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Le but de ce chapitre est d’étudier plus précisément l’anneau Z des entiers.
L’arithmétique est probablement la branche des mathématiques la plus vieille. C’est aussi l’une

des plus développées et l’une des plus fondamentales (au sens fondateur donc importante, et au sens
abstraction). Il arrive très régulièrement que des questions d’arithmétique fasses irruptions dans des
domaines ou des problèmes où on ne les attendait a priori pas. Mais comme tout est nombre (cf
Pythagore) et que l’étude des nombres, c’est le but de l’arithmétique,

L’arithmétique est particulièrement difficile pour ces raisons là. Les questions posées sont sou-
vent élémentaires et on a alors peu d’outils à notre disposition. Il faut alors développer des trésors
d’ingéniosité et de contorsions intellectuelles pour résoudre le problème. Étant un domaine fondateur
et élémentaire (au sens peu d’outil sont nécessaires), les choses sont très sensibles d’un point de
vue logique. L’arithmétique foisonne de petites propriétés contre intuitive dont les réciproques sont
fausses mais tentantes. C’est donc un domaine exigeant et ingrat pour l’intuition. Mais très formateur
intellectuellement.
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1 Divisibilté
On rappelle que (Z, +, ×) est un anneau commutatif intègre dont le groupe des inversibles est

{−1, 1}.

1.1 Divisibilité, Diviseurs, multiples

Définition 1.1 (Divisibilité) :
Soit a, b ∈ Z. On dit que a divise b (ou que b est divisible par a) si ∃c ∈ Z tel que b = ac. Et on
note a|b.

Remarque :
Attention, la définition n’est pas si simple. La définition de la divisibilité se fait un peu “à l’envers”.
On a pas de définition directe.
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1 DIVISIBILTÉ 1.1 Divisibilité, Diviseurs, multiples

Remarque :
0 est le seul entier qui est divisible par par tous les entiers. Autrement dit si n ∈ Z, alors n = 0 ⇐⇒
∀p ∈ Z, p|n.

Proposition 1.1 (Relation d’ordre de la divisibilité sur N) :
La relation de divisibilité est une relation d’ordre partielle sur N mais la divisibilité n’est pas
antisymétrique sur Z (donc elle n’est que réflexive et antisymétrique sur Z).

Autrement dit, la relation | est une relation binaire, réflexive, antisymétrique, transitive sur N. Et
on a −2|2 et 2| − 2 mais 2 ̸= −2. Donc il n’y a pas d’antisymétrie sur Z.
Remarque :
Si a ̸= 0 et si b|a, alors |b| ≤ |a|. En effet, si b|a, alors |b|||a|. Et donc ∃k ∈ N∗ tel que |a| = k|b| car
a ̸= 0. Donc k ≥ 1 et d’où le résultat.

Définition 1.2 (Entiers associés) :
Soit a, b ∈ Z.

a et b sont dit associés si a|b et b|a.

Remarque :
On notera que a et b associés entrâıne ab ̸= 0 ou bien a = b = 0. Mais on ne peut pas avoir un seul
des deux nuls.

Proposition 1.2 (Caractérisation des entiers associés) :
Soit a, b ∈ Z.

a et b sont associés si, et seulement si, a = ±b.

Démonstration :
Le sens indirecte est évident. Il sont multiples l’un de l’autre en multipliant par −1 (qui est son
propre inverse dans Z).

Réciproquement, supposons a et b associés. Si a = 0, alors b = 0 car b est un multiple de a. Si
a ̸= 0, alors ∃p, q ∈ Z tels que a = pb = pqa. Comme Z est intègre, on en déduit pq = 1. Donc
p, q ∈ Z× = {−1, 1}. D’où l’on déduit a = ±b. □
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1 DIVISIBILTÉ 1.1 Divisibilité, Diviseurs, multiples

Proposition 1.3 (Propriétés algébriques de la divisibilité) :
Soit a, b, c, d ∈ Z. Alors :

(i) a|b ⇐⇒ |a|||b|
(ii) Si a|b, alors ∀p ∈ Z, a|pb.
(iii) Si c|a et c|b, alors ∀u, v ∈ Z, c|(au + bv).
(iv) Si a|b et c|d, alors ac|bd.
(v) Si d ̸= 0, alors a|b ⇐⇒ ad|bd.

Démonstration :

(i) C’est évident. Mais il faut le dire au moins une fois.
(ii) Il suffit décrire la définition. C’est évident.
(iii) Par définition, ∃p, q ∈ Z tels que a = pc et b = qc. Alors ∀u, v ∈ Z, au + bv = (pu + qv)c et

donc le résultat.
(iv) Par définition, ∃p, q ∈ Z tels que b = ap et d = qc. Alors bd = pqac et donc ac|bd.
(v) On fait les deux sens d’un coup :

a|b ⇐⇒ ∃p ∈ Z, b = ap ⇐⇒ ∃p ∈ Z, bd = adp ⇐⇒ ad|bd

□

Remarque :
En effectuant une petite récurrence, on a aussi a|b =⇒ ∀n ∈ N, an|bn.

Proposition 1.4 (Caractérisation de la divisibilité en terme de sous-groupe de Z) :
Soit a, b ∈ Z. Alors

a|b ⇐⇒ bZ ⊂ aZ

Démonstration :
Il suffit d’écrire les définitions : a|b ⇐⇒ b ∈ aZ ⇐⇒ bZ ⊂ aZ. □
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1 DIVISIBILTÉ 1.1 Divisibilité, Diviseurs, multiples

Définition 1.3 (Diviseurs, multiples) :
Soit n, p ∈ Z.

On dit que n est un diviseur de p si n|p.
On dit que n est multiple de p si p|n.

Remarque :
Dans une relation b = ap, la notion de diviseur et multiple est une question de référentiel, de point
de vue, de ce qui nous intéresse. Pour b, a et p sont des diviseurs. Pour a et p, b est un multiple.
Mais dans les deux cas, on parle de la même relation. On ne se focalise simplement pas sur la même
chose. Le sujet n’est pas le même. Un peu comme le passage d’une phrase sous la forme active à sa
forme passive.

Exemple 1.1 :
Les diviseurs de 15 sont {−15, −5, −3, −1, 1, 3, 5, 15}.

"
Attention à ne pas oublier les diviseurs négatifs. On a tendance naturellement à ne rai-

sonner que dans N et donc oublier les diviseurs négatifs. Sans précision, ils doivent être pris
en compte. Ce qui change beaucoup, par exemple, le nombre de diviseurs d’un entier.

Remarque :
C’est évident, mais tout de même, il faut le remarquer. Évidemment, ∀n ∈ Z, ∀a ∈ Z∗, n|a =⇒
|n| ≤ |a|.

Définition 1.4 (Diviseurs triviaux) :
Soit n ∈ Z. Alors −n, −1, 1 et n sont des diviseurs de n. Ce sont les diviseurs triviaux de n.

Proposition 1.5 (Ensemble des multiples) :
Soit n ∈ Z.

L’ensemble des multiples de n est nZ.
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1 DIVISIBILTÉ 1.1 Divisibilité, Diviseurs, multiples

Démonstration :
C’est évident. □

Remarque :
En particulier, l’ensemble des multiples est un sous-groupes de Z.

Notation (Ensemble des diviseurs) :
Soit n ∈ Z. On notera Div(n) l’ensemble des diviseurs de n, i.e.

Div(n) := {p ∈ Z, p|n}.

Attention, cette notation n’est pas canonique. C’est un choix de ma part. Elle doit être redéfinie
à chaque nouvelle utilisation.

On notera Div+(n) l’ensemble des diviseurs positifs de n. Donc Div+(n) = Div(n) ∩ N.

Proposition 1.6 (Ensemble de diviseurs) :
Soit n ∈ Z.

Div(n) est un ensemble fini si, et seulement si, n ̸= 0.

Démonstration :
On sait que si n ̸= 0, alors a|n =⇒ |a| ≤ |n|. Donc l’ensemble des diviseurs de n est borné par |n|.
Comme c’est un sous-ensemble de Z et il est fini si n ̸= 0.

Et si n = 0, alors par définition, Div(0) = Z qui est infini. □

Remarque :
En particulier, par contraposition, on a n = 0 ssi il est divisible par une infinité d’entier. C’est assez
pratique. C’est ce qu’on utilise par exemple dans la démonstration classique de l’irrationalité de

√
2.
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1 DIVISIBILTÉ 1.2 Division euclidienne

1.2 Division euclidienne

Définition-Propriété 1.5 (Division euclidienne) :
Soit a, b ∈ Z et b ̸= 0. Alors ∃!(q, r) ∈ Z tels que :

a = bq + r et 0 ≤ r < b.

q s’appelle le quotient, r le reste, a le dividende et b le diviseur de la division eucli-
dienne de a par b.

