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Le but de ce chapitre est d'étudier plus précisément |I'anneau Z des entiers.

L'arithmétique est probablement la branche des mathématiques la plus vieille. C'est aussi I'une
des plus développées et I'une des plus fondamentales (au sens fondateur donc importante, et au sens
abstraction). Il arrive trés régulierement que des questions d'arithmétique fasses irruptions dans des
domaines ou des problémes ou on ne les attendait a priori pas. Mais comme tout est nombre (cf
Pythagore) et que I'étude des nombres, c'est le but de I'arithmétique,

L'arithmétique est particulierement difficile pour ces raisons la. Les questions posées sont sou-
vent élémentaires et on a alors peu d'outils a notre disposition. Il faut alors développer des trésors
d’'ingéniosité et de contorsions intellectuelles pour résoudre le probleme. Etant un domaine fondateur
et élémentaire (au sens peu d'outil sont nécessaires), les choses sont tres sensibles d'un point de
vue logique. L'arithmétique foisonne de petites propriétés contre intuitive dont les réciproques sont
fausses mais tentantes. C'est donc un domaine exigeant et ingrat pour I'intuition. Mais trés formateur

intellectuellement.
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1 Divisibilté

On rappelle que (Z,+, x) est un anneau commutatif intégre dont le groupe des inversibles est

{-1,1}.

1.1 Divisibilité, Diviseurs, multiples

Définition 1.1 (Divisibilité) :
Soit a,b € Z. On dit que a divise b (ou que b est divisible par a) si 3c € Z tel que b = ac. Et on
note alb.

Remarque :
Attention, la définition n’est pas si simple. La définition de la divisibilité se fait un peu “a I'envers”.
On a pas de définition directe.



1 DIVISIBILTE 1.1 Divisibilité, Diviseurs, multiples

Remarque :
0 est le seul entier qui est divisible par par tous les entiers. Autrement dit si n € Z, alorsn =0 <
Vp € Z, p|n.

Proposition 1.1 (Relation d’ordre de la divisibilité sur N) :
La relation de divisibilité est une relation d'ordre partielle sur N mais la divisibilité n'est pas
antisymétrique sur Z (donc elle n'est que réflexive et antisymétrique sur Z).

Autrement dit, la relation | est une relation binaire, réflexive, antisymétrique, transitive sur N. Et
on a —2|2 et 2| — 2 mais 2 # —2. Donc il n'y a pas d'antisymétrie sur Z.
Remarque :
Si a # 0 et si bla, alors |b| < |a|. En effet, si b|a, alors |b]||a|. Et donc Fk € N* tel que |a| = k|b| car
a # 0. Donc k > 1 et d'ou le résultat.

Définition 1.2 (Entiers associés) :
Soit a,b € Z.
a et b sont dit associés si a|b et b|a.

Remarque :
On notera que a et b associés entraine ab # 0 ou bien ¢ = b = 0. Mais on ne peut pas avoir un seul
des deux nuls.

Proposition 1.2 (Caractérisation des entiers associés) :
Soit a,b € Z.
a et b sont associés si, et seulement si, a = $b.

Démonstration :
Le sens indirecte est évident. Il sont multiples I'un de I'autre en multipliant par —1 (qui est son
propre inverse dans Z).

Réciproquement, supposons a et b associés. Si a = 0, alors b = 0 car b est un multiple de a. Si
a # 0, alors dp,q € Z tels que a = pb = pqa. Comme Z est intégre, on en déduit pg = 1. Donc
p,q € Z* ={—1,1}. D'ou I'on déduit a = +b. O
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1.1 Divisibilité, Diviseurs, multiples

Proposition 1.3 (Propriétés algébriques de la divisibilité) :

Soit a,b,c,d € Z. Alors :
(i) alb <= lalllb
(ii) Si alb, alors Vp € Z, a|pb.
(iii) Si cla et c|b, alors Yu,v € Z, c|(au + bv).
(iv) Sialb et c|d, alors ac|bd.
(v) Sid#0, alors alb < ad|bd.

Démonstration :

(i) C'est évident. Mais il faut le dire au moins une fois.

(i) 1l suffit décrire la définition. C'est évident.

(iii) Par définition, Jp, q € Z tels que a = pc et b = qc. Alors Yu,v € Z, au + bv = (pu + qu)c et

donc le résultat.

(iv) Par définition, dp, ¢ € Z tels que b = ap et d = gc. Alors bd = pgac et donc ac|bd.

(v) On fait les deux sens d'un coup :

alb <= Ip€Z, b=ap < Ip € Z, bd =adp < ad|bd

O
Remarque :
En effectuant une petite récurrence, on a aussi alb = Vn € N, a”|b".
Proposition 1.4 (Caractérisation de la divisibilité en terme de sous-groupe de 7) :
Soit a,b € Z. Alors
alb <= VZ C aZ
Démonstration :
I suffit d'écrire les définitions : alb <= b € aZ <= bZ C aZ. O
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Définition 1.3 (Diviseurs, multiples) :

Soit n,p € Z.
On dit que n est un diviseur de p si n|p.
On dit que n est multiple de p si p|n.

Remarque :

Dans une relation b = ap, la notion de diviseur et multiple est une question de référentiel, de point
de vue, de ce qui nous intéresse. Pour b, a et p sont des diviseurs. Pour a et p, b est un multiple.
Mais dans les deux cas, on parle de la méme relation. On ne se focalise simplement pas sur la méme
chose. Le sujet n'est pas le méme. Un peu comme le passage d'une phrase sous la forme active a sa
forme passive.

Exemple 1.1 :
Les diviseurs de 15 sont {—15, -5, —3,—1,1,3,5,15}.

Attention 3 ne pas oublier les diviseurs négatifs. On a tendance naturellement a ne rai-
A sonner que dans N et donc oublier les diviseurs négatifs. Sans précision, ils doivent étre pris
en compte. Ce qui change beaucoup, par exemple, le nombre de diviseurs d'un entier.

Remarque :
C'est évident, mais tout de méme, il faut le remarquer. Evidemment, Vn € Z, Ya € Z*, nla =
In| < lal.

Définition 1.4 (Diviseurs triviaux) :
Soit n € Z. Alors —n, —1, 1 et n sont des diviseurs de n. Ce sont les diviseurs triviaux de n.

Proposition 1.5 (Ensemble des multiples) :
Soit n € Z.
L'ensemble des multiples de n est nZ.
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Démonstration :
C’est évident. O

Remarque :
En particulier, I'ensemble des multiples est un sous-groupes de Z.

Notation (Ensemble des diviseurs) :
Soit n € Z. On notera Div(n) I'ensemble des diviseurs de n, i.e.

Div(n) :={p € Z, p|n}.

Attention, cette notation n'est pas canonique. C'est un choix de ma part. Elle doit &tre redéfinie
a chaque nouvelle utilisation.
On notera Divy(n) I'ensemble des diviseurs positifs de n. Donc Div,(n) = Div(n) N N.

Proposition 1.6 (Ensemble de diviseurs) :
Soit n € Z.
Div(n) est un ensemble fini si, et seulement si, n # 0.

Démonstration :
On sait que si n # 0, alors aln = |a| < |n|. Donc I'ensemble des diviseurs de n est borné par |n|.
Comme c'est un sous-ensemble de Z et il est fini si n # 0.

Et si n =0, alors par définition, Div(0) = Z qui est infini. O

Remarque :
En particulier, par contraposition, on a n = 0 ssi il est divisible par une infinité d'entier. C'est assez
pratique. C'est ce qu'on utilise par exemple dans la démonstration classique de I'irrationalité de v/2.
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1.2 Division euclidienne

Définition-Propriété 1.5 (Division euclidienne) :
Soit a,b € Z et b # 0. Alors 3!(q,r) € Z tels que :

a=bqg+r et 0<r<hb.

q s'appelle le quotient, r le reste, a le dividende et b le diviseur de la division eucli-
dienne de a par b.

