NOM : Prénom :

Interrogation 9

Groupes - Anneaux - Corps

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Définition du noyau d'un morphisme de groupe.

Soit (G,*) et (H,\cdot) deux groupes, $f:G\to H$ un morphisme de groupe. On définit le noyau de f, noté $\ker(f)$, par

$$\ker(f) = f^{-1}(\{e_H\}) = \{g \in G, \ f(g) = e_H\}$$

où e_H est l'élément neutre de H.

2. Caractérisation des sous-groupes.

Soit (G,*) un groupe et $H\subset G$. H est un sous-groupe de G, si et seulement si, $H\neq\emptyset$ et $\forall h,h'\in H$, $h^{-1}*h'\in H$.

3. Définition d'un anneau.

Soit A un ensemble muni de deux LCI + et *. Alors (A,+,*) un anneau, si (A,+) est un groupe abélien, $\exists 1_A \in A$ tel que $\forall x \in a, \ 1_A * x = x * 1_A = x$ (élément neutre pour *) et $\forall x,y,z \in Z$, (x+y)*z = x*z+y*z (distributivité de * sur +), et $\forall a,b,c \in A$, a*(b*c) = (a*b)*c (* est associative).

4. Binôme de Newton.

Soit $(A,+,\times)$ un anneau, $a,b\in A.$ Si a et b commutent (i.e. si ab=ba), alors $\forall n\in\mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

5. Définition de la commutativité et associativité d'une LCI.

Soit G un ensemble muni d'une LCI *. On dit que * est commutative si $\forall a, g \in G$, a*b = b*a. On dit que * est associative si $\forall a, b, c \in G$, (a*b)*c = a*(b*c).

6. Caractérisation des sous-groupes de $(\mathbb{Z}, +)$.

Les sous-groupes de $(\mathbb{Z},+)$ sont les $n\mathbb{Z}$, $n\in\mathbb{N}$. le si $H\subset\mathbb{Z}$, alors H est un sous-groupe de $(\mathbb{Z},+)$ ssi $\exists n\in\mathbb{N}$ tel que $H=n\mathbb{Z}$.

7. Sous-groupes de $(\mathbb{R}, +)$.

Soit $H\subset\mathbb{R}$. Si H est un sous-groupe de $(\mathbb{R},+)$, alors $\exists a\in\mathbb{R}_+$ tel que $H=a\mathbb{Z}$ ou H est dense dans \mathbb{R} .

8. Définition d'un morphisme de groupe.

Soit $(G,*),(H,\star)$ deux groupes, $f:G\to H.$ On dit que f est un morphisme de groupe si $\forall g,g'\in G,\, f(g*g')=f(g)\star f(g').$

Exercice 2:

Montrer que \mathbb{R} est un groupe pour la loi * définie par : $\forall x,y \in \mathbb{R}$, x*y=x+y+1.

Tout d'abord, * est clairement une LCI sur \mathbb{R} car + est une LCI sur \mathbb{R} .

 $\forall x,y \in \mathbb{R}, \ x*y=x+y+1=y+x+1=y*x \ \text{car} + \text{est commutative sur} \ \mathbb{R}. \ \text{Donc} * \text{est commutative}.$

 $\forall x \in \mathbb{R}, \ x*(-1) = x-1+1 = x.$ Et donc, par commutativité, $\forall x \in \mathbb{R}, \ x*(-1) = (-1)*x = x.$ Donc -1 est élément neutre de *.

 $\forall x \in \mathbb{R}, \ x*(-x-2) = x+(-x-2)+1 = -1.$ Et donc, par commutativité, $\forall x \in \mathbb{R}, \ x*(-x-2) = (-x-2)*x = -1.$ Donc tout élément de \mathbb{R} est inversible pour *.

Et enfin:

$$\forall x,y,z \in \mathbb{R}, \ (x*y)*z = (x+y+1)*z \\ = (x+y+1)+z+1 \\ = x+(y+z+1)+1 \\ = x+(y*z)+1$$
 def *

Donc * est associative.

Donc, par définition, $(\mathbb{R},*)$ est un groupe abélien.