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Problème 1 (Applications Linéaires) :

1. Soit α ∈ R et f = α IdE . Alors f2 = f ◦f = (α IdE)◦(α IdE) = α2 IdE ◦ IdE = α2 IdE et f +IdE = (α+1) IdE .
Donc α2 IdE = α+1

2 IdE . Ce qui implique bien sûr 2α2 = α + 1 (puisque L(E) est un ev, par exemple, ou en
calculant sur un vecteur non nul si on préfère). On aboutit alors à α ∈ {1, −1/2}.

Il est facile de vérifier que IdE et −1
2 IdE sont bien des homothéties qui vérifient la relation.

2. Retour au cas général.
(a) On a 2f2 = f + IdE , donc f ◦ (2f − IdE) = IdE . Or E est de dimension finie, donc, par théorème

d’isomorphisme, f est un automorphisme de E et f−1 = 2f − IdE ∈ L(E) puisque L(E) est un R-ev (ou
alors par que c’est l’inverse d’une application linéaire, ça fonctionne aussi).

(b) Comme L(E) est R-ev, on sait que f − IdE , f + 1
2 IdE ∈ L(E). Et les noyaux d’applications linéaire sont des

sous-espaces vectoriels de l’espaces de départs (ce sont des pré-images du sev trivial de l’espace d’arrivée).
Autrement dit, ker(f − IdE) = (f − IdE)−1({0}) et {0} est un sev de E, donc ker(f − IdE) est sev de E.
De même pour ker(f + 1/2 IdE).

(c) Soit x ∈ ker(f − IdE) ∩ ker(f + 1/2 IdE). Alors f(x) = x et f(x) = −x/2. On a donc x = −x/2, ce qui
entrâıne immédiatement x = 0. Donc ker(f − IdE) ∩ ker(f + 1/2 IdE) ⊂ {0}. Or les noyaux sont des sev
de E, donc ker(f − IdE) ∩ ker(f + 1/2 IdE) = {0}.

Soit x ∈ E. Alors x = 2
3

(
f(x) + 1

2x
)

− 2
3(f(x) − x). Et

f

(
f(x) + 1

2x

)
= f2(x) + 1

2f(x)

= 1
2f(x) + 1

2x + 1
2f(x)

= f(x) + 1
2x

Donc f(x) + 1/2x ∈ ker(f − IdE). Et

f(f(x) − x) = f2(x) − f(x)

= 1
2f(x) + 1

2x − f(x)

= −1
2(f(x) − x)
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Donc f(x) − x ∈ ker(f + 1/2 IdE). On a donc

x = 2
3

(
f(x) + 1

2x

)
︸ ︷︷ ︸

∈ker(f−IdE)

−2
3 (f(x) − x)︸ ︷︷ ︸

∈ker(f+ 1
2 IdE)

Donc E = ker(f − IdE) + ker(f + 1/2 IdE) puisque ce sont des sev de E, et donc E = ker(f − IdE) ⊕
ker(f + 1/2 IdE).

(d) On a (
f + 1

2 IdE

)
◦ (f − IdE) = f2 − 1

2f − 1
2 IdE = 0

On a donc

{0} =
(

f + 1
2 IdE

)
◦ (f − IdE)(E) =

(
f + 1

2 IdE

)
((f − IdE)(E))

=
(

f + 1
2 IdE

)
(Im(f − IdE))

Donc Im(f − IdE) ⊂ ker(f + 1/2 IdE).
Mais par ailleurs, par théorème du rang, on sait que

rg(f − IdE) = n − dim(ker(f − IdE)) = dim(ker(f + 1/2 IdE))

puisque ker(f − IdE) et ker(f + 1/2 IdE) sont supplémentaires dans E.
Donc Im(f − IdE) est un sev de ker(f + 1/2 IdE) de même dimension que ker(f + 1/2 IdE) et donc

Im(f − IdE) = ker(f + 1/2 IdE).
(e) On a toujours (f + 1

2 IdE) ◦ (f − IdE) = 0 = (f − IdE) ◦ (f + 1
2 IdE). Donc Im(f + 1

2 IdE) ⊂ ker(f − IdE).
D’autre part, par la question précédente, rg(f + 1

2 IdE) = dim(E) − dim(ker(f + 1
2 IdE)) = dim(E) −

rg(f − IdE) = dim(ker(f − IdE)) par théorème du rang. Et donc Im(f + 1
2 IdE) = ker(f − IdE).