Démonstration :
On pose g = |a/b]. Alors, par caractérisation de la partie entiére, a/b — 1 < ¢ < a/b. Et donc
a—b<bg<a Onposer=a—>bq. Alors q,r € Z et 0 <r < b. D'ou |'existence.

Supposons Jq, 7, s,t € Z tel que a = bg+r = bs+tet0 < r;t <b. Alorsb(q—s) =t—r €]—b, b[.
donc b(q — s) = 0. Et Z étant intégre, on en déduit ¢ = s. Puis immédiatement » = ¢. D'ou
["'unicité. (Il

Remarque :

Une autre preuve classique consiste a faire une récurrence forte sur a. C'est ce que nous ferons dans
le chapitre sur les polyndmes. Pour diversifier les méthodes, j'ai proposé une autre démo dans le
cadre des entiers qui utilise des outils qui ne sont disponibles que dans le cadre des entiers.

Proposition 1.7 (Caractérisation de la division par la division euclidienne) :
Soit a,b € Z et a # 0.
Alors alb <= le reste de la division euclidienne de b par a est 0.

Démonstration :
Il suffit de I'écrire. Si le reste de la division euclidienne de b par a est 0, alors, par définition de la
division euclidienne, 3p € Z tel que b = ap + 0 = ap et donc alb.

Réciproquement, si alb, alors Ip € Z tel que b = ap. Et donc on peut écrire b = ap + 0 avec
0 < 0 < a. Donc, par unicité de la division euclidienne, b = ap 4+ 0 est la division euclidienne de b
par a et le reste est 0. O
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1.3 Congruence

Définition 1.6 (Congruence) :
Soit a,b € Z et n € N*.

On dit que a est congrue a b modulo n, et on note a = b [n], si a et b ont le méme reste
dans la division euclidienne par n, i.e.

a=bn] Lef, Ip,q,r €Z, a=pn+r, b=gn+r, 0<r<n

Remarque :
On note parfois aussi a = b mod n pour la relation de congruence modulo n, avec éventuellement
des parenthéses en plus. Mais le programme impose la notation donnée dans la définition.

Proposition 1.8 (Caractérisation des congruences par les divisibilités) :
Soit a,b € Z, n € N*,

Alors
a=bn] < n|(b—a)
Démonstration :
[l suffit d'utiliser la définition avec la caractérisation de la division euclidienne par la division. O
Remarque :

En particulier, nja <= a =0 [n].

Proposition 1.9 (Reformulation des congruences) :
Soit a,b € Z et n € N*, Alors

a=bin| < 3keZ, a=b+nk

Démonstration :
D’aprés la caractérisation précédente a = b [n| <= n|(b—a) <= Ik €Z, b—a=nk
dk €Z, a=0b+nk. O
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Définition 1.7 (Extension des congruences dans R) :
Soit z,y,z € R et z # 0.
On dira que z est congrue a y modulo z, et on écrira x =y [z] si Ik € Z tel que x = y + k=z.

Exemple 1.2 :
D’ou les notations des congruences en trigonométrie. Donc, par exemple, § = % [r] — 3k €
Z, =7 +kn.

Proposition 1.10 ( = mod n est une relation d’équivalence) :
Soit n € N*.
La relation de congruence modulo n est une relation d'équivalence sur Z.

Démonstration :
La relation = [n] est évidemment une relation binaire. Elle est également réflexive car n|0 donc
Vo € Z, n|(x — x).

De plus, Vz,y € Z, v =y [n] <= n|(y —z) <= n|(z —y) < y = = [n]. Donc la relation
est symétrique.

Et enfin elle est transitive facilement : si z,y,2z € Z tels que x = y [n] et y = z [n], alors
n|((y —x) — (y — z)) et donc x = z [n] O

Remarque (HP) :

Comme on vient de voir que la relation d'équivalence modulo n est une relation d'équivalence sur Z,
on peut étudier I'ensemble des classes d'équivalence par rapport a cette relation d'équivalence. On
note

VeeZ, T=Clz)={y€Z, x=y [n]}.

Et on note Z/nZ |'ensemble des classes d'équivalences.
Alors on peut munir Z/nZ d'un addition est d'une multiplication telles que :

Vn,meZ, n+m=n+m et T X T = Tim
On peut alors montrer que (Z/nZ,+, x) est un anneau commutatif fini composé de n éléments.
Cela revient un peu a compter en rond. Au bout de la chaine, on revient 3 0.
L'étude plus poussée de cette anneau est au programme de MP (pour étudier les conditions pour
qu'il soit intégre, un corps etc).
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Proposition 1.11 (Propriétés algébriques de la relation de congruence) :
Soit n € N*. Soit a,b,¢,d € Z tels que a = b [n] et ¢ = d [n]. Alors

(i) a+c=b+d [n]

(i) ac =bd [n]

(i) Vk € N, a* = b* [n]

(iv) Si A € Z*, alors a = bjn] <= Aa = \b [An]

Démonstration :

(i) Il suffit de voir que n|(b+d —a — ¢).
(i) Alors 3p,q € Z tel que a = b+ np et ¢ = ng + d. Alors ac = bd + n(npq + d + b). Donc
ac = bd [n].
(iii) Pour k =0, c’est assez évident. Et il suffit ensuite de faire un récurrence en utilisant le point
précédent.

(iv) Si Jk € Z tel que a = b+ nk, alors Aa = Ab + Ank. Et la réciproque est évidente puisque
A # 0 et Z est integre.

O

Remarque :
On notera que dans le dernier point, le sens directe est encore vraie avec A = 0. Mais c'est la
réciproque qui n'est plus vraie.

Ces résultats sont également vraies avec les congruences dans R.

[11 ATTENTION !!! |I

A Ce ne sont que des implications. Les réciproques sont fausses.
Par exemple, 24+3 =144 [5] mais 2# 1 [5] et 2 # 4 [5]. De méme, 2 x 3 =1 x 0 [6]
mais ni 2 ni 3 ne sont congrues a 1 ou 0 mod 6. Et Vn > 2, 2" = 0 [4] mais bien entendu,

220 [4].

Exemple 1.3 :

=S

Résoudre cos(2z) sin(2x) =

10
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Exemple 1.4 :
Montrer que Vn € N, 327+l f on+2 c 77,

Exemple 1.5 :
Résoudre dans Z I'équation x2 + 532 = 3.

2 PGCD et PPCM
2.1 PGCD

Définition-Propriété 2.1 (PGCD dans N) :

Soit a,b € Z avec (a,b) # (0,0). On appelle plus grand commun diviseurs de a et b,
ou pgcd de a et b, le plus grand entier naturel qui divise a la fois a et b. On le note
a A b ou pged(a,b). Donc

pged(a,b) :=a A b:=max{n € N, n|a, n|b}.

Démonstration :

On considére Divy(a,b) := {n € N, n|a, n|b} = Divy(a) N Divy(b). Alors 1 € Div,(a,b).
Donc Div(a,b) # 0. On a (a,b) # (0,0). Sans perte de généralité, on peut suppose a # 0. Et
Vn € Div(a,b), n|a, donc n < a. Donc Div(a, b) est majoré par a. Et donc max Div(a, b) existe car

Div(a,b) C N. O
Remarque :

Tous les entiers sont des diviseurs de 0 car Vn € Z, 0 = n x 0. On en déduit alors que Vn € Z*,
pged(n,0) = |n|.

On pourrait alors choisir la convention pged(0,0) = 0 par soucis de cohérence avec cette remarque
et avec les formules qui vont suivre. Mais cette convention n’est officiellement pas au programme.
Le programme demande de se contenter du pgcd d'un couple non nul d'entier.

11
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Proposition 2.1 (A est une LClI commutative) :
La loi A est commutative. Autrement dit, Va, b € Z tels que (a,b) # (0,0), aAb=bAa.

Démonstration :
La commutativité provient de la commutativité de la conjonction logique. O

Proposition 2.2 (Caractérisation de la divisibilité par le pgcd) :
Soit a,b € Z, a # 0. Alors
alb <= aAb=|a

Démonstration :
Si alb, alors a € Div(a,b). Et donc |a| < max(Div(a,b)) = a A b. Et bien siir (a A b)|a donc
(a ANb) < lal. Et donc, |a| =a Ab.