Démonstration :
On pose q = ⌊a/b⌋. Alors, par caractérisation de la partie entière, a/b − 1 < q ≤ a/b. Et donc
a − b < bq ≤ a. On pose r = a − bq. Alors q, r ∈ Z et 0 ≤ r < b. D’où l’existence.

Supposons ∃q, r, s, t ∈ Z tel que a = bq+r = bs+t et 0 ≤ r, t < b. Alors b(q−s) = t−r ∈K−b, bJ.
donc b(q − s) = 0. Et Z étant intègre, on en déduit q = s. Puis immédiatement r = t. D’où
l’unicité. □

Remarque :
Une autre preuve classique consiste à faire une récurrence forte sur a. C’est ce que nous ferons dans
le chapitre sur les polynômes. Pour diversifier les méthodes, j’ai proposé une autre démo dans le
cadre des entiers qui utilise des outils qui ne sont disponibles que dans le cadre des entiers.

Proposition 1.7 (Caractérisation de la division par la division euclidienne) :
Soit a, b ∈ Z et a ̸= 0.

Alors a|b ⇐⇒ le reste de la division euclidienne de b par a est 0.

Démonstration :
Il suffit de l’écrire. Si le reste de la division euclidienne de b par a est 0, alors, par définition de la
division euclidienne, ∃p ∈ Z tel que b = ap + 0 = ap et donc a|b.

Réciproquement, si a|b, alors ∃p ∈ Z tel que b = ap. Et donc on peut écrire b = ap + 0 avec
0 ≤ 0 < a. Donc, par unicité de la division euclidienne, b = ap + 0 est la division euclidienne de b
par a et le reste est 0. □
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1 DIVISIBILTÉ 1.3 Congruence

1.3 Congruence

Définition 1.6 (Congruence) :
Soit a, b ∈ Z et n ∈ N∗.

On dit que a est congrue à b modulo n, et on note a ≡ b [n], si a et b ont le même reste
dans la division euclidienne par n, i.e.

a ≡ b [n] def⇐⇒ ∃p, q, r ∈ Z, a = pn + r, b = qn + r, 0 ≤ r < n

Remarque :
On note parfois aussi a ≡ b mod n pour la relation de congruence modulo n, avec éventuellement
des parenthèses en plus. Mais le programme impose la notation donnée dans la définition.

Proposition 1.8 (Caractérisation des congruences par les divisibilités) :
Soit a, b ∈ Z, n ∈ N∗.

Alors
a ≡ b [n] ⇐⇒ n|(b − a)

Démonstration :
Il suffit d’utiliser la définition avec la caractérisation de la division euclidienne par la division. □

Remarque :
En particulier, n|a ⇐⇒ a ≡ 0 [n].

Proposition 1.9 (Reformulation des congruences) :
Soit a, b ∈ Z et n ∈ N∗. Alors

a ≡ b [n] ⇐⇒ ∃k ∈ Z, a = b + nk

Démonstration :
D’après la caractérisation précédente a ≡ b [n] ⇐⇒ n|(b − a) ⇐⇒ ∃k ∈ Z, b − a = nk ⇐⇒
∃k ∈ Z, a = b + nk. □
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1 DIVISIBILTÉ 1.3 Congruence

Définition 1.7 (Extension des congruences dans R) :
Soit x, y, z ∈ R et z ̸= 0.

On dira que x est congrue à y modulo z, et on écrira x ≡ y [z] si ∃k ∈ Z tel que x = y + kz.

Exemple 1.2 :
D’où les notations des congruences en trigonométrie. Donc, par exemple, θ ≡ π

4 [π] ⇐⇒ ∃k ∈
Z, θ = π

4 + kπ.

Proposition 1.10 ( ≡ mod n est une relation d’équivalence) :
Soit n ∈ N∗.

La relation de congruence modulo n est une relation d’équivalence sur Z.

Démonstration :
La relation ≡ [n] est évidemment une relation binaire. Elle est également réflexive car n|0 donc
∀x ∈ Z, n|(x − x).

De plus, ∀x, y ∈ Z, x ≡ y [n] ⇐⇒ n|(y − x) ⇐⇒ n|(x − y) ⇐⇒ y ≡ x [n]. Donc la relation
est symétrique.

Et enfin elle est transitive facilement : si x, y, z ∈ Z tels que x ≡ y [n] et y ≡ z [n], alors
n|((y − x) − (y − z)) et donc x ≡ z [n] □

Remarque (HP) :
Comme on vient de voir que la relation d’équivalence modulo n est une relation d’équivalence sur Z,
on peut étudier l’ensemble des classes d’équivalence par rapport à cette relation d’équivalence. On
note

∀x ∈ Z, x = Cl(x) = {y ∈ Z, x ≡ y [n]}.

Et on note Z/nZ l’ensemble des classes d’équivalences.
Alors on peut munir Z/nZ d’un addition est d’une multiplication telles que :

∀n, m ∈ Z, n + m = n + m et n × m = nm

On peut alors montrer que (Z/nZ, +, ×) est un anneau commutatif fini composé de n éléments.
Cela revient un peu à compter en rond. Au bout de la châıne, on revient à 0.

L’étude plus poussée de cette anneau est au programme de MP (pour étudier les conditions pour
qu’il soit intègre, un corps etc).
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1 DIVISIBILTÉ 1.3 Congruence

Proposition 1.11 (Propriétés algébriques de la relation de congruence) :
Soit n ∈ N∗. Soit a, b, c, d ∈ Z tels que a ≡ b [n] et c ≡ d [n]. Alors

(i) a + c ≡ b + d [n]
(ii) ac ≡ bd [n]
(iii) ∀k ∈ N, ak ≡ bk [n]
(iv) Si λ ∈ Z∗, alors a ≡ b[n] ⇐⇒ λa ≡ λb [λn]

Démonstration :

(i) Il suffit de voir que n|(b + d − a − c).
(ii) Alors ∃p, q ∈ Z tel que a = b + np et c = nq + d. Alors ac = bd + n(npq + d + b). Donc

ac ≡ bd [n].
(iii) Pour k = 0, c’est assez évident. Et il suffit ensuite de faire un récurrence en utilisant le point

précédent.
(iv) Si ∃k ∈ Z tel que a = b + nk, alors λa = λb + λnk. Et la réciproque est évidente puisque

λ ̸= 0 et Z est intègre.
□

Remarque :
On notera que dans le dernier point, le sens directe est encore vraie avec λ = 0. Mais c’est la
réciproque qui n’est plus vraie.

Ces résultats sont également vraies avec les congruences dans R.

"

!!! ATTENTION !!!

Ce ne sont que des implications. Les réciproques sont fausses.
Par exemple, 2 + 3 ≡ 1 + 4 [5] mais 2 ̸≡ 1 [5] et 2 ̸≡ 4 [5]. De même, 2 × 3 ≡ 1 × 0 [6]

mais ni 2 ni 3 ne sont congrues à 1 ou 0 mod 6. Et ∀n ≥ 2, 2n ≡ 0 [4] mais bien entendu,
2 ̸≡ 0 [4].

Exemple 1.3 :
Résoudre cos(2x) sin(2x) =

√
2

4 .
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2 PGCD ET PPCM

Exemple 1.4 :
Montrer que ∀n ∈ N, 32n+1 + 2n+2 ∈ 7Z.

Exemple 1.5 :
Résoudre dans Z l’équation x2 + 5y2 = 3.

2 PGCD et PPCM

2.1 PGCD

Définition-Propriété 2.1 (PGCD dans N) :
Soit a, b ∈ Z avec (a, b) ̸= (0, 0). On appelle plus grand commun diviseurs de a et b,
ou pgcd de a et b, le plus grand entier naturel qui divise à la fois a et b. On le note
a ∧ b ou pgcd(a, b). Donc

pgcd(a, b) := a ∧ b := max{n ∈ N, n|a, n|b}.

Démonstration :
On considère Div+(a, b) := {n ∈ N, n|a, n|b} = Div+(a) ∩ Div+(b). Alors 1 ∈ Div+(a, b).
Donc Div(a, b) ̸= ∅. On a (a, b) ̸= (0, 0). Sans perte de généralité, on peut suppose a ̸= 0. Et
∀n ∈ Div(a, b), n|a, donc n ≤ a. Donc Div(a, b) est majoré par a. Et donc max Div(a, b) existe car
Div(a, b) ⊂ N. □

Remarque :
Tous les entiers sont des diviseurs de 0 car ∀n ∈ Z, 0 = n × 0. On en déduit alors que ∀n ∈ Z∗,
pgcd(n, 0) = |n|.