3. On suppose f et IdE linéairement indépendants.
(a) On sait f2 = 1

2f + 1
2 IdE . Donc

f3 = f ◦ f2

= f ◦
(1

2f + 1
2 IdE

)
= 1

2f2 + 1
2f

= 1
2

(1
2f + 1

2 IdE

)
+ 1

2f

= 3
4f + 1

4 IdE

Et en rcomposant par f , on obient

f4 = f ◦ f3

= f ◦
(3

4f + 1
4 IdE

)
= 3

4

(1
2f + 1

2 IdE

)
+ 1

4f

= 5
8f + 3

8 IdE

(b) On vient de montrer que ∀p ∈ {0, 1, 2, 3, 4}, ∃(ap, bp) ∈ R2 tel que fp = apf + bp IdE . Supposons que
∃p ∈ N tel que ∃ap, bp ∈ R tel que fp = apf + bp IdE . Alors

fp+1 = f ◦ fp
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= f ◦ (apf + bp IdE)

= ap

(1
2f + 1

2 IdE

)
+ bpf

= ap + 2bp

2 f + ap

2 IdE

On pose alors ap+1 = ap+2bp

2 ∈ R et bp+1 = ap

2 ∈ R. Et donc fp+1 = ap+1f + bp+1 IdE .
Donc, par principe de récurrence, ∀p ∈ N, ∃ap, bp ∈ R tels que fp = apf + bp IdE .

(c) On a f0 = IdE = 0 × f + 1 × IdE et f = 1 × f + 0 × IdE . Donc a0 = 0, a1 = 1, b0 = 1 et b1 = 0. Et on a

∀p ∈ N, ap+1 = ap + 2bp

2 et bp+1 = ap

2

d’après la question précédente.
(d) Soit p ∈ N. On a

ap+2 = ap+1 + 2bp+1
2 = ap+1 + ap

2
Donc la suite (ap)p∈N vérifier une relation de récurrence d’ordre 2 à coefficients constants d’équation ca-
ractéristique r2 − r/2 − 1/2 = 0, de discriminant ∆ = 1/4 + 2 = 9/4 > 0, de racines réelles distinctes
r1 = −1/2 et r2 = 1. On en déduit donc ∃λ, µ ∈ R tels que ∀p ∈ N, ap = µ + λ (−1)p

2p . Or a0 = 0 et a1 = 1,
donc {

µ + λ = 0
µ − λ

2 = 1
⇐⇒

{
λ = −2

3
µ = 2

3

On a donc
∀p ∈ N, ap = 2

3

(
1 − (−1)p

2p

)
Et la relation ∀p ∈ N, bp+1 = ap/2 avec b0 = 1 nous fournit alors

∀p ∈ N, bp =


1
3

(
1 + (−1)p

2p−1

)
p ≥ 1

1 p = 0

(On remarquera que les formules nous donne bien le bons coefficients qu’on a obtenu par le calul pour f2,
f3 et f4. Il est bon de vérifier rapidement : une erreur de calcul peut vite arriver).

La suite ((−1)p/2p) est une suite géométrique de raison −1/2 ∈] − 1, 1[ donc convergente de limite
nulle. Puis, comme l’espace des suites convergentes est un R-espace vectoriel et que les suites constantes
sont convergentes, on en déduit que (ap) et (bp) sont convergentes. Par ailleurs, la limite est une forme
linéaire sur l’espace des suites convergentes, donc elle est linéaire et donc

ap −−−−→
p→+∞

2
3 (1 − 0) = 2

3 et bp −−−−→
p→+∞

1
3(1 + 0) = 1

3

(e) On pose q = 2
3f + 1

3 IdE . Alors

q2 =
(2

3f + 1
3 IdE

)
◦

(2
3f + 1

3 IdE

)
= 4

9f2 + 4
9f + 1

9 IdE

= 4
9

(1
2f + 1

2 IdE

)
+ 4

9f + 1
9 IdE

= 2
3f + 1

3 IdE

= q
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Et comme L(E) est un R-ev, q ∈ L(E). C’est donc un projecteur de E. C’est même le projecteur de E sur
Im(q) = ker(q − IdE) parallèlement à ker(q).

Mais

x ∈ ker(q) ⇐⇒ q(x) = 0

⇐⇒ 2
3f(x) + 1

3x = 0

⇐⇒ f(x) + 1
2x = 0

⇐⇒ x ∈ ker(f + 1
2 IdE)

et donc ker(q) = ker(f + 1/2 IdE).
De même,

x ∈ Im(q) ⇐⇒ x ∈ ker(q − IdE)
⇐⇒ q(x) = x

⇐⇒ 2
3f(x) + 1

3x = x

⇐⇒ f(x) + 1
2x − 3

2x = 0

⇐⇒ f(x) − x = 0
⇐⇒ x ∈ ker(f − IdE)

et donc Im(q) = ker(f − IdE).
Finalement, q est la projection de E sur ker(f − IdE) parallèlement à ker(f + 1/2 IdE).

4. On pose M = {λf + µ IdE , λ, µ ∈ R}.
(a) On a donc M = Vect(f, IdE) ⊂ L(E). C’est donc un sous-espace vectoriel de L(E).