Réciproquement, si a A b = |a|, alors automatiquement, |a| = a A b|b. O

2.2 Algorithme d’ Euclide

Théoréme 2.3 (Théoréme d’Euclide) :
Soit a, b, q,r € Z*. Alors
a=bg+r = aANb=bAT.

Démonstration :
Si d est un diviseur commun a a et b, alors d|r car d divise toute combinaison linéaire de a et b (en
particulier a — bq). Donc d divise b et r, donc d est un diviseur commun a b et r.

D’autre part, si d est un diviseurs commun de b et r, alors d|a car d divise toute combinaison
linéaire de b et r. Donc d divise a et b. Donc d est un diviseurs commun de a et b.

On en déduit que (a,b) et (b,r) ont les mémes diviseurs communs. Et donc, en particulier,
aNb=bAr. O

12
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Théoréme 2.4 (Algorithme d’Euclide) :
Soit (a,b) € Z* avec b # 0. On pose g = a, 11 = b et Vn € N*, si r,, # 0, on définit r,, 11
comme le reste de la division euclidienne de r,_1 par ry,.

Alors N € N tel que ry = 0 et ry_; # 0. De plus (7,)o<n<n est strictement décroissante
et ry—1 =aAb.

Donc le pged de a et b est le dernier reste non nul dans la suite des divisions euclidienne.

Démonstration :
Sib=0,alorsaAb=a=rgetr; =b=0.

Sib+# 0, alors 1 # 0. Alors dg1 € N tel que rg = r1q1 + 72 et ro < r1. A chaque étape, tant que
I'on peut définir la suite, on a r,4+1 < 7, par définition de la division euclidienne. Donc la suite, tant
qu'elle est définie, est strictement décroissante. Or c’est une suite d'entier, donc elle est stationnaire
en 0. Soit N e Ntelquery=0etry_1=0.

De plus, aANb=rgAr1 =711 Arg = -+ =71 ATy = --- = ry_1 A TN par récurrence. Or
ry =0,doncry_1 Ary =ry_1. Et doncry_1 =aAb. OJ

L'algorithme d'Euclide peut tres bien s'écrire en @ python . Voir avec le prof d'info pour les
détails.

@ python

Théoréeme 2.5 (Relation de Bézout) :
Soit a,b € Z avec (a,b) # (0,0). Alors

I(u,v) € Z?, au+bv=aAb

Démonstration :
Sans perte de généralités, on peut suppose b > 0, quitte a multiplier par —1.

On va opérer une récurrence forte sur b. Sib=0, alorsax1+0=a=a AO.

Supposons b # 0 et suppose que Vr € {0,...,b—1}, Va € N, Ju,v € Z tels que au+rv = aAr.
Soit @ € N. On effectue la division euclidienne de a par b. Donc dgq,r € N tels que a = bg + r et
0<r<b. Alors a ANb=bAr. Et par hypothése de récurrence, Ju,v € Z tels que a A b = au + rv.

Alors a Ab=au+v(a—bq) =alu+v) —bgqu et u+v € Z, —qu € Z. O

13
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Remarque :
On en déduit une méthode a partir de I'algorithme d'Euclide pour trouver les coefficients de Bézout :

» On effectue les divisions euclidiennes successives de a par b de |'algorithme d’Euclide.

= On remonte chaque étapes pour obtenir a chaque fois les le pgcd comme combinaison linéaire
de i et ri_1.

Exemple 2.1 :
Déterminons un couple de Bézout pour (302,112).

23<—><2)—16><:23><—62><
7x T8 —16(— 78 ><1>=23>< 78 — 16 x | 112]

7( 78 — 34 ><2>—2>< 34| =7Tx 78 =16 x 34

- _2( 34 —><3):7><—2>< 34
= [10]-2x[4

[302] = [112]x2+ 78

112 = 78 x1+ 34

78 = [34/x2+[10]

[10]x 3+4)
><2+

34

(o] [ro] [ro] o] [oo]
I

[11t ATTENTION !!! |I

A Il n'y a pas unicité des coefficients de Bézout ! En fait, il y a méme une infinité de coefficients
possibles. C'est ce qu'on montre dans le cas de la résolution d'équations diophantienne.
Mais pour s’en convaincre tout de suite, on peut prendre 3x1—2x1=1=3x3-2x4
ouencore 6 X1 —-4x1=2=6x3—4x4.

Proposition 2.6 (Sous-groupe et PGCD) :
Soit a,b € Z, (a,b) # (0,0).
Alors
aZ + bZ = (a ND)Z.

Démonstration :
Par définition du pged, (a Ab)|a et (a A b)|b. Donc, d'aprés [1.4] (caractérisation de la divisibilité par

14
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les sous-groupes), aZ C (a A b)Z et bZ C (a A b)Z. Donc aZ + bZ C (a A b)Z (par structure de

groupe).
Par la relation de Bézout, Ju,v € Z tels que au+ bv = a Ab. Donc (a AD)Z C aZ +0Z. O

Remarque :

En fait, c'est une caractérisation des pgcd, que I'on pourrait prendre comme définition, et qui a
I'avantage de redonner trés facilement la relation de Bézout. Mais ce n'est pas I|'orientation du
programme. Donc en fait, on a méme d = a ANb < aZ + bZ = dZ.

Proposition 2.7 (Caractérisation du pgcd) :
Soit (a,b) € Z*\ {(0,0)} et d € N. Alors

d|a et d|b
d=aNb =

Vo € Z, bla et 6|b = d|d
Autrement dit, a A b est le plus petit diviseur commun pour la relation d’ordre partielle | sur
N.

Démonstration :

Supposons d = a A b. Alors, d'aprés la relation de Bézout, Ju,v € Z tel que au + bv = d. Dong, si

0 € Z divise a et b, alors § divise toute combinaison linéaire et donc en particulier divise d.
Réciproquement, toujours par Bézout, Ju,v € Z tels que au + bv = a A b. Donc si d|a et d|b,

alors d|a A b. Mais, par définition, a A b est un diviseur commun de a et b. Donc, par définition de

d, (a AD)|d. Donc d et a A b sont associés. Or ils sont positif par définition, et doncd =a Ab. O

Remarque :

On notera que dans N, 0 est un maximum pour la relation |. En effet : ¥n € N, n|0. Donc la
caractérisation du pgcd précédente est cohérente avec la convention 0 A0 = 0 (le plus grand diviseur
commun au sens de la divisibilité).

Remarque :
On vient d'utiliser un lemme tiré de la relation de Bézout : d € Div(a,b) <= d|(a A b). On le
reformule un peu différemment :
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2 PGCD ET PPCM 2.2 Algorithme d' Euclide

Corollaire 2.8 (Ensemble des diviseurs communs) :
Soit (a,b) € Z%\ {(0,0)}. On note Div(a,b) les diviseurs communs de a et b. Alors

Div(a,b) = Div(a A b)

Démonstration :
La démonstration est essentiellement contenu dans la remarque précédente. O

Proposition 2.9 (Propriété algébrique de A) :
Soit a, b, c € Z avec (a,b) # (0,0). Alors
(i) Sic#0, alors (ac) A (bc) = |c|(a AD).
(i) (aAb)Ac=aAN (bAc) [associativité]

Démonstration :

(i) D'apres la relation de Bézout, Ju,v € Z tels que (ac) A (be) = acu + bev = c(au + bv). Alors
lc[(a AD)|((ac) A (be)). Et de méme, par Bézout, In, m € Z tels que an + bm = (a Ab). Donc
c(anb) = acn+bem. Donc (ac) A (be)|(|e[(aAb)). Donc (ac) A (be) et |c|(aAb) sont associés.
Comme ils sont tous les deux positifs, on en déduit (ac) A (be) = |c|[(a A b).