On pourrait alors choisir la convention pgcd(0, 0) = 0 par soucis de cohérence avec cette remarque
et avec les formules qui vont suivre. Mais cette convention n’est officiellement pas au programme.
Le programme demande de se contenter du pgcd d’un couple non nul d’entier.
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2 PGCD ET PPCM 2.2 Algorithme d’ Euclide

Proposition 2.1 (∧ est une LCI commutative) :
La loi ∧ est commutative. Autrement dit, ∀a, b ∈ Z tels que (a, b) ̸= (0, 0), a ∧ b = b ∧ a.

Démonstration :
La commutativité provient de la commutativité de la conjonction logique. □

Proposition 2.2 (Caractérisation de la divisibilité par le pgcd) :
Soit a, b ∈ Z, a ̸= 0. Alors

a|b ⇐⇒ a ∧ b = |a|

Démonstration :
Si a|b, alors a ∈ Div(a, b). Et donc |a| ≤ max(Div(a, b)) = a ∧ b. Et bien sûr (a ∧ b)|a donc
(a ∧ b) ≤ |a|. Et donc, |a| = a ∧ b.

Réciproquement, si a ∧ b = |a|, alors automatiquement, |a| = a ∧ b|b. □

2.2 Algorithme d’ Euclide

Théorème 2.3 (Théorème d’Euclide) :
Soit a, b, q, r ∈ Z∗. Alors

a = bq + r =⇒ a ∧ b = b ∧ r.

Démonstration :
Si d est un diviseur commun à a et b, alors d|r car d divise toute combinaison linéaire de a et b (en
particulier a − bq). Donc d divise b et r, donc d est un diviseur commun à b et r.

D’autre part, si d est un diviseurs commun de b et r, alors d|a car d divise toute combinaison
linéaire de b et r. Donc d divise a et b. Donc d est un diviseurs commun de a et b.

On en déduit que (a, b) et (b, r) ont les mêmes diviseurs communs. Et donc, en particulier,
a ∧ b = b ∧ r. □
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2 PGCD ET PPCM 2.2 Algorithme d’ Euclide

Théorème 2.4 (Algorithme d’Euclide) :
Soit (a, b) ∈ Z2 avec b ̸= 0. On pose r0 = a, r1 = b et ∀n ∈ N∗, si rn ̸= 0, on définit rn+1
comme le reste de la division euclidienne de rn−1 par rn.

Alors ∃N ∈ N tel que rN = 0 et rN−1 ̸= 0. De plus (rn)0≤n≤N est strictement décroissante
et rN−1 = a ∧ b.

Donc le pgcd de a et b est le dernier reste non nul dans la suite des divisions euclidienne.

Démonstration :
Si b = 0, alors a ∧ b = a = r0 et r1 = b = 0.

Si b ̸= 0, alors r1 ̸= 0. Alors ∃q1 ∈ N tel que r0 = r1q1 +r2 et r2 < r1. A chaque étape, tant que
l’on peut définir la suite, on a rn+1 < rn par définition de la division euclidienne. Donc la suite, tant
qu’elle est définie, est strictement décroissante. Or c’est une suite d’entier, donc elle est stationnaire
en 0. Soit N ∈ N tel que rN = 0 et rN−1 = 0.

De plus, a ∧ b = r0 ∧ r1 = r1 ∧ r2 = · · · = rn−1 ∧ rn = · · · = rN−1 ∧ rN par récurrence. Or
rN = 0, donc rN−1 ∧ rN = rN−1. Et donc rN−1 = a ∧ b. □

L’algorithme d’Euclide peut très bien s’écrire en . Voir avec le prof d’info pour les
détails.

Théorème 2.5 (Relation de Bézout) :
Soit a, b ∈ Z avec (a, b) ̸= (0, 0). Alors

∃(u, v) ∈ Z2, au + bv = a ∧ b

Démonstration :
Sans perte de généralités, on peut suppose b ≥ 0, quitte à multiplier par −1.

On va opérer une récurrence forte sur b. Si b = 0, alors a × 1 + 0 = a = a ∧ 0.
Supposons b ̸= 0 et suppose que ∀r ∈ {0, . . . , b−1}, ∀a ∈ N, ∃u, v ∈ Z tels que au+rv = a∧r.

Soit a ∈ N. On effectue la division euclidienne de a par b. Donc ∃q, r ∈ N tels que a = bq + r et
0 ≤ r < b. Alors a ∧ b = b ∧ r. Et par hypothèse de récurrence, ∃u, v ∈ Z tels que a ∧ b = au + rv.

Alors a ∧ b = au + v(a − bq) = a(u + v) − bqv et u + v ∈ Z, −qv ∈ Z. □
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2 PGCD ET PPCM 2.2 Algorithme d’ Euclide

Remarque :
On en déduit une méthode à partir de l’algorithme d’Euclide pour trouver les coefficients de Bézout :

• On effectue les divisions euclidiennes successives de a par b de l’algorithme d’Euclide.
• On remonte chaque étapes pour obtenir à chaque fois les le pgcd comme combinaison linéaire

de rk et rk−1.

Exemple 2.1 :
Déterminons un couple de Bézout pour (302, 112).

302 = 112 × 2 + 78

112 = 78 × 1 + 34

78 = 34 × 2 + 10

34 = 10 × 3 + 4

10 = 4 × 2 + 2

y

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x

2 = 23
(

302 − 112 × 2
)

− 16 × 112 = 23 × 302 − 62 × 112

2 = 7 × 78 − 16
(

112 − 78 × 1
)

= 23 × 78 − 16 × 112

2 = 7
(

78 − 34 × 2
)

− 2 × 34 = 7 × 78 − 16 × 34

2 = 10 − 2
(

34 − 10 × 3
)

= 7 × 10 − 2 × 34

2 = 10 − 2 × 4

"

!!! ATTENTION !!!

Il n’y a pas unicité des coefficients de Bézout ! En fait, il y a même une infinité de coefficients
possibles. C’est ce qu’on montre dans le cas de la résolution d’équations diophantienne.

Mais pour s’en convaincre tout de suite, on peut prendre 3×1−2×1 = 1 = 3×3−2×4
ou encore 6 × 1 − 4 × 1 = 2 = 6 × 3 − 4 × 4.

Proposition 2.6 (Sous-groupe et PGCD) :
Soit a, b ∈ Z, (a, b) ̸= (0, 0).

Alors
aZ + bZ = (a ∧ b)Z.

Démonstration :
Par définition du pgcd, (a ∧ b)|a et (a ∧ b)|b. Donc, d’après 1.4 (caractérisation de la divisibilité par
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2 PGCD ET PPCM 2.2 Algorithme d’ Euclide

les sous-groupes), aZ ⊂ (a ∧ b)Z et bZ ⊂ (a ∧ b)Z. Donc aZ + bZ ⊂ (a ∧ b)Z (par structure de
groupe).

Par la relation de Bézout, ∃u, v ∈ Z tels que au + bv = a ∧ b. Donc (a ∧ b)Z ⊂ aZ + bZ. □

Remarque :
En fait, c’est une caractérisation des pgcd, que l’on pourrait prendre comme définition, et qui a
l’avantage de redonner très facilement la relation de Bézout. Mais ce n’est pas l’orientation du
programme. Donc en fait, on a même d = a ∧ b ⇐⇒ aZ + bZ = dZ.

Proposition 2.7 (Caractérisation du pgcd) :
Soit (a, b) ∈ Z2 \ {(0, 0)} et d ∈ N. Alors

d = a ∧ b ⇐⇒
{

d|a et d|b
∀δ ∈ Z, δ|a et δ|b =⇒ δ|d

Autrement dit, a ∧ b est le plus petit diviseur commun pour la relation d’ordre partielle | sur
N.

Démonstration :
Supposons d = a ∧ b. Alors, d’après la relation de Bézout, ∃u, v ∈ Z tel que au + bv = d. Donc, si
δ ∈ Z divise a et b, alors δ divise toute combinaison linéaire et donc en particulier divise d.

Réciproquement, toujours par Bézout, ∃u, v ∈ Z tels que au + bv = a ∧ b. Donc si d|a et d|b,
alors d|a ∧ b. Mais, par définition, a ∧ b est un diviseur commun de a et b. Donc, par définition de
d, (a ∧ b)|d. Donc d et a ∧ b sont associés. Or ils sont positif par définition, et donc d = a ∧ b. □

Remarque :
On notera que dans N, 0 est un maximum pour la relation |. En effet : ∀n ∈ N, n|0. Donc la
caractérisation du pgcd précédente est cohérente avec la convention 0 ∧ 0 = 0 (le plus grand diviseur
commun au sens de la divisibilité).

