpha/n) - 1 \underset{n \to +\infty}{\sim} -\frac{\alpha^2}{2n^2}.$$

Donc $n^2 \ln(\cos(\alpha/n)) \sim -\alpha^2/2$. Et donc, par composition de limites,

$$u_n \xrightarrow[n \to +\infty]{} e^{-\alpha^2/2} > 0.$$

Donc, par théorème de l'âne,

$$u_n \underset{n \to +\infty}{\sim} e^{-\alpha^2/2}$$
.