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Probléme 1 (Applications Linéaires) :

1. Soita € Ret f = aldg. Alors f2 = fof = (aldg)o(aldg) = a?Idgoldg = a?Idg et f+1dg = (a+1)Idg.
Donc o?Idp = O‘THIdE. Ce qui implique bien siir 2a® = a + 1 (puisque £(E) est un ev, par exemple, ou en
calculant sur un vecteur non nul si on préfére). On aboutit alors a a € {1, —1/2}.

Il est facile de vérifier que Idg et —% Idg sont bien des homothéties qui vérifient la relation.

2. Retour au cas général.

(a) On a 2f? = f + Idg, donc f o (2f —Idg) = Idg. Or E est de dimension finie, donc, par théoréme
d'isomorphisme, f est un automorphisme de E et f~! = 2f — Idg € L(E) puisque L(E) est un R-ev (ou
alors par que c'est I'inverse d'une application linéaire, ¢ca fonctionne aussi).

(b) Comme L(E) est R-ev, on sait que f —Idg, f+ 1 Idg € L(E). Et les noyaux d'applications linéaire sont des
sous-espaces vectoriels de I'espaces de départs (ce sont des pré-images du sev trivial de I'espace d'arrivée).
Autrement dit, ker(f — Idg) = (f —Idg) 1({0}) et {0} est un sev de E, donc ker(f — Idg) est sev de E.
De méme pour ker(f +1/21dg).

(c) Soit x € ker(f —Idg) Nker(f + 1/21dg). Alors f(z) = = et f(x) = —x/2. On a donc x = —x/2, ce qui
entraine immédiatement = = 0. Donc ker(f — Idg) Nker(f + 1/2Idg) C {0}. Or les noyaux sont des sev
de E, donc ker(f — Idg) Nker(f + 1/21dg) = {0}.

Soit # € E. Alors z = 2 (f(x) + %az) — 2(f(z) — ). Et

1 1
£(1@)+ 52) = P@) + 5@
1 11
= 5f@) + 52+ 5f(2)
= (ZL‘)—I—%ZII

Donc f(x) + 1/2z € ker(f —Idg). Et

= 5 /@) + 5o f(@)
1
= —5 (/@) - )



Donc f(z) —z € ker(f + 1/21dg). On a donc

3 2 3
1
Eker(f—IdE) 6ker(f+§ IdE)

o= (F@) +52) -3 (@) - )
Vo) s —

Donc E = ker(f —Idg) + ker(f 4+ 1/2Idg) puisque ce sont des sev de E, et donc F = ker(f — Idg) &
ker(f 4+ 1/21dg).
(d) Ona

<f+;IdE>o(f—IdE):fz—;f—;IdE:O

On a donc

(0) = (£ +31e ) o (/= 14p)(E) = (£ + 3 s ) ((f ~ 14£)(E)

2

(£ + 5142 ) (1n(7 - 1)

Donc Im(f —Idg) C ker(f + 1/21dg).
Mais par ailleurs, par théoreme du rang, on sait que

rg(f —Idg) = n — dim(ker(f —Idg)) = dim(ker(f + 1/21dg))

puisque ker(f — Idg) et ker(f + 1/21dg) sont supplémentaires dans E.
Donc Im(f — Idg) est un sev de ker(f + 1/21dg) de méme dimension que ker(f + 1/21dg) et donc
Im(f —Idg) = ker(f + 1/21dg).
(e) On atoujours (f+11Idg)o(f—1Idg) =0 = (f —Idg)o(f + 31dg). Donc Im(f + 3 Idg) C ker(f —Idg).
D'autre part, par la question précédente, rg(f + £ Idg) = dim(E) — dim(ker(f + 5 1dg)) = dim(E) —
rg(f —Idg) = dim(ker(f — Idg)) par théoréme du rang. Et donc Im(f + 1 Idg) = ker(f — Idg).