(i) Soit d € Z tel que d|(a A b) et d|c. Alors d|a et d|b et d|c. Par associativité de la conjonction
logique, on a aussi d|a et d|(b A ¢). Donc Div(a A b,c¢) = Div(a,b A ¢) et donc en particulier
les pged sont égaux (car ce sont les max de ces ensembles).

O

Définition 2.2 (PGCD de plusieurs entiers) :
Soit ay,...,an € Z. On définit le pged de aq, ..., a, comme le plus grand diviseurs communs a
ai,...,an. On le note A", a; et donc A\l a; = (/\;@:—11 ai> A ap.

16



2 PGCD ET PPCM 2.3 Entiers premiers entre eux

Proposition 2.10 (Généralisation de la relation de Bézout) :
Soitne>2etay,...,a, € Z*. Alors

n n
Juy,...,uy, € Z, Zakuk = /\ a.
k=1 k=1

Démonstration :
Il suffit de faire une récurrence. On sait que c’est vrai pour n = 2 par Bézout.

Par Bézout, Ju,v € Z tel que u(a Ab) +cv =aAbAc. Et In,m € Z tels que a A b = an + bm.
Donc aun + bum + cv = a A b A c. Et on continue. O

Remarque :

La loi A est donc presque une LCl sur Z. Il y a le probléme de 0. Avec la convention 0 A0 = 0, A
devient une LCI sur Z commutative associative ayant 0 comme élément neutre. Mais elle n'est pas
symétrisable. Ce qui I'empéche de munir Z d'une structure de groupe pour le pgcd.

2.3 Entiers premiers entre eux

Définition 2.3 (Nombres premiers entre eux) :
Soit (a,b) € Z%\ {(0,0)}.

On dit que a et b sont premiers entre eux si a Ab =1, c'est-a-dire s'ils n'ont pas de diviseurs
communs positifs autre que 1.

Exemple 2.2 :
35 et 24 sont premiers entre eux.

Exemple 2.3 ([V]) :
Montrer que Vn € Z, n et n + 1 sont premiers entre eux.

17



2 PGCD ET PPCM 2.3 Entiers premiers entre eux

Proposition 2.11 (Transmission de la primalité relative aux diviseurs) :
Soit (a,b) € Z%\ {(0,0)}.
Si a et b sont premiers entre eux, alors Vd € Div(a), Vo € Div(b), d et § sont premiers

entre eux.

Démonstration :

Soit d € Div(a) et § € Div(b). Soit n = d A J. Alors n|a et n|b par transitivité de la divisibilité. Et
donc n|1. Donc n =1 car n > 0. O

Théoréeme 2.12 (Théoréme de Bézout) :
Soit (a,b) € Z%\ {(0,0)}. Alors

aNb=1 <<= Ju,veEZ, au+bv=1

Démonstration :
Le sens directe est la relation de Bézout qu'on a tiré de I'algorithme d'Euclide.

Réciproquement, si Ju,v € Z tel que au + bv = 1. Alors (a A b)|1 et donc a Ab = 1 car
aANb>0. O

11t ATTENTION !!! |I

Le théoréme de Bézout n'est valable que pour les entiers premiers entre eux. C'est faux avec
un pged qui n'est pas 1! En général, si au + bv = d, alors (a A b)|d. et on ne peux pas dire
mieux. Mais dans le cas ou d = 1, il n'y a plus le choix.

A

Contre-exemple :
O On6A4=2et3x6+(—1)x4=12+ 2. Mais on a bien 2|12.

18



2 PGCD ET PPCM 2.3 Entiers premiers entre eux

Proposition 2.13 (Caractérisation du pgcd par des entiers premiers entre eux) :
Soit (a,b) € Z%\ {(0,0)} et d € N. Alors

d=aAb < Fd bV cZ, a=dd, b=dV, d Nb =1.

Démonstration :

Sid=aAb. Alors Ju,v € Z tel que da’u + db'v = d. Comme Z est intégre et d # 0, on en déduit

a'u+bv=1. Et donc a’ AV’ =1 par le théoréme de Bézout. Ou alors d = (da’) A (V'd) = d(a’ NV).
Réciproquement, si Ja’,0' € Z, ' AN\b' = 1 et a = da’ et b = db’. Alors d est un diviseur commun

de a et b. Donc d|(a A D). De plus, par Bézout, Ju,v € Z tels que a’u + 'v = 1. Donc au + bv = d.

Et donc (a A b)|d. Par positivité, on en déduit d = a A b. O

Proposition 2.14 (" Transmission de la primalité relative”) :
Soit a,b,c € Z, a # 0. Alors

Ab=1
aN(bc)=1 {a
aNc=1

Démonstration :
Si a A (bc) =1, alors Ju,v € Z tels que au + becv = 1 par Bézout. Et donc a A b|1 donc a A b = 1.
De méme pour a A c.

SiaAb=1=aAc. Alors Ju,v,n,m € Z tels que au + bv = 1 = an + c¢m. Alors

1 = (au+ bv)(an + em) = a(anu + cmu + bun) + bevm

Donc, par théoréme de Bézout, a A (be) = 1. O

Théoréme 2.15 (Lemme de Gauss) :
Soit a,b,c € Z, a # 0.
Si albc et a A b =1, alors alc.

Démonstration :
Par Bézout, Ju,v € Z tels que au + bv = 1. Donc acu + bev = ¢. Et donc alc. [l
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2 PGCD ET PPCM 2.3 Entiers premiers entre eux

Remarque :
Lemme de Gauss est une sorte de réciproque partielle au point (ii) de la propriété des propriétés
algébriques de la divisibilité page [4

Proposition 2.16 :
Soit a,b € Z, c € Z* et n € N* tels que ¢ An = 1. Alors

ac=bc n] = a=0b[n].

Démonstration :
En écrivant la définition, 3k € Z tel que ac = bc + nk. Donc ¢|nk. Or n A ¢ = 1. Donc, par lemme
de Gauss, c|k. Et donc Jp € Z tel que a = b+ np. Donc a = b [n]. O

Proposition 2.17 :
Soit a,b,c € Z.
SiaAb=1 et alc et bc, alors ab|c.

Démonstration :

Par définition, 3k, £ € Z tels que ak = ¢ = bf. Mais a Ab = 1. Donc, d'apres le lemme de Gauss,
all. Et donc ablc. O

A 11t ATTENTION !!! |I

L'hypothése de primalité relative entre a et b est essentielle !
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2 PGCD ET PPCM 2.3 Entiers premiers entre eux

Contre-exemple :
@ On a 4/12 et 6|12 mais 24/ 12.

Théoreme 2.18 (Fractions irréductibles) :
Tout rationnel s'écrit de facon unique comme une fraction irréductible, i.e.

VreQ, A(p,q) €EZxN, pAg=1, r="2,
q

Démonstration :

Soit r € Q*. Alors Ja,b € Z tels que b # 0 et r = 7. En simplifiant par le pgcd de a et b, alors
Jda', 0 € Z tels que r = ' /b’ et o’ AV = 1. Donc sans perte de généralité, 3(a’,b’) € Z x N* tel
quer =ad' /b etad NV =1.

Sir=0,alorsr=0/1et0A1=1.

Sion a (a,b),(p,q) € Z* x N* tels que aANb=1=pAqeta/b=p/q, alors ag = bp. Donc
q|bp. Mais ¢ A p = 1, donc, par lemme de Gauss, ¢q|b. De méme, blag et b A a = 1, donc b|q. Or
b,q > 0 et | étant une relation d'ordre sur N, par antisymétrie, b = q. Et on a donc immédiatement
a = p. Dans le cas ou a = 0, on a automatiquement b =1 et aussip=0et ¢ = 1. O

Proposition 2.19 (PGCD pour plus que 2 entiers (Rappel)) :
Soit a,b,c € Z*. Alors
aNbAc=(aNb)ANc=aAN(bAc).

Démonstration :
Soit d diviseur de a,b,c. En particulier, d|a et d|b, donc d|a A b. Et d|c, donc d|((a A b) A c). D'ou
la premiére égalité. Et de méme pour la seconde. O
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2 PGCD ET PPCM 2.4 Equations diophantienne

Définition 2.4 (Entiers premiers dans leurs ensembles, Entiers deux a deux premiers) :
Soit n >2etay,...,a, € Z.