Remarque :
On vient d’utiliser un lemme tiré de la relation de Bézout : d ∈ Div(a, b) ⇐⇒ d|(a ∧ b). On le
reformule un peu différemment :

15



2 PGCD ET PPCM 2.2 Algorithme d’ Euclide

Corollaire 2.8 (Ensemble des diviseurs communs) :
Soit (a, b) ∈ Z2 \ {(0, 0)}. On note Div(a, b) les diviseurs communs de a et b. Alors

Div(a, b) = Div(a ∧ b)

Démonstration :
La démonstration est essentiellement contenu dans la remarque précédente. □

Proposition 2.9 (Propriété algébrique de ∧) :
Soit a, b, c ∈ Z avec (a, b) ̸= (0, 0). Alors

(i) Si c ̸= 0, alors (ac) ∧ (bc) = |c|(a ∧ b).
(ii) (a ∧ b) ∧ c = a ∧ (b ∧ c) [associativité]

Démonstration :

(i) D’après la relation de Bézout, ∃u, v ∈ Z tels que (ac) ∧ (bc) = acu + bcv = c(au + bv). Alors
|c|(a ∧ b)|((ac) ∧ (bc)). Et de même, par Bézout, ∃n, m ∈ Z tels que an + bm = (a ∧ b). Donc
c(a∧ b) = acn+ bcm. Donc (ac)∧ (bc)|(|c|(a∧ b)). Donc (ac)∧ (bc) et |c|(a∧ b) sont associés.
Comme ils sont tous les deux positifs, on en déduit (ac) ∧ (bc) = |c|(a ∧ b).

(ii) Soit d ∈ Z tel que d|(a ∧ b) et d|c. Alors d|a et d|b et d|c. Par associativité de la conjonction
logique, on a aussi d|a et d|(b ∧ c). Donc Div(a ∧ b, c) = Div(a, b ∧ c) et donc en particulier
les pgcd sont égaux (car ce sont les max de ces ensembles).

□

Définition 2.2 (PGCD de plusieurs entiers) :
Soit a1, . . . , an ∈ Z. On définit le pgcd de a1, . . . , an comme le plus grand diviseurs communs à
a1, . . . , an. On le note ∧n

i=1 ai et donc ∧n
i=1 ai =

(∧n−1
i=1 ai

)
∧ an.
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2 PGCD ET PPCM 2.3 Entiers premiers entre eux

Proposition 2.10 (Généralisation de la relation de Bézout) :
Soit n ∈≥ 2 et a1, . . . , an ∈ Z∗. Alors

∃u1, . . . , un ∈ Z,
n∑

k=1
akuk =

n∧
k=1

ak.

Démonstration :
Il suffit de faire une récurrence. On sait que c’est vrai pour n = 2 par Bézout.

Par Bézout, ∃u, v ∈ Z tel que u(a ∧ b) + cv = a ∧ b ∧ c. Et ∃n, m ∈ Z tels que a ∧ b = an + bm.
Donc aun + bum + cv = a ∧ b ∧ c. Et on continue. □

Remarque :
La loi ∧ est donc presque une LCI sur Z. Il y a le problème de 0. Avec la convention 0 ∧ 0 = 0, ∧
devient une LCI sur Z commutative associative ayant 0 comme élément neutre. Mais elle n’est pas
symétrisable. Ce qui l’empêche de munir Z d’une structure de groupe pour le pgcd.

2.3 Entiers premiers entre eux

Définition 2.3 (Nombres premiers entre eux) :
Soit (a, b) ∈ Z2 \ {(0, 0)}.

On dit que a et b sont premiers entre eux si a ∧ b = 1, c’est-à-dire s’ils n’ont pas de diviseurs
communs positifs autre que 1.

Exemple 2.2 :
35 et 24 sont premiers entre eux.

Exemple 2.3 ([✓]) :
Montrer que ∀n ∈ Z, n et n + 1 sont premiers entre eux.

17
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Proposition 2.11 (Transmission de la primalité relative aux diviseurs) :
Soit (a, b) ∈ Z2 \ {(0, 0)}.

Si a et b sont premiers entre eux, alors ∀d ∈ Div(a), ∀δ ∈ Div(b), d et δ sont premiers
entre eux.

Démonstration :
Soit d ∈ Div(a) et δ ∈ Div(b). Soit n = d ∧ δ. Alors n|a et n|b par transitivité de la divisibilité. Et
donc n|1. Donc n = 1 car n ≥ 0. □

Théorème 2.12 (Théorème de Bézout) :
Soit (a, b) ∈ Z2 \ {(0, 0)}. Alors

a ∧ b = 1 ⇐⇒ ∃u, v ∈ Z, au + bv = 1

Démonstration :
Le sens directe est la relation de Bézout qu’on a tiré de l’algorithme d’Euclide.

Réciproquement, si ∃u, v ∈ Z tel que au + bv = 1. Alors (a ∧ b)|1 et donc a ∧ b = 1 car
a ∧ b ≥ 0. □

"
!!! ATTENTION !!!

Le théorème de Bézout n’est valable que pour les entiers premiers entre eux. C’est faux avec
un pgcd qui n’est pas 1 ! En général, si au + bv = d, alors (a ∧ b)|d. et on ne peux pas dire
mieux. Mais dans le cas où d = 1, il n’y a plus le choix.

Contre-exemple :
On 6 ∧ 4 = 2 et 3 × 6 + (−1) × 4 = 12 ̸= 2. Mais on a bien 2|12.
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Proposition 2.13 (Caractérisation du pgcd par des entiers premiers entre eux) :
Soit (a, b) ∈ Z2 \ {(0, 0)} et d ∈ N. Alors

d = a ∧ b ⇐⇒ ∃a′, b′ ∈ Z, a = da′, b = db′, a′ ∧ b′ = 1.

Démonstration :
Si d = a ∧ b. Alors ∃u, v ∈ Z tel que da′u + db′v = d. Comme Z est intègre et d ̸= 0, on en déduit
a′u + b′v = 1. Et donc a′ ∧ b′ = 1 par le théorème de Bézout. Ou alors d = (da′) ∧ (b′d) = d(a′ ∧ b′).

Réciproquement, si ∃a′, b′ ∈ Z, a′ ∧ b′ = 1 et a = da′ et b = db′. Alors d est un diviseur commun
de a et b. Donc d|(a ∧ b). De plus, par Bézout, ∃u, v ∈ Z tels que a′u + b′v = 1. Donc au + bv = d.
Et donc (a ∧ b)|d. Par positivité, on en déduit d = a ∧ b. □

Proposition 2.14 (”Transmission de la primalité relative”) :
Soit a, b, c ∈ Z, a ̸= 0. Alors

a ∧ (bc) = 1 ⇐⇒
{

a ∧ b = 1
a ∧ c = 1

Démonstration :
Si a ∧ (bc) = 1, alors ∃u, v ∈ Z tels que au + bcv = 1 par Bézout. Et donc a ∧ b|1 donc a ∧ b = 1.
De même pour a ∧ c.

Si a ∧ b = 1 = a ∧ c. Alors ∃u, v, n, m ∈ Z tels que au + bv = 1 = an + cm. Alors

1 = (au + bv)(an + cm) = a(anu + cmu + bvn) + bcvm

Donc, par théorème de Bézout, a ∧ (bc) = 1. □

Théorème 2.15 (Lemme de Gauss) :
Soit a, b, c ∈ Z, a ̸= 0.

Si a|bc et a ∧ b = 1, alors a|c.

Démonstration :
Par Bézout, ∃u, v ∈ Z tels que au + bv = 1. Donc acu + bcv = c. Et donc a|c. □
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Remarque :
Lemme de Gauss est une sorte de réciproque partielle au point (ii) de la propriété 1.3 des propriétés
algébriques de la divisibilité page 4.

Proposition 2.16 :
Soit a, b ∈ Z, c ∈ Z∗ et n ∈ N∗ tels que c ∧ n = 1. Alors

ac ≡ bc [n] =⇒ a ≡ b [n].

Démonstration :
En écrivant la définition, ∃k ∈ Z tel que ac = bc + nk. Donc c|nk. Or n ∧ c = 1. Donc, par lemme
de Gauss, c|k. Et donc ∃p ∈ Z tel que a = b + np. Donc a ≡ b [n]. □

Proposition 2.17 :
Soit a, b, c ∈ Z.

Si a ∧ b = 1 et a|c et b|c, alors ab|c.

Démonstration :

Par définition, ∃k, ℓ ∈ Z tels que ak = c = bℓ. Mais a ∧ b = 1. Donc, d’après le lemme de Gauss,
a|ℓ. Et donc ab|c. □

"
!!! ATTENTION !!!

L’hypothèse de primalité relative entre a et b est essentielle !
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Contre-exemple :
On a 4|12 et 6|12 mais 24 ̸ | 12.

Théorème 2.18 (Fractions irréductibles) :
Tout rationnel s’écrit de façon unique comme une fraction irréductible, i.e.

∀r ∈ Q, ∃!(p, q) ∈ Z × N∗, p ∧ q = 1, r = p

q
.

