

DM 4 Équivalent de Stirling

Simon Dauguet simon.dauguet@gmail.com

Pour le Mardi 25 Novembre 2025

Le but de ce problème est de déterminer l'équivalent de Stirling

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Partie I : Un équivalent à une constante près

On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{n!e^n}{\sqrt{n}n^n}.$$

- 1. Montrer que $\forall n \in \mathbb{N}^*$, $u_n > 0$.
- 2. Montrer que

$$\forall n \in \mathbb{N}^*, \ \frac{u_{n+1}}{u_n} = e^{1 - (\frac{1}{2} + n) \ln(1 + \frac{1}{n})}.$$

3. On introduit la fonction φ définie par

$$\forall t > 0, \ \varphi(t) = 1 - \left(\frac{1}{2} + \frac{1}{t}\right) \ln(1+t).$$

- (a) On pose $\psi(t) = 2t (t+2)\ln(1+t)$. Par une double dérivation, déterminer le signe de ψ sur \mathbb{R}_+ .
- (b) En déduire le signe de φ sur \mathbb{R}_+^* .
- (c) En déduire la décroissance de la suite $(u_n)_{n\in\mathbb{N}^*}$.
- 4. En déduire que la suite (u_n) converge. On appelle C la limite de la suite (u_n) .
- 5. Justifier que $C \geq 0$.
- 6. Supposons que C=0. On considère la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^*, \ v_n = \ln(u_n).$$

- (a) Que peut-on dire sur la convergence de (v_n) ?
- (b) Montrer que $\forall n \geq 2$, $v_{n+1}-v_n=1-\left(\frac{1}{2}+n\right)\ln(1+1/n)$.
- (c) Montrer que $\forall x>0$, $x-\frac{x^2}{2}\leq \ln(1+x)\leq x-\frac{x^2}{2}+\frac{x^3}{3}$.
- (d) En déduire un encadrement de $v_{n+1} v_n$ pour tout $n \ge 2$.
- (e) En déduire

$$\forall n \ge 2, -\frac{1}{12} \sum_{k=2}^{n} \frac{1}{k^2} - \frac{1}{6} \sum_{k=2}^{n} \frac{1}{k^3} \le v_{n+1} - v_2 \le \frac{1}{4} \sum_{k=2}^{n} \frac{1}{k^2}.$$

(f) En admettant (encore pour quelques semaines) que $\left(\sum_{k=1}^n \frac{1}{k^2}\right)_{n \in \mathbb{N}^*}$ et $\left(\sum_{k=1}^n \frac{1}{k^3}\right)_{n \in \mathbb{N}^*}$ sont convergentes et en notant

$$\sum_{k=1}^n \frac{1}{k^2} \xrightarrow[n \to +\infty]{} \zeta(2) \in \mathbb{R} \qquad \text{et} \qquad \sum_{k=1}^n \frac{1}{k^3} \xrightarrow[n \to +\infty]{} \zeta(3) \in \mathbb{R},$$

aboutir à une contradiction et conclure que C > 0.

7. En déduire finalement

$$n! \underset{n \to +\infty}{\sim} C\sqrt{n} \left(\frac{n}{e}\right)^n$$

Partie II : Détermination de la constante C

On définit une suite $(I_n)_{n\in\mathbb{N}}$ des intégrales de Wallis par

$$\forall n \in \mathbb{N}, \ I_n = \int_0^{\pi/2} \sin(t)^n dt$$

En faisant alors un changement de variable et en utilisant la positivité de l'intégrale et la croissance de l'intégrale, on peut montrer que

$$\forall n \in \mathbb{N}, \ I_n > 0$$
 et $(I_n)_{n \in \mathbb{N}}$ est décroissante.

Il est facile aussi de calculer les premiers termes, et une double intégration par partie nous permet d'avoir :

$$\begin{cases} I_0 = \frac{\pi}{2} \\ I_1 = 1 \\ \forall n \in \mathbb{N}, \ I_{n+2} = \frac{n+1}{n+2} I_n \end{cases}$$

- 8. Calculer I_2 , I_3 , I_4 , I_5 .
- 9. On pose, $\forall n \in \mathbb{N}$, $J_n = (n+1)I_{n+1}I_n$. Montrer que la suite $(J_n)_{n \in \mathbb{N}}$ est une suite constante et donner sa valeur.
- 10. Établir que $\forall n \in \mathbb{N}$,

$$I_{2n} = \frac{\pi}{2} \frac{(2n)!}{(2^n n!)^2}$$
 et $I_{2n+1} = \frac{(2^n n!)^2}{(2n+1)!}$

- 11. En utilisant la monotonie de $(I_n)_{n\in\mathbb{N}}$, montrer que $I_n\underset{n\to+\infty}{\sim}I_{n+1}.$
- 12. En déduire un équivalent de J_n faisant intervenir I_n , puis en déduire

$$I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}.$$

- 13. À l'aide de la partie I et de la suite $(I_{2n})_{n\in\mathbb{N}}$, donner la valeur de la constante C.
- 14. Applications : Donner un équivalent simple et la limite des suites dont le terme général est

$$\alpha_n = \frac{n!}{n^n}$$
 et $\beta_n = \frac{(n!)^2}{n^n}$