On dit que ay, ..., ay sont premiers dans leur ensemble si \}_; a, = 1, i.e. si le seul diviseur
commun a tous les a; est 1.

On dit que ay,...,a, sont premiers entre eux deux a deux si Vi,j € {1,...,n}, i # j,
a; \aj = 1.

A Il est plus difficile d'étre deux a deux premiers entre eux pour des entiers que d'étre premier
dans leur ensemble. Donc “premier deux a deux = premier dans leur ensemble”.

Contre-exemple :
(6,10,15) sont premiers dans leur ensemble mais pas premiers deux a deux. (6,7,10)
également.

Proposition 2.20 (Généralisation du théoréme de Bézout) :
Soit a1,...,a, € Z.
ai,...,ay sont premiers dans leur ensemble si, et seulement si, Juy,...,u, € Z tels que

ZZ:l arUp — 1.

Démonstration :
Le sens direct a été vu dans la généralisation de la relation de Bézout.
Réciproquement, si Y1, agur = 1, alors le pged divise 1 et donc c'est 1. O

2.4 Equations diophantienne

Diophante d'Alexandrie était un mathématicien de I'antiquité qui a vécu entre le 4eme et le
ler siécle avant JC. Il s'est beaucoup intéressé a |'arithmétique et aux résolutions d'équations a
coefficients entiers. On appelle plus généralement équation diophantienne toute équation dans les
entiers. Dans le cadre du programme, on ne s'intéressera pas a toutes les équations diophantiennes.
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2 PGCD ET PPCM 2.4 Equations diophantienne

Définition 2.5 (Equation diophantienne (au programme)) :
On appelle équation diophantienne (au programme) toute équation de la forme

ax +by=c

avec a, b, c € Z.
On s'intéresse aux solutions entiéres de cette équation (donc aux solutions dans Z?).

Proposition 2.21 (Existence de solutions) :
Soit a,b,c € Z.
L’équation diophantienne ax + by = ¢ a des solutions entiéres si, et seulement si, (a A b)|c.

Démonstration :
Soit d € Z tel que ¢ = d(aAb). Par Bézout, Ju,v € Z tels que au+bv = aAb. Donc adu+bvd = c.
Donc (du, dv) est une solution entiére de I'équation diophantienne ax + by = c.

Réciproquement, si I'équation diophantienne ax + by = ¢ a une solution (entiére) et qu'on
considére (u,v) une telle solution (donc u,v € Z tels que au + bv = ¢), alors (a A b)|(au + bv) et
donc (a A b)|e. O

Méthode de résolution des équations diophantienne :
On considére I'équation diophantienne ax + by = ¢, avec a, b, c € Z. On suppose (a A b)|c (pour
qu'il existe des solutions).

= On trouve une solution particuliere (zo,y0) € Z* (en utilisant I'algorithme d'Euclide par
exemple).

= On se rameéne a une équation diophantienne dont les coefficients sont premiers entre eux en
utilisant la solution particuliére (i.e. on se ramene a a'(x — zg) = b'(yo — y))-

= On résout en utilisant le lemme de Gauss.
» Les solutions sont les {(xg + V'k,yo — d'k), k € Z}.

Exemple 2.4 :
Résoudre I'équation 6x + 9y = 12.

En simplifiant par 3=6 A9, on aVz,y € Z, (6z + 9y = 12 < 2z + 3y = 4).

On a facilement 3 —2 = 1. Donc 3 x 4 + 2 x (—4) = 4. Et donc (—4,4) est une solution de
I"équation.

Soit (x,y) € Z? telle que 2z + 3y = 4. Alors

2 +3y=4 <= 20+3y=3x4—-2x4 <= 2x+4)=34-y)
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2 PGCD ET PPCM 2.4 Equations diophantienne

Donc 2|3(4—1y). Or 2 et 3 sont premiers entre eux. Donc par lemme de Gauss, 2|4 —y. Donc 3k € Z,

tel que 4 —y = 2k, i.e. Ik € Z tel que y = 4 — 2k. Alors

2 +3y=4 <= 3Jke€Z y=4—-2ket2(x+4)=34—-vy)

=4 -2k
<— dk € Z, Y
2(z+4) =6k
— Tk ez, y=4-2k
z=3k—4

On peut vérifier : Vk € Z, 2(3k —4) +3(4 — 2k) = -2 x4+ 3 x4 =4,
Donc I'ensemble des solutions entiéres de |'équation 6x + 9y = 12 est

{3k —4,4—2k), k€ Z}

Exemple 2.5 :
Résoudre I'équation 12x + 14y = 6.

Remarque :

On pourrait formuler un théoréme pour donner directement I'ensemble des solutions d'une équation
diophantienne. Mais ce qui est attendu c'est la méthode de résolution, donc la démonstration dudit

théoréme. Il faut donc refaire la démonstration a chaque fois.

La démonstration permet également de pouvoir |'adapter a d’autres situations un peu différentes,

ce que ne permet pas d'appliquer une “boite noire”.

Exemple 2.6 :
Résoudre dans Z I'équation 6xy + 4x = 3y + 5.
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2 PGCD ET PPCM 25 PPCM

2.5 PPCM

Définition-Propriété 2.6 (PPCM) :
Soit (a,b) € Z \ {(0,0)}.

Si a,b € Z*, alors I'ensemble des multiples communs de a et b non nuls {p €
N*, alp, blp} a un minimum pour la relation <. On appelle alors plus petit commun
multiple de a et b, noté ppcm(a,b) ou a V b, ce minimum, i.e.

aVb=min{n € N*, a|n, bn}.

Par convention, a V0 = 0.

Démonstration :
L'ensemble {p € N*, a|p, b|p} est non vide car |ab| est dedans. C'est un sous-ensemble de N*. Donc
il admet un minimum pour la relation <. O

Proposition 2.22 (La loi V est commutative) :
La loi V est une LCI commutative sur N dont 1 est élément neutre.

Démonstration :
Ca provient de la commutativité de la conjonction logique. Comme pour le pged. O

Le ppcm est le plus petit commun multiple strictement positif ! Ne pas oublier que 0
A est toujours un multiple commun. Mais précisément comme il est toujours 13, il ne donne
pas beaucoup d’informations sur a et b.
Ne pas I'oublier toutefois en considérant les multiples.
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Proposition 2.23 (Caractérisation du ppcm) :
Soit a,b € Z* et p € N*. Alors

alp et blp

p=aVb <
Vm € Z, a|m et bjm = p|m

Démonstration :
Si p = a Vb, alors par définition, a|p et b|p. Soit m € 7Z tel que a|m et bjm. Alors m est un multiple
commun de a et b. Si m = 0, on a p|m. Supposons m # 0. Alors |m| est aussi un multiple commun
positif de a et b. Alors, par définition de p qui est le plus d'entre eux strictement positif, p < |m]|.
En utilisant la division euclidienne, 3!(¢,r) € N? tel que |m| = pg + 7 et 0 < r < p. Mais a|m et
a|p, donc a|r. De méme, b|r. Donc r est un multiple commun positif de a et b. Donc, par définition
de p, on a r = 0 et donc, par caractérisation de la divisibilité par la division euclidienne, p|m.
Réciproquement, on a a Vb < p par définition du minimum. Et par définition de p, comme a V b
est un multiple commun de a et b, on a p|(a V b). Mais comme ils sont tous les deux positifs, on en
déduit p < a VvV b. D'ou I'égalité par antisymétrie de la relation <. (I

Remarque :
Donc le ppcm est le plus petit des multiples communs au sens de la divisibilité.

Proposition 2.24 (Ensemble des multiples communs par les sous-groupes) :
Soit a,b € Z. Alors
aZ NbZ = (aV b)Z.

Autrement dit, les multiples communs de a et b sont les multiples de a V b.