3. On suppose f et Idg linéairement indépendants.
(a) Onsait f2=1f+ 11dg. Donc

fP=fof?
1 1
= - —1d
f0(2f+2 E)
1 1
:§f2+§f
171 1 1
= — — 71 —
2<2f+2 dE)+2f
3 1
Et en rcomposant par f, on obient
fr=fof?
3 1
= - -1
f°(4f+4 dE)
3

1 1
=—|= -1
4<2f+2 dE)+

5 3
= 214219
g/ +3lde

1
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(b) On vient de montrer que Vp € {0,1,2,3,4}, 3(ay,b,) € R? tel que fP = a,f + b,Idg. Supposons que
dp € N tel que Ja,, b, € R tel que fP =a,f + b,Idg. Alors

fp+1 — fofp



== f o} (apf + prdE)
1 1
=ap (2f+2IdE) +b,f
ap + 20, ap
- —1d
y T lde
On pose alors ap1 = % ceRetby 1 = %’” € R. Et donc fPtl = apy1f +bpy1Idg.
Donc, par principe de récurrence, Vp € N, Ja,, b, € R tels que f? = a,f + b, IdE.
(c)Onafo=Idg=0xf+1xIdget f=1xf+0xIdg. Doncag=0,a; =1, bg=1etb; =0.Eton a
2b
vp € N7 ap+1 = & + P et bp+1 = %
2 2
d'aprés la question précédente.

(d) Soit p e N. On a

_ Gpi1+2bp1  ap tap
ap+2 = 5 = 5

Donc la suite (ap)pen Vérifier une relation de récurrence d'ordre 2 a coefficients constants d'équation ca-
ractéristique 72 — r/2 — 1/2 = 0, de discriminant A = 1/4 +2 = 9/4 > 0, de racines réelles distinctes
r1 = —1/2 et ry = 1. On en déduit donc 3\, t € R tels que Vp € N, a,, = ,u+)\(71)p. Orap=0eta; =1,

2P
donc
b4+ A= A= —2
=3 = H=73
On a donc 0 (1)
VpGN,ap:3<l— 2p >

Et la relation Vp € N, b,11 = a,/2 avec by = 1 nous fournit alors

—1)P
WEN,b—{§@+gﬁJ pz1
1 p=20
(On remarquera que les formules nous donne bien le bons coefficients qu'on a obtenu par le calul pour f2,
f3 et f4. 1l est bon de vérifier rapidement : une erreur de calcul peut vite arriver).

La suite ((—1)?/2P) est une suite géométrique de raison —1/2 €] — 1,1 donc convergente de limite
nulle. Puis, comme |'espace des suites convergentes est un R-espace vectoriel et que les suites constantes
sont convergentes, on en déduit que (a,) et (b,) sont convergentes. Par ailleurs, la limite est une forme
linéaire sur I'espace des suites convergentes, donc elle est linéaire et donc

— L Za—o=2 e b ——iago=t
“r p—+oo 3 3 € P pstoa” 3 3
(e) On pose ¢ = %f + %IdE. Alors
2 1 2 1
2
== —1d - —1d
oo (B bias)e (2 b
4., 4, 1
S |
9f —|—9f+9 di
4 /1 1 4 1
= (f+c1 Cfyol
9(2f+2 dE>+9f+9 dp
2 1
= ~1Id
g/ Tglde
=49



Et comme L(FE) est un R-ev, g € L(FE). C'est donc un projecteur de E. C'est méme le projecteur de E sur

Im(q) = ker(q — Idg) parallélement a ker(q).

Mais
x € ker(q)
et donc ker(q) = ker(f 4+ 1/21dg).
De méme,
z € Im(q)

et donc Im(q) = ker(f — Idg).

—

—

!

!

[ A

q(z) =0

%f(x) + %x =0
f(z)+ ézx =0

RS ker(f+ %IdE)
x € ker(q¢ — Idg)
q(z) =z

;f(x) + %az =z
f(x)—{—%:p—%x:()
f(x)—x=0
x € ker(f —Idg)

Finalement, g est la projection de E sur ker(f — Idg) parallelement a ker(f + 1/21dg).