Démonstration :
Soit r ∈ Q∗. Alors ∃a, b ∈ Z tels que b ̸= 0 et r = a

b . En simplifiant par le pgcd de a et b, alors
∃a′, b′ ∈ Z tels que r = a′/b′ et a′ ∧ b′ = 1. Donc sans perte de généralité, ∃(a′, b′) ∈ Z × N∗ tel
que r = a′/b′ et a′ ∧ b′ = 1.

Si r = 0, alors r = 0/1 et 0 ∧ 1 = 1.
Si on a (a, b), (p, q) ∈ Z∗ × N∗ tels que a ∧ b = 1 = p ∧ q et a/b = p/q, alors aq = bp. Donc

q|bp. Mais q ∧ p = 1, donc, par lemme de Gauss, q|b. De même, b|aq et b ∧ a = 1, donc b|q. Or
b, q ≥ 0 et | étant une relation d’ordre sur N, par antisymétrie, b = q. Et on a donc immédiatement
a = p. Dans le cas où a = 0, on a automatiquement b = 1 et aussi p = 0 et q = 1. □

Proposition 2.19 (PGCD pour plus que 2 entiers (Rappel)) :
Soit a, b, c ∈ Z∗. Alors

a ∧ b ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c).

Démonstration :
Soit d diviseur de a, b, c. En particulier, d|a et d|b, donc d|a ∧ b. Et d|c, donc d|((a ∧ b) ∧ c). D’où
la première égalité. Et de même pour la seconde. □
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Définition 2.4 (Entiers premiers dans leurs ensembles, Entiers deux à deux premiers) :
Soit n ≥ 2 et a1, . . . , an ∈ Z.

On dit que a1, . . . , an sont premiers dans leur ensemble si ∧n
k=1 ak = 1, i.e. si le seul diviseur

commun à tous les ai est 1.
On dit que a1, . . . , an sont premiers entre eux deux à deux si ∀i, j ∈ {1, . . . , n}, i ̸= j,

ai ∧ aj = 1.

" Il est plus difficile d’être deux à deux premiers entre eux pour des entiers que d’être premier
dans leur ensemble. Donc “premier deux à deux =⇒ premier dans leur ensemble”.

Contre-exemple :
(6, 10, 15) sont premiers dans leur ensemble mais pas premiers deux à deux. (6, 7, 10)
également.

Proposition 2.20 (Généralisation du théorème de Bézout) :
Soit a1, . . . , an ∈ Z.

a1, . . . , an sont premiers dans leur ensemble si, et seulement si, ∃u1, . . . , un ∈ Z tels que∑n
k=1 akuk = 1.

Démonstration :
Le sens direct a été vu dans la généralisation de la relation de Bézout.

Réciproquement, si ∑n
k=1 akuk = 1, alors le pgcd divise 1 et donc c’est 1. □

2.4 Équations diophantienne

Diophante d’Alexandrie était un mathématicien de l’antiquité qui a vécu entre le 4eme et le
1er siècle avant JC. Il s’est beaucoup intéressé à l’arithmétique et aux résolutions d’équations à
coefficients entiers. On appelle plus généralement équation diophantienne toute équation dans les
entiers. Dans le cadre du programme, on ne s’intéressera pas à toutes les équations diophantiennes.
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Définition 2.5 (Équation diophantienne (au programme)) :
On appelle équation diophantienne (au programme) toute équation de la forme

ax + by = c

avec a, b, c ∈ Z.
On s’intéresse aux solutions entières de cette équation (donc aux solutions dans Z2).

Proposition 2.21 (Existence de solutions) :
Soit a, b, c ∈ Z.

L’équation diophantienne ax + by = c a des solutions entières si, et seulement si, (a ∧ b)|c.

Démonstration :
Soit d ∈ Z tel que c = d(a∧b). Par Bézout, ∃u, v ∈ Z tels que au+bv = a∧b. Donc adu+bvd = c.
Donc (du, dv) est une solution entière de l’équation diophantienne ax + by = c.

Réciproquement, si l’équation diophantienne ax + by = c a une solution (entière) et qu’on
considère (u, v) une telle solution (donc u, v ∈ Z tels que au + bv = c), alors (a ∧ b)|(au + bv) et
donc (a ∧ b)|c. □

Méthode de résolution des équations diophantienne :
On considère l’équation diophantienne ax + by = c, avec a, b, c ∈ Z. On suppose (a ∧ b)|c (pour

qu’il existe des solutions).
• On trouve une solution particulière (x0, y0) ∈ Z2 (en utilisant l’algorithme d’Euclide par

exemple).
• On se ramène à une équation diophantienne dont les coefficients sont premiers entre eux en

utilisant la solution particulière (i.e. on se ramène à a′(x − x0) = b′(y0 − y)).
• On résout en utilisant le lemme de Gauss.
• Les solutions sont les {(x0 + b′k, y0 − a′k), k ∈ Z}.

Exemple 2.4 :
Résoudre l’équation 6x + 9y = 12.

En simplifiant par 3 = 6 ∧ 9, on a ∀x, y ∈ Z, (6x + 9y = 12 ⇐⇒ 2x + 3y = 4).
On a facilement 3 − 2 = 1. Donc 3 × 4 + 2 × (−4) = 4. Et donc (−4, 4) est une solution de

l’équation.
Soit (x, y) ∈ Z2 telle que 2x + 3y = 4. Alors

2x + 3y = 4 ⇐⇒ 2x + 3y = 3 × 4 − 2 × 4 ⇐⇒ 2(x + 4) = 3(4 − y)
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Donc 2|3(4−y). Or 2 et 3 sont premiers entre eux. Donc par lemme de Gauss, 2|4−y. Donc ∃k ∈ Z,
tel que 4 − y = 2k, i.e. ∃k ∈ Z tel que y = 4 − 2k. Alors

2x + 3y = 4 ⇐⇒ ∃k ∈ Z, y = 4 − 2k et 2(x + 4) = 3(4 − y)

⇐⇒ ∃k ∈ Z,

{
y = 4 − 2k

2(x + 4) = 6k

⇐⇒ ∃k ∈ Z,

{
y = 4 − 2k

x = 3k − 4

On peut vérifier : ∀k ∈ Z, 2(3k − 4) + 3(4 − 2k) = −2 × 4 + 3 × 4 = 4.
Donc l’ensemble des solutions entières de l’équation 6x + 9y = 12 est

{(3k − 4, 4 − 2k), k ∈ Z}

Exemple 2.5 :
Résoudre l’équation 12x + 14y = 6.

Remarque :
On pourrait formuler un théorème pour donner directement l’ensemble des solutions d’une équation
diophantienne. Mais ce qui est attendu c’est la méthode de résolution, donc la démonstration dudit
théorème. Il faut donc refaire la démonstration à chaque fois.

La démonstration permet également de pouvoir l’adapter à d’autres situations un peu différentes,
ce que ne permet pas d’appliquer une “bôıte noire”.

Exemple 2.6 :
Résoudre dans Z l’équation 6xy + 4x = 3y + 5.
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2.5 PPCM

Définition-Propriété 2.6 (PPCM) :
Soit (a, b) ∈ Z \ {(0, 0)}.

Si a, b ∈ Z∗, alors l’ensemble des multiples communs de a et b non nuls {p ∈
N∗, a|p, b|p} a un minimum pour la relation ≤. On appelle alors plus petit commun
multiple de a et b, noté ppcm(a, b) ou a ∨ b, ce minimum, i.e.

a ∨ b = min{n ∈ N∗, a|n, b|n}.

Par convention, a ∨ 0 = 0.

Démonstration :
L’ensemble {p ∈ N∗, a|p, b|p} est non vide car |ab| est dedans. C’est un sous-ensemble de N∗. Donc
il admet un minimum pour la relation ≤. □

Proposition 2.22 (La loi ∨ est commutative) :
La loi ∨ est une LCI commutative sur N dont 1 est élément neutre.

Démonstration :
Ça provient de la commutativité de la conjonction logique. Comme pour le pgcd. □

"
Le ppcm est le plus petit commun multiple strictement positif ! Ne pas oublier que 0

est toujours un multiple commun. Mais précisément comme il est toujours là, il ne donne
pas beaucoup d’informations sur a et b.

Ne pas l’oublier toutefois en considérant les multiples.
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Proposition 2.23 (Caractérisation du ppcm) :
Soit a, b ∈ Z∗ et p ∈ N∗. Alors

p = a ∨ b ⇐⇒
{

a|p et b|p
∀m ∈ Z, a|m et b|m =⇒ p|m

Démonstration :
Si p = a ∨ b, alors par définition, a|p et b|p. Soit m ∈ Z tel que a|m et b|m. Alors m est un multiple
commun de a et b. Si m = 0, on a p|m. Supposons m ̸= 0. Alors |m| est aussi un multiple commun
positif de a et b. Alors, par définition de p qui est le plus d’entre eux strictement positif, p ≤ |m|.
En utilisant la division euclidienne, ∃!(q, r) ∈ N2 tel que |m| = pq + r et 0 ≤ r < p. Mais a|m et
a|p, donc a|r. De même, b|r. Donc r est un multiple commun positif de a et b. Donc, par définition
de p, on a r = 0 et donc, par caractérisation de la divisibilité par la division euclidienne, p|m.