Démonstration :

L'ensemble des multiples de a est aZ par définition. Donc |'ensemble des multiples commun est
aZ N bZ. Mais aZ N bZ est donc un sous-groupe de (Z,+). Alors 3p € Z tel que aZ N bZ = pZ.
Alors a V b € pZ. Et par définition du minimum, on en déduit aZ NbZ = (a V b)Z. O

Remarque :
On peut méme en faire une caractérisation du ppcm : m =a Vb < aZ NbZ = mZ.
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3 LES NOMBRES PREMIERS

Proposition 2.25 (Propriété algébrique du ppcm) :
Soit a,b,c € Z*. Alors
(ca) V (cb) = |c|(aV b)

Démonstration :
Sans perte de généralité on peut raisonner sur des entiers naturels, et multiplier par les signes apres.
(a V) est un multiple commun de a et b, donc ¢(a V b) est un multiple commun de ca et cb. Donc
(ca) V (¢b)|(c(a V b)).

Réciproquement, si ca|m et cb|m, alors c|m et donc 3k € Z tel que m = ck. Alors alk et blk.
Donc a V blk. Et donc ¢(a V b)|m. D’ou, par caractérisation, (ca) V (cb) = c(a V b). O

Proposition 2.26 (Lien entre pgcd et ppcm) :
Soit a, b € Z*.
SiaAb=1, alors a Vb= |abl|. Plus généralement :

(aVb)(aNb)=|abl.

Démonstration :
Supposons a Ab = 1. Or a|(a V b) et b|(a V b), donc |ab||(a V b). Mais par ailleurs, ab est multiple
commun de a et b, donc (a V b)||abl|. Et donc, par positivité, |ab] = a V b.

Soit d = a Ab. Soit a',b/ € Z tels que a = da’ et b=db et ' ANV = 1. Alors (a Vb)(a ANb) =
d((da’) vV (db')) = d*(a’ VV') = d?a't/ = ab. O

3 Les nombres premiers

3.1 L’ensemble des nombres premiers

Définition 3.1 (Nombre premier) :
Un nombre premier est nombre p > 2 dont les seuls diviseurs sont ses diviseurs triviaux, c'est a
dire 1 et lui méme. Autrement dit, p > 2 est premier si Div(p) = {—p, —1, 1, p}.

On notera P I'ensemble des nombres premiers.
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3 LES NOMBRES PREMIERS 3.1 L’ensemble des nombres premiers

[11 ATTENTION !!! |I

A En dépit de I'opinion populaire, 1 n’est pas un nombre premier. Il est nécessaire d'imposer
p > 2 dans la définition précisément pour ne pas considérer 1 comme un nombre premier.
Autoriser 1 a étre un nombre premier entrainerait beaucoup d'inconvénients facheux. En
particulier, certaines unicité disparaitraient.

Les nombres premiers sont les briques élémentaires qui constituent les entiers. Tous les théorémes
que nous avons vu dans ce chapitre peuvent se redémontrer “facilement” (au pris d'une manipula-
tion un peu fastidieuse de quantificateurs tout de méme) une fois le théoréeme fondamental de
I'arithmétique prouvé.

On pourrait avoir envie de commencer par le théoréme fondamental de I'arithmétique. Mais la
démonstration de ce dernier se fait a partir de toute la mécanique que I'on vient de mettre en place.
En commencant par le théoreme fondamental de I'arithmétique, on se retrouverait alors avec un
argument circulaire. D'ou la nécessité de I'étude de la mécanique.

De plus, c'est cette mécanique qu’on utilise en pratique. Et pas la lourdeur du théoréme fonda-
mental.

Toutefois, on pourrait, une fois la théorie construite, reprendre et reprouvé tous les théoremes a
posteriori.

A [11 ATTENTION !!! |I

Le seul nombre premier pair est 2.

Remarque :

On notera que les diviseurs d'un entier vont toujours par pair. Si d|n, alors (n/d)|n et n = d(n/d).
Bien stir. Mais lorsque I'on fait parcourir a d les diviseurs de n, n/d va les parcourir également “dans
I'autre sens”. Autrement dit, lorsque d croit, n/d va décroitre.

Il est donc inutile de faire parcourir a d tous les diviseurs de n. Seul la premiére "moitié” suffit,
n/d parcourant I'autre moitié. On peut donc imposer a d de parcourir les diviseurs de n tant que
son homologues reste plus grand, i.e. d < n/d. Ce qui impose d? < n.

Autrement dit, pour étudier les diviseurs d'un entier, il suffit de se restreindre au diviseurs < y/n.

Ce qui donne naissance a plusieurs tests de primalité. En particulier, il suffit de chercher un
diviseurs inférieur a \/n.
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3 LES NOMBRES PREMIERS 3.1 L’ensemble des nombres premiers

Les tests de primalité ont une importance toute particuliére en informatique. Les nombres
premiers sont la base (voir entierement) des cryptage informatique. Les codes bancaires
et toutes les informations sensibles sont codées a partir des nombres premiers. Et plus
précisément, a partir de la difficulté de trouver les facteur premier d'un entier.

Avec des ressources infinies et un temps illimités, on peut toujours factoriser un entier. La
méthode est simple. On test. Si on a le temps, pas de probléeme. Mais c'est la qu'intervient la
complexité informatique. Faire des opérations, ¢a prend du temps. Pas beaucoup (en fonction
de la puissance de I'ordinateur qu’on utilise, mais un petit peu). Plus il y a de tests a faire,
plus la factorisation sera donc longue.

Evidemment, et c’est un sujet de recherche trés actif, on peut gagner un peu de temps
en optimisant les algorithme ou méme en choisissant des langages informations spécialement
congus pour et donc plus performant que d'autres ( @ pyhon n'est pas trés performant en
calculs, ce n'est pas son domaine de prédilection).

Mais la factorisation prend du temps. Avec des nombres suffisamment grand, elle ne peut
pas s'effectuer dans un temps raisonnable par rapport a une vie humaine, méme avec des
super-ordinateur a disposition. C'est ce qui rend les cryptages informatiques sur. La méthode
est connue, mais on a pas le temps.

Et c'est aussi ce qui rend la recherche d'outil informatique toujours plus puissant aussi
vivace.

@ python

Test de primalité “naif” :

def est_premier (n)
"""test de primalité de n
if n<2
return False

nwun

k=2
premier = True
while k**2<=n and premier : # teste que les entiers <sqrt(n) comme diviseurs
potentiels
premier = (n%k!=0) # devient False si n est divisible par k
k += 1

return(premier)

Ce test de primalité n'est pas trés bon. Sa complexité est assez mauvaise (on O(y/n) ce qui est
assez mauvais).
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3 LES NOMBRES PREMIERS

3.1 L’ensemble des nombres premiers

Crible d’Eratosthéne

Le crible d'Eratosthéne est un algorithme de re-
cherche de nombre premier. Il consiste a prendre
une liste d'entier et d’enlever successivement les
multiples de chacun des entier. Les éléments qui
restent sont des nombres premiers (s'ils restent,
c’est qu'ils ne sont multiples d'aucun entier plus
petit qu'eux, et donc ils sont premiers).

def Crible(N)

"""[Liste des nombres premiers <= N.

estPremier = [True]l*(N+1)
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I (%
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1 2 @ 3 17 v

nmnn

estPremier [0:2]=[False ,False] # 0 et 1 ne sont pas premiers
# A la fin de 1’algorithme, on veut que k soit premier ssi estPremier[k]=True

k=2
while k<=N
m=k
while m<= N
estPremier [m]=False
m=m+k
while estPremier [k]==False
k=k+1

while k**x2<=N

if estPremier[k] : # Si k est premier
m=k**2 # premier "nouveau" multiple
while m<=N : # supprime les multiples de k aprés k

estPremier [m]=False

m+=k # passe au multiple de k suivant

k+=1
return([k for k in range(1,N+1) if

Proposition 3.1 (Existence de diviseur premier) :
Soit n € Z.
Si |n| > 2, alors n a un diviseur premier.