4. On pose M = {Af + pldg, \, p € R}.

(a) On a donc M = Vect(f,Idg) C L(F). C'est donc un sous-espace vectoriel de L(F).
Soit g,h € M. Donc da,b,c,d € R tels que g =af + bldg et h = c¢f + dIdg. Alors

goh

(af +bldg) o (cf +dIdg)

= acf? + (ad + be) f + bd1dg
= (ad +bc+ ac/2) f + (bd + ac/2)ldg € M

Et aussi

hog=(cf+dldp)o (af +bldg)
=caf?+ (da+ cb)f +dbldg
= (ca/2+da+ cb)f + (db+ ca/2)1dg

:goh

puisque le produit est commutatif dans R et I'addition aussi.
(b) On avu M = Vect(f,Idg). Donc dim(M) < 2. Par ailleurs, Idg # 0, donc dim(M) > 1.

Mais par hypothése, on a supposé que f et Idg sont linéairement indépendants, donc la famille (f,Idg)
est une famille libre. Elle est donc libre et génératrice de M, c’est donc une base de M et donc M est de

dimension 2.

Dans le cas de la premiere question ou f est une homothétie, f est donc proportionnelle a Idg et donc
la famille (f,Idg) est liée. Ce qui entraine que dim M =1 (et donc M = Vect(Idg).



Probleme 2 (BONUX (Dimension de L(E, F))) :
Soit E, F' deux K-ev de dimension finie, n = dim(F), p = dim(F'). Soit B = (e1,...,e,) une base de E, C =

(517"'>

€p) une base de F'.

1. Soit A1,..., A, € K tels que >°;_; Age; = 0. Donc :

Z)\e =

k=1

Vie{l,....,n}, Y Miepl(e;) =0
k=1

—Vje{l,...,n}, Z)\kémzo
—=Vje{l,...,n}, \; =0.

Donc, par définition, la famille B* = (e}, ..., e}) est libre.

On ne peut pas utiliser la dimension de E* pour conclure. Ca reviendrais a utiliser la dimension de L(E, F),
qui est précisément ce qu'on veut trouver. On est donc contrait de montrer que B* est aussi une famille génératrice
de E*.

Soit f € E*. On pose g = >_j'_; f(ex)ej, € E*. Alors

n

Vjie{l,...,n}, g(e;) Z (er)er(e;) = f(e)).

Donc f(B) = g(B). Or, en dimension finie, une application linéaire est entierement déterminée par I'image d'une
base. Donc f = g. Et donc f € Vect(B*). Donc E* C Vect(B*). Or Vect(B*) C E*, donc E* = Vect(B*).
Finalement, B* est une famille libre et génératrice de E*. Donc B* est une base de E* (et donc aussi

dim(E*) = n).
Soit i € {1,...,n}, j€{1,...,p}. Alors Vz € E, ef(z) € K. Donc Vz € E, €} (x)e; est bien définie. On peut
donc définir une application

e EF — F

YV e el (x)ej

De plus, comme e; est linéaire et que le LCE de £ est bilinéaire, on en déduit que ej¢; est linéaire. Donc
eje; € L(E,F).

3. Soit (a”)1<z<n des scalaires tels que Zl<l<n a; je;e; = 0. En particulier, on en déduit

<j<p 1<5<

Vk e {l,...,n}, Z a;jei(er)e; =0

1<i<n
1<j<p

p
<:>Vk:€{1,...,n}, Zak7j5j20

= Vke{l,...,n}, a1 =-=ap, =0 car C libre
= Vke{l,...,n}, Vie{l,...,p}, ar; =0

Donc (ejej)1<i<n est libre.
1°7
1<j<p



4. Soit f € L(E,F). Alors Vi € {1,...,n}, f(e;) € F. Or C est une base de F. Donc Vi € {1,...,n},

Jai ..., aip € K tels que f(e;) = 3-0_ a;je;. On pose alors g = Y 1<i<n a; jej ;.
1<j<p

Alors

VE e {l,...,n}, glex) = Z a; je;(er)e;

1<i<n
1<j<p

p
= akje;
=1
= fex)-

Donc g(B) = f(B). Or une application linéaire, en dimension finie, est entiérement déterminée par I'image d'une
base. Donc f = g. Et donc (ej¢;)1<i<n engendre L(E, F).
1<j<p

5. D’apres les deux derniéres questions, on vient donc de montrer que (ej€;)1<i<n est une base de L(E, F'). D'ou,
1<j<p

par définition de la dimension,
dim(L(E, F)) = np = dim(FE) dim(F).