Soit g, h ∈ M. Donc ∃a, b, c, d ∈ R tels que g = af + b IdE et h = cf + d IdE . Alors

g ◦ h = (af + b IdE) ◦ (cf + d IdE)
= acf2 + (ad + bc)f + bd IdE

= (ad + bc + ac/2)f + (bd + ac/2) IdE ∈ M

Et aussi

h ◦ g = (cf + d IdE) ◦ (af + b IdE)
= caf2 + (da + cb)f + db IdE

= (ca/2 + da + cb)f + (db + ca/2) IdE

= g ◦ h

puisque le produit est commutatif dans R et l’addition aussi.
(b) On a vu M = Vect(f, IdE). Donc dim(M) ≤ 2. Par ailleurs, IdE ̸= 0, donc dim(M) ≥ 1.

Mais par hypothèse, on a supposé que f et IdE sont linéairement indépendants, donc la famille (f, IdE)
est une famille libre. Elle est donc libre et génératrice de M, c’est donc une base de M et donc M est de
dimension 2.

Dans le cas de la première question où f est une homothétie, f est donc proportionnelle à IdE et donc
la famille (f, IdE) est liée. Ce qui entrâıne que dim M = 1 (et donc M = Vect(IdE).
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Problème 2 (BONUX (Dimension de L(E, F ))) :
Soit E, F deux K-ev de dimension finie, n = dim(E), p = dim(F ). Soit B = (e1, . . . , en) une base de E, C =
(ε1, . . . , εp) une base de F .

1. Soit λ1, . . . , λn ∈ K tels que
∑n

k=1 λke∗
k = 0. Donc :

n∑
k=1

λe∗
k = 0

⇐⇒ ∀j ∈ {1, . . . , n},
n∑

k=1
λke∗

k(ej) = 0

⇐⇒ ∀j ∈ {1, . . . , n},
n∑

k=1
λkδk,j = 0

⇐⇒ ∀j ∈ {1, . . . , n}, λj = 0.

Donc, par définition, la famille B∗ = (e∗
1, . . . , e∗

n) est libre.
On ne peut pas utiliser la dimension de E∗ pour conclure. Ça reviendrais à utiliser la dimension de L(E, F ),

qui est précisément ce qu’on veut trouver. On est donc contrait de montrer que B∗ est aussi une famille génératrice
de E∗.

Soit f ∈ E∗. On pose g =
∑n

k=1 f(ek)e∗
k ∈ E∗. Alors

∀j ∈ {1, . . . , n}, g(ej) =
n∑

k=1
f(ek)e∗

k(ej) = f(ej).

Donc f(B) = g(B). Or, en dimension finie, une application linéaire est entièrement déterminée par l’image d’une
base. Donc f = g. Et donc f ∈ Vect(B∗). Donc E∗ ⊂ Vect(B∗). Or Vect(B∗) ⊂ E∗, donc E∗ = Vect(B∗).

Finalement, B∗ est une famille libre et génératrice de E∗. Donc B∗ est une base de E∗ (et donc aussi
dim(E∗) = n).

2. Soit i ∈ {1, . . . , n}, j ∈ {1, . . . , p}. Alors ∀x ∈ E, e∗
i (x) ∈ K. Donc ∀x ∈ E, e∗

i (x)εj est bien définie. On peut
donc définir une application

e∗
i εj : E → F

x 7→ e∗
i (x)εj

De plus, comme e∗
i est linéaire et que le LCE de E est bilinéaire, on en déduit que e∗

i εj est linéaire. Donc
e∗

i εj ∈ L(E, F ).
3. Soit (ai,j) 1≤i≤n

1≤j≤p
des scalaires tels que

∑
1≤i≤n
1≤j≤p

ai,je∗
i εj = 0. En particulier, on en déduit

∀k ∈ {1, . . . , n},
∑

1≤i≤n
1≤j≤p

ai,je∗
i (ek)εj = 0

⇐⇒ ∀k ∈ {1, . . . , n},
p∑

j=1
ak,jεj = 0

⇐⇒ ∀k ∈ {1, . . . , n}, ak,1 = · · · = ak,p = 0 car C libre
⇐⇒ ∀k ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, ak,j = 0

Donc (e∗
1εj) 1≤i≤n

1≤j≤p
est libre.
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4. Soit f ∈ L(E, F ). Alors ∀i ∈ {1, . . . , n}, f(ei) ∈ F . Or C est une base de F . Donc ∀i ∈ {1, . . . , n},
∃ai,1, . . . , ai,p ∈ K tels que f(ei) =

∑p
j=1 ai,jεj . On pose alors g =

∑
1≤i≤n
1≤j≤p

ai,je∗
i εj .

Alors

∀k ∈ {1, . . . , n}, g(ek) =
∑

1≤i≤n
1≤j≤p

ai,je∗
i (ek)εj

=
p∑

j=1
ak,jεj

= f(ek).

Donc g(B) = f(B). Or une application linéaire, en dimension finie, est entièrement déterminée par l’image d’une
base. Donc f = g. Et donc (e∗

i εj) 1≤i≤n
1≤j≤p

engendre L(E, F ).

5. D’après les deux dernières questions, on vient donc de montrer que (e∗
i εj) 1≤i≤n

1≤j≤p
est une base de L(E, F ). D’où,

par définition de la dimension,
dim(L(E, F )) = np = dim(E) dim(F ).
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