Démonstration :

estPremier [k]]

Sans perte de généralité, on peut suppose n € N. Si n est premier, c’'est évident.
Supposons que n n'est pas premier. On note Div, (n) I'ensemble des diviseurs positifs de n. Alors
Divi(n)\ {1,n} n'est pas vide. C'est un sous-ensemble de N. On note p = min(Divy(n) \ {1,n}).
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3 LES NOMBRES PREMIERS 3.1 L’ensemble des nombres premiers

Soit d € N tel que d|p. Alors, par transitivité, d|n. Donc d € Divy(n). Supposons d # 1. Alors
d € Divy(n) \ {1,n} (car d < p < n). Et donc p < d car p est le minimum. Mais d|p, donc d < p
car p,d € N. D'ou p = d. Et donc les seuls diviseurs de p sont 1 ou p. Donc par définition, p est
premier. [l

Corollaire 3.2 (Caractérisation des entiers premiers entre eux par leurs diviseurs pre-
miers) :
Soit a,b € Z.

a et b sont premiers entre eux si, et seulement si, ils n'ont pas de diviseurs communs
premiers.

Démonstration :
C'est assez évident. Si a est b sont premiers entre eux, alors a A b = 1 et donc ils n'ont pas de
diviseurs premiers en communs.

Si a et b n'ont pas de diviseurs premiers en communs, alors a Ab n'est divisible par aucun nombre
premier et donc a A b = 1. [l

Théoréeme 3.3 (Infinité des nombres premiers [v]) :
Il'y a une infinité de nombres premiers.

Démonstration :

Raisonnons par I'absurde. Supposons que P soit fini. On pose N = 1+ [[,cpp. Alors N > 2 car
Vp € P, p > 1. Donc, d'aprés la propriété précédente, N a un diviseur premiers p € P. Donc p|N.
Et donc p|1. &. Donc P n’est pas fini. O

Proposition 3.4 :
Soitn€ZetpeP.
Alors pln ou p An = 1.
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3 LES NOMBRES PREMIERS 3.1 L’ensemble des nombres premiers

Démonstration :
On pose d = n A p. Alors d|p. Donc d € {1, p}. O

Proposition 3.5 (Lemme d’Euclide) :
Soitpe P eta,be Z.
Si plab, alors p|a ou p|b.

Démonstration :
Si pfa, alors p Aa =1, et donc, par lemme de Gauss, p|b. O

A 11t ATTENTION !!! |I

C'est faux si p n'est pas premier : 6]4 x 3 et 6 f4 et 6 /3.

Remarque :
En particulier, si p|n?, alors p|n.

Exemple 3.1 :
Montrer que 7|z et 7|y <= 7|22 + 2.

Proposition 3.6 :
Soitpe Petay,...,a, € Z. Alors

n
D Hak <~ Jke{l,...,n}, plag
k=1
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3 LES NOMBRES PREMIERS 3.2 Théorémes de Fermat

Démonstration :
Le sens indirecte est évident. Pour le sens direct, on va raisonner par contraposée. On va donc
montrer que si Vk € {1,...,n}, pf ag, alors pf [1i—; ak.

p étant premier, si Vk € {1,...,n}, p | ag, alors Vk € {1,...,n}, p Aar = 1. Et donc
p A lli—; ax = 1. Comme p est premier, on a donc p [ [[;_; ak. O

Remarque :

Autrement dit, les nombres premiers sont les briques élémentaires qui constituent les entiers. On ne
peut les séparés en petit morceaux éparpillés a droite ou a gauche. Par exemple, 6|(4 X 9) mais 6} 4
et 6/ 9. Parce que 6 peut &tre décomposés en briques élémentaires et qu'elles sont réarrangées a
I'intérieur de 4 et 9.

3.2 Théorémes de Fermat

Lemme 3.7 (Diviseur des coefficients binomiaux) :
Soit p un nombre premier. Alors

VkEe{l,...,p—1}, p

)

Démonstration :
Soit k € {1,...,p — 1}. Alors (formule du pion)

() =)

Donc p‘k(i) Mais k € {1,...,p — 1}, donc k A p = 1. Sinon p ne serait pas premier. Et donc, par
le lemme de Gauss, le résultat. O

Théoréeme 3.8 (Petit théoreme de Fermat) :
Soit p un nombre premier. Alors

Va € Z, a¥ = a [p).
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3 LES NOMBRES PREMIERS 3.2 Théorémes de Fermat

Démonstration :
On va donner une preuve relativement élémentaire.

On a déja 17 = 1[p] et 0P = 0 [p|. Supposons qu'il existe a € N tel que a? = a [p]. Alors, par
Newton,

p—1
(a+1)p:ap+z <p>ak+15ap+lza+1 [p]
k
k=1
D'ou le théoréme par récurrence.

Il est facile d'étendre le résultat pour a < 0 :sia <0, on a —a € N. Donc a? = (—1)P(—a)P =
(—1)P(—a) = a [p] car p premier et en utilisant le cas positif au-dessus. De plus, si p est pair, alors
—1 =1 [p] et donc (—1)P(—a) = —a = a [p]. Et si p n'est pas pair, alors (—1)? = —1 [p|. Et donc
le résultat. g

Théoréeme 3.9 (Petit théoreme de Fermat (autre formulation)) :
Soit p un nombre premier et a € Z. Alors

pfa = a?t=1[p].

Démonstration :
Cet énoncé est une reformulation exacte de I'énoncé précédent. Autrement dit, il est équivalent au
précédent.

En effet, si on supposeet si on considére a € Z tel que p f a, alors pla(aP~! —1) et pAa = 1.
Donc par le lemme de Gauss, p|(a?~! — 1) et donc 3.9

Réciproquement, si on suppose et qu'on considére a € Z, alors soit p|a et dans ce cas, p|aP
et donc a? =0 = a [p]; soit p [ a et donc p|(a?~! — 1) donc p|(a(a?~! — 1)) et donc 3.8 O

Remarque :
Il existe beaucoup de preuves du petit théoreme de Fermat. Certaines utilisant des arguments plus
élémentaires que d'autres. Certaines plus savantes que d'autres.

Exemple 3.2 :

Déterminer le reste de la division euclidienne de 2173217

par 5.
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3 LES NOMBRES PREMIERS 3.3 Théoreme fondamental de I'arithmétique

Exemple 3.3 :
. . —17p-1
Montrer que si p € N est premier, alors p|1 + > 7_7 kP~ 1.

Théoreme (HP) 3.10 (Dernier (Grand) théoréme de Fermat)

L'équation diophantienne
n

xn+ynzz

n'a pas de solution autre que (0,0,0) dés que n > 3.

Remarque :
Ce théoréme a été énoncé par Pierre de Fermat dans la marge d'un de ses livres. Il a écrit précisément :

“J'ai trouvé une merveilleuse démonstration de cette proposition, mais la marge est
trop étroite pour la contenir.” (Pierre de Fermat — 1665)

Cette citation est trés connue dans le monde des mathématiques. En partie parce que la démonstration
a résisté aux assauts des mathématiciens pendant 3 siecles et n'a été prouvé qu'en 1994 par Andrew
Wiles.

Ce théoréme est tres connu a cause de la simplicité de son énoncé assez élémentaire qui peut
étre compris méme par des collégiens, malgré une démonstration tres complexe.

La démonstration d’Andrew Wiles utilise les courbes elliptiques définies sur le corps Q. Il faut donc
des outils de mathématiques avancées pour démontrer ce résultat élémentaire. Cette confrontation
entre un énoncé d'apparence simple et une preuve sophistiquée est assez courante en théorie des
nombres et en arithmétique, ce qui en fait 3 la fois un domaine fascinant et difficile d’acces.

3.3 Théoreme fondamental de I'arithmétique

Théoréme 3.11 (Théoréme fondamental de I'arithmétique) :
Soit n > 2. Alors 3lr € N, Il(p1,...,pr) € P" tel que p1 < pa < -+ < pret Way,...,a,) €
(N*)" tels que

T
_ au,
n=[]»
k=1
Autrement dit, tout entier non nul se décompose de maniére unique (a I'ordre des facteurs

prés) comme un produit de nombres premiers.