Réciproquement, on a a ∨ b ≤ p par définition du minimum. Et par définition de p, comme a ∨ b
est un multiple commun de a et b, on a p|(a ∨ b). Mais comme ils sont tous les deux positifs, on en
déduit p ≤ a ∨ b. D’où l’égalité par antisymétrie de la relation ≤. □

Remarque :
Donc le ppcm est le plus petit des multiples communs au sens de la divisibilité.

Proposition 2.24 (Ensemble des multiples communs par les sous-groupes) :
Soit a, b ∈ Z. Alors

aZ ∩ bZ = (a ∨ b)Z.

Autrement dit, les multiples communs de a et b sont les multiples de a ∨ b.

Démonstration :
L’ensemble des multiples de a est aZ par définition. Donc l’ensemble des multiples commun est
aZ ∩ bZ. Mais aZ ∩ bZ est donc un sous-groupe de (Z, +). Alors ∃p ∈ Z tel que aZ ∩ bZ = pZ.
Alors a ∨ b ∈ pZ. Et par définition du minimum, on en déduit aZ ∩ bZ = (a ∨ b)Z. □

Remarque :
On peut même en faire une caractérisation du ppcm : m = a ∨ b ⇐⇒ aZ ∩ bZ = mZ.
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Proposition 2.25 (Propriété algébrique du ppcm) :
Soit a, b, c ∈ Z∗. Alors

(ca) ∨ (cb) = |c|(a ∨ b)

Démonstration :
Sans perte de généralité on peut raisonner sur des entiers naturels, et multiplier par les signes après.
(a ∨ b) est un multiple commun de a et b, donc c(a ∨ b) est un multiple commun de ca et cb. Donc
(ca) ∨ (cb)|(c(a ∨ b)).

Réciproquement, si ca|m et cb|m, alors c|m et donc ∃k ∈ Z tel que m = ck. Alors a|k et b|k.
Donc a ∨ b|k. Et donc c(a ∨ b)|m. D’où, par caractérisation, (ca) ∨ (cb) = c(a ∨ b). □

Proposition 2.26 (Lien entre pgcd et ppcm) :
Soit a, b ∈ Z∗.

Si a ∧ b = 1, alors a ∨ b = |ab|. Plus généralement :

(a ∨ b)(a ∧ b) = |ab|.

Démonstration :
Supposons a ∧ b = 1. Or a|(a ∨ b) et b|(a ∨ b), donc |ab||(a ∨ b). Mais par ailleurs, ab est multiple
commun de a et b, donc (a ∨ b)||ab|. Et donc, par positivité, |ab| = a ∨ b.

Soit d = a ∧ b. Soit a′, b′ ∈ Z tels que a = da′ et b = db′ et a′ ∧ b′ = 1. Alors (a ∨ b)(a ∧ b) =
d((da′) ∨ (db′)) = d2(a′ ∨ b′) = d2a′b′ = ab. □

3 Les nombres premiers

3.1 L’ensemble des nombres premiers

Définition 3.1 (Nombre premier) :
Un nombre premier est nombre p ≥ 2 dont les seuls diviseurs sont ses diviseurs triviaux, c’est à
dire 1 et lui même. Autrement dit, p ≥ 2 est premier si Div(p) = {−p, −1, 1, p}.

On notera P l’ensemble des nombres premiers.
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"

!!! ATTENTION !!!

En dépit de l’opinion populaire, 1 n’est pas un nombre premier. Il est nécessaire d’imposer
p ≥ 2 dans la définition précisément pour ne pas considérer 1 comme un nombre premier.
Autoriser 1 a être un nombre premier entrâınerait beaucoup d’inconvénients fâcheux. En
particulier, certaines unicité disparâıtraient.

Les nombres premiers sont les briques élémentaires qui constituent les entiers. Tous les théorèmes
que nous avons vu dans ce chapitre peuvent se redémontrer “facilement” (au pris d’une manipula-
tion un peu fastidieuse de quantificateurs tout de même) une fois le théorème fondamental de
l’arithmétique prouvé.

On pourrait avoir envie de commencer par le théorème fondamental de l’arithmétique. Mais la
démonstration de ce dernier se fait à partir de toute la mécanique que l’on vient de mettre en place.
En commençant par le théorème fondamental de l’arithmétique, on se retrouverait alors avec un
argument circulaire. D’où la nécessité de l’étude de la mécanique.

De plus, c’est cette mécanique qu’on utilise en pratique. Et pas la lourdeur du théorème fonda-
mental.

Toutefois, on pourrait, une fois la théorie construite, reprendre et reprouvé tous les théorèmes a
posteriori.

"
!!! ATTENTION !!!

Le seul nombre premier pair est 2.

Remarque :
On notera que les diviseurs d’un entier vont toujours par pair. Si d|n, alors (n/d)|n et n = d(n/d).
Bien sûr. Mais lorsque l’on fait parcourir à d les diviseurs de n, n/d va les parcourir également “dans
l’autre sens”. Autrement dit, lorsque d crôıt, n/d va décrôıtre.

Il est donc inutile de faire parcourir à d tous les diviseurs de n. Seul la première “moitié” suffit,
n/d parcourant l’autre moitié. On peut donc imposer à d de parcourir les diviseurs de n tant que
son homologues reste plus grand, i.e. d ≤ n/d. Ce qui impose d2 ≤ n.

Autrement dit, pour étudier les diviseurs d’un entier, il suffit de se restreindre au diviseurs ≤
√

n.
Ce qui donne naissance à plusieurs tests de primalité. En particulier, il suffit de chercher un

diviseurs inférieur à √
n.
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Les tests de primalité ont une importance toute particulière en informatique. Les nombres
premiers sont la base (voir entièrement) des cryptage informatique. Les codes bancaires
et toutes les informations sensibles sont codées à partir des nombres premiers. Et plus
précisément, à partir de la difficulté de trouver les facteur premier d’un entier.

Avec des ressources infinies et un temps illimités, on peut toujours factoriser un entier. La
méthode est simple. On test. Si on a le temps, pas de problème. Mais c’est là qu’intervient la
complexité informatique. Faire des opérations, ça prend du temps. Pas beaucoup (en fonction
de la puissance de l’ordinateur qu’on utilise, mais un petit peu). Plus il y a de tests à faire,
plus la factorisation sera donc longue.

Évidemment, et c’est un sujet de recherche très actif, on peut gagner un peu de temps
en optimisant les algorithme ou même en choisissant des langages informations spécialement
conçus pour et donc plus performant que d’autres ( n’est pas très performant en
calculs, ce n’est pas son domaine de prédilection).

Mais la factorisation prend du temps. Avec des nombres suffisamment grand, elle ne peut
pas s’effectuer dans un temps raisonnable par rapport à une vie humaine, même avec des
super-ordinateur à disposition. C’est ce qui rend les cryptages informatiques sur. La méthode
est connue, mais on a pas le temps.

Et c’est aussi ce qui rend la recherche d’outil informatique toujours plus puissant aussi
vivace.

Test de primalité “näıf” :

1 def est_premier (n) :
2 """ test de primalit é de n """
3 if n<2 :
4 return False
5 k=2
6 premier = True
7 while k**2 <=n and premier : # teste que les entiers <sqrt(n) comme diviseurs

potentiels
8 premier = (n%k!=0) # devient False si n est divisible par k
9 k += 1

10 return ( premier )

Ce test de primalité n’est pas très bon. Sa complexité est assez mauvaise (on O(
√

n) ce qui est
assez mauvais).
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Crible d’Ératosthène

Le crible d’Ératosthène est un algorithme de re-
cherche de nombre premier. Il consiste à prendre
une liste d’entier et d’enlever successivement les
multiples de chacun des entier. Les éléments qui
restent sont des nombres premiers (s’ils restent,
c’est qu’ils ne sont multiples d’aucun entier plus
petit qu’eux, et donc ils sont premiers).

1 def Crible (N) :
2 """ Liste des nombres premiers <= N."""
3 estPremier = [True ]*(N+1)
4 estPremier [0:2]=[ False ,False] # 0 et 1 ne sont pas premiers
5 # A la fin de l’algorithme, on veut que k soit premier ssi estPremier[k]=True
6 k=2
7 while k<=N :
8 m=k
9 while m<= N :

10 estPremier [m]= False
11 m=m+k
12 while estPremier [k]== False :
13 k=k+1
14
15 while k**2 <=N :
16 if estPremier [k] : # Si k est premier
17 m=k**2 # premier "nouveau" multiple
18 while m<=N : # supprime les multiples de k après k
19 estPremier [m]= False
20 m+=k # passe au multiple de k suivant
21 k+=1
22 return ([k for k in range (1,N+1) if estPremier [k]]

Proposition 3.1 (Existence de diviseur premier) :
Soit n ∈ Z.