Démonstration (Esquisse) :
On va faire une récurrence forte.
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3 LES NOMBRES PREMIERS 3.4 Valuation p-adique

C'est vrai pourn =2 avecr =1, p; =2 et a; = 1.

Supposons qu'il existe un entier n € N* tel que la proposition soit vraie pour tout entier m < n.
Alors n+1 > 2 a donc un diviseur premier p. Alors n+1 = pn’. Et p > 2, doncn’ < (n+1)/2 < n+1.
Donc n’ < n. On applique I'hypothése de récurrence a n’. Puis on multiplie par p pour avoir la forme
annoncée.

On vient donc de démontrer la décomposition en produit de facteurs premiers par récurrence
forte.

Reste I'unicité. Supposons qu'il y ait deux écritures. Alors tous les nombres premiers d’une écriture
divisent |'autre écriture. Et par primalité, on en déduit que I'ensemble des premiers des deux écritures
sont les mémes. Ce qui impose en particulier qu'il y a autant de nombres premiers qui apparaissent. On
a donc 'unicité de r et des nombres premiers. Il reste les puissances. Mais a, = max{j € N, p] |n}
est unique. [l

Remarque :
Dans I'énoncé précédent, on est pas obligé d'imposer p; < p2 < --- < p, pour demander simplement
a ce que les premiers soient deux a deux distincts. On aboutit a la méme forme, toujours unique a
ordre des facteurs prés, a cause de la commutativité du produit.

Mais comme sur Z on a une relation d'ordre totale avec I'inégalité, on peut donc imposer |'ordre
des facteurs. Ce qui permet d'avoir une écriture unique.

Exemple 3.4 :
2025 = 3% x 52,

Ce théoréme est tres important. |l permet de mieux “voir” ce qu'est un nombre entier.
On peut alors reformuler beaucoup plus simplement tous ce qui a été vu plus haut, notamment
le pged et le ppcm.

3.4 Valuation p-adique

Définition-Propriété 3.2 (Valuation p-adique) :
Soit p € P etn e Z*.
On appelle valuation p-adique de n, la plus grande puissance de p qui divise n,
i.e.
vp(n) = max{k € N, p*|n} € N
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3 LES NOMBRES PREMIERS 3.4 Valuation p-adique

Démonstration :

Ona0 € {keN, p¥In} donc cet ensemble est non vide. C'est un sous-ensemble de N par définition
. -y ln(n) . .

et il est majoré par () |- Donc il a un maximum. O

Remarque :

On peut donner une expression de la valuation p-adique :

vp(n) = log,(n)

mais ce n'est pas tres pratique. Il n'est pas dit ce que soit effectivement un entier.

Proposition 3.12 (Reformulation du théoréeme fondamental a I'aide des valuations) :

Soit n € N*. Alors
n = H pvp(n) P H pvp(n).

pEP p€73
pln
Démonstration :
On utilise le théoréeme fondamental. Soit r € N, p1,...,p, € P avec p1 < ps < -+ < Pp,
at,...,ap € N tel que
-
n= H PRk
k=1

Alors, par définition, Yk € {1,...,7}, vy, (n) = ay. Et pour p € P, pln <= p € {p1,...,pr}.
D’ou I'écriture.
De plus, si p} n, alors v,(n) = 0. Et donc la deuxieme écriture. O

Proposition 3.13 (Propriété algébrique de la valuation) :
Soit n,m € Z* et p € P.
(i) vp(n) #0 < pln
(i) vp(nm) = vp(n) + vp(m)
(iii)

)

nlm <= Vq € P, vy(n) < vg(m)
(iv) vp(n Am) = min(vy(n),vp(m)) et vp(n vV m) = max(vy(n), v,(m)).

Démonstration :
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3 LES NOMBRES PREMIERS 3.5 Retour sur les diviseurs

(i)
(ii)

(iii)

Evident
Onan = Hpepp:"p(”) et m = Hpe’PpUp(m)' Alors nm = Hpeppvp(n)-l-vp(m) (car Clest en
réalité un produit fini). Puis |'unicité dans le théoréeme fondamental fourni I'égalité voulue.

SiVq € P, vg(n) < vg(m), alors, en utilisant le théoréme fondamental, n = [[cp ga()| [Ler gva(m) =
m.

Et si n|m, alors 3k € Z tel que m = nk. Alors Vg € P, vy(m) = vg(n) + v4(k) > v4(n)
en utilisant le point précédent.

nAm est un diviseur commun de n et m. Donc d'apres le point précédent, v,(n Am) < vp(n)
et vp(n Am) < wv,(m). Donc, vp(n Am) < min(vy(n),vp(m)). De plus, min(v,(n), vy(m)) <
vp(n) donc pin(vp(n):vp(M) est un diviseur de p?»(™ et donc aussi de n. De méme p™in(vp(12).vp(m))
est un diviseur de m. Donc p™n(vr(n).vp(m)) est un diviseur de n A m. Donc, d’apres le point
précédent, min(vy(n),vp(m)) < vp(n Am). D'ou légalité.

On peut procéder de fagon similaire pour le ppcm, ou alors, en écrivant (n Am)(nVm) =
|nm| et en utilisant le point (ii) et le fait que min(a,b) + max(a,b) = a + b.

O

Exemple 3.5 :

1.
2.

3.5

Montrer que si p € P, alors \/p ¢ Q.

Montrer que si n € N, alors \/n € Q si, et seulement si, n est un carré parfait.

Retour sur les diviseurs

Proposition 3.14 (Nombre de diviseurs) :
Soit n € N*.
Le nombre de diviseurs positifs de n est

[T +wp(n).

pEP
pln

Démonstration :
Pour fabriquer un diviseur de n, il faut et il suffit de choisir des puissances dans les facteurs premiers

de n.

Or mn <= Vp € P, vp(m) < vp(n). Donc, pour chaque premier p divisant n, on peut

choisir une valuation entre 0 et v,(n). D'ou le résultat. t
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3 LES NOMBRES PREMIERS 3.5 Retour sur les diviseurs

Autrement dit, Card(Div(n)) = [rer (1 + vp(n)).

pln
Remarque :
On peut enlever la condition p|n dans le produit. En effet, si p / n, alors v,(n) = 0 et donc on
multiplie par 1. Donc enlevant cette condition, on se retrouve avec un produit en apparence infini,
mais qui est, en fait, fini puisqu'il y aura un nombre fini de facteur qui ne seront pas des 1 (pour les
premiers divisant n).

Exemple 3.6 :
Trouver le nombre de facteur non-premiers de 1200.

Proposition 3.15 (Somme des diviseurs positifs) :
Soit n € Z*.
La somme o(n) des diviseurs positifs de n est

pvp(n)""l — ]_
on):= >, d=]l—=—
deDivy(n)  PEP p
pln
Démonstration :
Soit p1,...,pn € P les diviseurs premiers de n. Alors, par théoréme fondamental de I'arihmétique,

Vd € Divy(n), Vk € {1,...,N}, 3oy, € {0,...,vp,(n)} tels que

N
d= H PRk
k=1
Et donc
vpy (n) vpy(n)  vpy (M)
U(”):Z Z ZP2P2-
a1=0 az2=0 an=0
Upy (n) Upg (n) UpN n)
= o) ) D
1= =0 = =0 anN= =0
H pZPk( n)+1 1
e Pe—
D'ou la formule annoncée. O

39



3 LES NOMBRES PREMIERS 3.5 Retour sur les diviseurs

Proposition 3.16 (Expression a I'aide de la valuation du ppcm et pgcd) :
Soit n,m € Z*. Alors

nAm = H pmin(vp(n),vp(m)) et nvVm = H pmax(vp(n),vp(m))
peP pEP

Exemple 3.7 :

Sia=2520=22x32x5xTethb=2882=2x%x32x7% alorsaAb=126 =2 x 3% x 7 et
aVb=17640 = 23 x 32 x 5 x 72.
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