Si |n| ≥ 2, alors n a un diviseur premier.

Démonstration :
Sans perte de généralité, on peut suppose n ∈ N. Si n est premier, c’est évident.

Supposons que n n’est pas premier. On note Div+(n) l’ensemble des diviseurs positifs de n. Alors
Div+(n) \ {1, n} n’est pas vide. C’est un sous-ensemble de N. On note p = min(Div+(n) \ {1, n}).
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Soit d ∈ N tel que d|p. Alors, par transitivité, d|n. Donc d ∈ Div+(n). Supposons d ̸= 1. Alors
d ∈ Div+(n) \ {1, n} (car d ≤ p < n). Et donc p ≤ d car p est le minimum. Mais d|p, donc d ≤ p
car p, d ∈ N. D’où p = d. Et donc les seuls diviseurs de p sont 1 ou p. Donc par définition, p est
premier. □

Corollaire 3.2 (Caractérisation des entiers premiers entre eux par leurs diviseurs pre-
miers) :
Soit a, b ∈ Z.

a et b sont premiers entre eux si, et seulement si, ils n’ont pas de diviseurs communs
premiers.

Démonstration :
C’est assez évident. Si a est b sont premiers entre eux, alors a ∧ b = 1 et donc ils n’ont pas de
diviseurs premiers en communs.

Si a et b n’ont pas de diviseurs premiers en communs, alors a∧b n’est divisible par aucun nombre
premier et donc a ∧ b = 1. □

Théorème 3.3 (Infinité des nombres premiers [✓]) :
Il y a une infinité de nombres premiers.

Démonstration :
Raisonnons par l’absurde. Supposons que P soit fini. On pose N = 1 +

∏
p∈P p. Alors N ≥ 2 car

∀p ∈ P, p ≥ 1. Donc, d’après la propriété précédente, N a un diviseur premiers p ∈ P. Donc p|N .
Et donc p|1. A. Donc P n’est pas fini. □

Proposition 3.4 :
Soit n ∈ Z et p ∈ P.

Alors p|n ou p ∧ n = 1.
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Démonstration :
On pose d = n ∧ p. Alors d|p. Donc d ∈ {1, p}. □

Proposition 3.5 (Lemme d’Euclide) :
Soit p ∈ P et a, b ∈ Z.

Si p|ab, alors p|a ou p|b.

Démonstration :
Si p ̸ | a, alors p ∧ a = 1, et donc, par lemme de Gauss, p|b. □

"
!!! ATTENTION !!!

C’est faux si p n’est pas premier : 6|4 × 3 et 6 ̸ |4 et 6 ̸ |3.

Remarque :
En particulier, si p|n2, alors p|n.

Exemple 3.1 :
Montrer que 7|x et 7|y ⇐⇒ 7|x2 + y2.

Proposition 3.6 :
Soit p ∈ P et a1, . . . , an ∈ Z. Alors

p

∣∣∣∣∣
n∏

k=1
ak ⇐⇒ ∃k ∈ {1, . . . , n}, p|ak
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Démonstration :
Le sens indirecte est évident. Pour le sens direct, on va raisonner par contraposée. On va donc
montrer que si ∀k ∈ {1, . . . , n}, p ̸ | ak, alors p ̸ |

∏n
k=1 ak.

p étant premier, si ∀k ∈ {1, . . . , n}, p ̸ | ak, alors ∀k ∈ {1, . . . , n}, p ∧ ak = 1. Et donc
p ∧

∏n
k=1 ak = 1. Comme p est premier, on a donc p ̸ |

∏n
k=1 ak. □

Remarque :
Autrement dit, les nombres premiers sont les briques élémentaires qui constituent les entiers. On ne
peut les séparés en petit morceaux éparpillés à droite ou à gauche. Par exemple, 6|(4 × 9) mais 6 ̸ | 4
et 6 ̸ | 9. Parce que 6 peut être décomposés en briques élémentaires et qu’elles sont réarrangées à
l’intérieur de 4 et 9.

3.2 Théorèmes de Fermat

Lemme 3.7 (Diviseur des coefficients binomiaux) :
Soit p un nombre premier. Alors

∀k ∈ {1, . . . , p − 1}, p

∣∣∣∣∣
(

p

k

)
.

Démonstration :
Soit k ∈ {1, . . . , p − 1}. Alors (formule du pion)

k

(
p

k

)
= p

(
p − 1
k − 1

)

Donc p
∣∣∣k(pk). Mais k ∈ {1, . . . , p − 1}, donc k ∧ p = 1. Sinon p ne serait pas premier. Et donc, par

le lemme de Gauss, le résultat. □

Théorème 3.8 (Petit théorème de Fermat) :
Soit p un nombre premier. Alors

∀a ∈ Z, ap ≡ a [p].
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Démonstration :
On va donner une preuve relativement élémentaire.

On a déjà 1p ≡ 1[p] et 0p ≡ 0 [p]. Supposons qu’il existe a ∈ N tel que ap ≡ a [p]. Alors, par
Newton,

(a + 1)p = ap +
p−1∑
k=1

(
p

k

)
ak + 1 ≡ ap + 1 ≡ a + 1 [p]

D’où le théorème par récurrence.
Il est facile d’étendre le résultat pour a < 0 : si a < 0, on a −a ∈ N. Donc ap ≡ (−1)p(−a)p ≡

(−1)p(−a) ≡ a [p] car p premier et en utilisant le cas positif au-dessus. De plus, si p est pair, alors
−1 ≡ 1 [p] et donc (−1)p(−a) ≡ −a ≡ a [p]. Et si p n’est pas pair, alors (−1)p ≡ −1 [p]. Et donc
le résultat. □

Théorème 3.9 (Petit théorème de Fermat (autre formulation)) :
Soit p un nombre premier et a ∈ Z. Alors

p ̸ | a =⇒ ap−1 ≡ 1 [p].

Démonstration :
Cet énoncé est une reformulation exacte de l’énoncé précédent. Autrement dit, il est équivalent au
précédent.

En effet, si on suppose 3.8 et si on considère a ∈ Z tel que p ̸ | a, alors p|a(ap−1 −1) et p∧a = 1.
Donc par le lemme de Gauss, p|(ap−1 − 1) et donc 3.9.

Réciproquement, si on suppose 3.9 et qu’on considère a ∈ Z, alors soit p|a et dans ce cas, p|ap

et donc ap ≡ 0 ≡ a [p] ; soit p ̸ | a et donc p|(ap−1 − 1) donc p|(a(ap−1 − 1)) et donc 3.8. □

Remarque :
Il existe beaucoup de preuves du petit théorème de Fermat. Certaines utilisant des arguments plus
élémentaires que d’autres. Certaines plus savantes que d’autres.

Exemple 3.2 :
Déterminer le reste de la division euclidienne de 2173217 par 5.
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Exemple 3.3 :
Montrer que si p ∈ N est premier, alors p|1 +

∑p−1
k=1 kp−1.

Théorème (HP) 3.10 (Dernier (Grand) théorème de Fermat)

L’équation diophantienne
xn + yn = zn

n’a pas de solution autre que (0, 0, 0) dès que n ≥ 3.

Remarque :
Ce théorème a été énoncé par Pierre de Fermat dans la marge d’un de ses livres. Il a écrit précisément :

“J’ai trouvé une merveilleuse démonstration de cette proposition, mais la marge est
trop étroite pour la contenir.” (Pierre de Fermat – 1665)

Cette citation est très connue dans le monde des mathématiques. En partie parce que la démonstration
a résisté aux assauts des mathématiciens pendant 3 siècles et n’a été prouvé qu’en 1994 par Andrew
Wiles.

Ce théorème est très connu à cause de la simplicité de son énoncé assez élémentaire qui peut
être compris même par des collégiens, malgré une démonstration très complexe.

La démonstration d’Andrew Wiles utilise les courbes elliptiques définies sur le corps Q. Il faut donc
des outils de mathématiques avancées pour démontrer ce résultat élémentaire. Cette confrontation
entre un énoncé d’apparence simple et une preuve sophistiquée est assez courante en théorie des
nombres et en arithmétique, ce qui en fait à la fois un domaine fascinant et difficile d’accès.

3.3 Théorème fondamental de l’arithmétique

Théorème 3.11 (Théorème fondamental de l’arithmétique) :
Soit n ≥ 2. Alors ∃!r ∈ N, ∃!(p1, . . . , pr) ∈ Pr tel que p1 < p2 < · · · < pr et ∃!(α1, . . . , αr) ∈
(N∗)r tels que

n =
r∏

k=1
pαk

k

Autrement dit, tout entier non nul se décompose de manière unique (à l’ordre des facteurs
près) comme un produit de nombres premiers.

Démonstration (Esquisse) :
On va faire une récurrence forte.
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C’est vrai pour n = 2 avec r = 1, p1 = 2 et α1 = 1.
Supposons qu’il existe un entier n ∈ N∗ tel que la proposition soit vraie pour tout entier m ≤ n.

Alors n+1 ≥ 2 a donc un diviseur premier p. Alors n+1 = pn′. Et p ≥ 2, donc n′ ≤ (n+1)/2 < n+1.
Donc n′ ≤ n. On applique l’hypothèse de récurrence à n′. Puis on multiplie par p pour avoir la forme
annoncée.

On vient donc de démontrer la décomposition en produit de facteurs premiers par récurrence
forte.

Reste l’unicité. Supposons qu’il y ait deux écritures. Alors tous les nombres premiers d’une écriture
divisent l’autre écriture. Et par primalité, on en déduit que l’ensemble des premiers des deux écritures
sont les mêmes. Ce qui impose en particulier qu’il y a autant de nombres premiers qui apparaissent. On
a donc l’unicité de r et des nombres premiers. Il reste les puissances. Mais αk = max{j ∈ N, pj

k|n}
est unique. □

Remarque :
Dans l’énoncé précédent, on est pas obligé d’imposer p1 < p2 < · · · < pn pour demander simplement
à ce que les premiers soient deux à deux distincts. On aboutit à la même forme, toujours unique à
ordre des facteurs près, à cause de la commutativité du produit.

Mais comme sur Z on a une relation d’ordre totale avec l’inégalité, on peut donc imposer l’ordre
des facteurs. Ce qui permet d’avoir une écriture unique.

Exemple 3.4 :
2025 = 34 × 52.

Ce théorème est très important. Il permet de mieux “voir” ce qu’est un nombre entier.
On peut alors reformuler beaucoup plus simplement tous ce qui a été vu plus haut, notamment

le pgcd et le ppcm.

3.4 Valuation p-adique

Définition-Propriété 3.2 (Valuation p-adique) :
Soit p ∈ P et n ∈ Z∗.

On appelle valuation p-adique de n, la plus grande puissance de p qui divise n,
i.e.

vp(n) := max{k ∈ N, pk|n} ∈ N
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Démonstration :
On a 0 ∈ {k ∈ N, pk|n} donc cet ensemble est non vide. C’est un sous-ensemble de N par définition
et il est majoré par

⌊
ln(n)
ln(p)

⌋
. Donc il a un maximum. □

Remarque :
On peut donner une expression de la valuation p-adique :

vp(n) = logp(n)

mais ce n’est pas très pratique. Il n’est pas dit ce que soit effectivement un entier.

Proposition 3.12 (Reformulation du théorème fondamental à l’aide des valuations) :
Soit n ∈ N∗. Alors

n =
∏
p∈P
p|n

pvp(n) =
∏
p∈P

pvp(n).

Démonstration :
On utilise le théorème fondamental. Soit r ∈ N, p1, . . . , pr ∈ P avec p1 < p2 < · · · < pr,
α1, . . . , αr ∈ N tel que

n =
r∏

k=1
pαk

k .

Alors, par définition, ∀k ∈ {1, . . . , r}, vpk
(n) = αk. Et pour p ∈ P, p|n ⇐⇒ p ∈ {p1, . . . , pr}.

D’où l’écriture.
De plus, si p ̸ | n, alors vp(n) = 0. Et donc la deuxième écriture. □

Proposition 3.13 (Propriété algébrique de la valuation) :
Soit n, m ∈ Z∗ et p ∈ P.

(i) vp(n) ̸= 0 ⇐⇒ p|n
(ii) vp(nm) = vp(n) + vp(m)
(iii) n|m ⇐⇒ ∀q ∈ P, vq(n) ≤ vq(m)
(iv) vp(n ∧ m) = min(vp(n), vp(m)) et vp(n ∨ m) = max(vp(n), vp(m)).

Démonstration :
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(i) Évident
(ii) On a n =

∏
p∈P pvp(n) et m =

∏
p∈P pvp(m). Alors nm =

∏
p∈P pvp(n)+vp(m) (car c’est en

réalité un produit fini). Puis l’unicité dans le théorème fondamental fourni l’égalité voulue.
(iii) Si ∀q ∈ P, vq(n) ≤ vq(m), alors, en utilisant le théorème fondamental, n =

∏
q∈P qvq(n)|

∏
q∈P qvq(m) =

m.
Et si n|m, alors ∃k ∈ Z tel que m = nk. Alors ∀q ∈ P, vq(m) = vq(n) + vq(k) ≥ vq(n)

en utilisant le point précédent.
(iv) n ∧ m est un diviseur commun de n et m. Donc d’après le point précédent, vp(n ∧ m) ≤ vp(n)

et vp(n ∧ m) ≤ vp(m). Donc, vp(n ∧ m) ≤ min(vp(n), vp(m)). De plus, min(vp(n), vp(m)) ≤
vp(n) donc pmin(vp(n),vp(m) est un diviseur de pvp(n) et donc aussi de n. De même pmin(vp(n),vp(m))

est un diviseur de m. Donc pmin(vp(n),vp(m)) est un diviseur de n ∧ m. Donc, d’après le point
précédent, min(vp(n), vp(m)) ≤ vp(n ∧ m). D’où légalité.

On peut procéder de façon similaire pour le ppcm, ou alors, en écrivant (n ∧ m)(n ∨ m) =
|nm| et en utilisant le point (ii) et le fait que min(a, b) + max(a, b) = a + b.

□

Exemple 3.5 :

1. Montrer que si p ∈ P, alors √
p /∈ Q.

2. Montrer que si n ∈ N, alors √
n ∈ Q si, et seulement si, n est un carré parfait.

3.5 Retour sur les diviseurs

Proposition 3.14 (Nombre de diviseurs) :
Soit n ∈ N∗.

Le nombre de diviseurs positifs de n est∏
p∈P
p|n

(1 + vp(n)).

Démonstration :
Pour fabriquer un diviseur de n, il faut et il suffit de choisir des puissances dans les facteurs premiers
de n. Or m|n ⇐⇒ ∀p ∈ P, vp(m) ≤ vp(n). Donc, pour chaque premier p divisant n, on peut
choisir une valuation entre 0 et vp(n). D’où le résultat. □
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Autrement dit, Card(Div+(n)) =
∏

p∈P
p|n

(1 + vp(n)).

Remarque :
On peut enlever la condition p|n dans le produit. En effet, si p ̸ | n, alors vp(n) = 0 et donc on
multiplie par 1. Donc enlevant cette condition, on se retrouve avec un produit en apparence infini,
mais qui est, en fait, fini puisqu’il y aura un nombre fini de facteur qui ne seront pas des 1 (pour les
premiers divisant n).

Exemple 3.6 :
Trouver le nombre de facteur non-premiers de 1200.

Proposition 3.15 (Somme des diviseurs positifs) :
Soit n ∈ Z∗.

La somme σ(n) des diviseurs positifs de n est

σ(n) :=
∑

d∈Div+(n)
d =

∏
p∈P
p|n

pvp(n)+1 − 1
p − 1 .

Démonstration :
Soit p1, . . . , pN ∈ P les diviseurs premiers de n. Alors, par théorème fondamental de l’arihmétique,
∀d ∈ Div+(n), ∀k ∈ {1, . . . , N}, ∃αk ∈ {0, . . . , vpk

(n)} tels que

d =
N∏

k=1
pαk

k .

Et donc

σ(n) =
vp1 (n)∑
α1=0

vp2 (n)∑
α2=0

· · ·
vpN

(n)∑
αN =0

pα1
2 pα2

2 . . . pαN
N

=

vp1 (n)∑
α1=0

pα1
1

vp2 (n)∑
α2=0

pα2
2

 . . .

vpN
(n)∑

αN =0
pαN

N


=

N∏
k=1

p
vpk

(n)+1
k − 1

pk − 1 .

D’où la formule annoncée. □
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Proposition 3.16 (Expression à l’aide de la valuation du ppcm et pgcd) :
Soit n, m ∈ Z∗. Alors

n ∧ m =
∏
p∈P

pmin(vp(n),vp(m)) et n ∨ m =
∏
p∈P

pmax(vp(n),vp(m))

Exemple 3.7 :
Si a = 2520 = 23 × 32 × 5 × 7 et b = 882 = 2 × 32 × 72, alors a ∧ b = 126 = 2 × 32 × 7 et
a ∨ b = 17640 = 23 × 32 × 5 × 72.
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