\"‘-— 7
—ycée
oges

Chapitre 15
Polynomes

Simon Dauguet
simon.dauguet@gmail.com

13 janvier 2026

Do you believe in God? Well, | do believe in higher

powers . . .

Les polyndmes sont en quelques sortes le couteau suisse des mathématiciens. lls permettent de
tout faire, de tout simplifier et de faire des liens entre pleins de branches des mathématiques.

Les polynédmes ont des propriétés algébriques formidables. On va pouvoir faire de
I'arithmétique sur les polynémes. On va donc définir une notion de divisibilité qui va fonctionner
exactement comme les entiers. On va également montrer que les opérations définis sur les polynémes
va munir I'ensemble des polyndme d’une structure d'espace vectoriel. On pourra donc faire de I'algebre
linéaire sur les polynémes (c'est quasi systématique). Mais les polyndémes peuvent également &tre vu
comme des fonctions polynomiales. On pourra alors leur appliquer tous les outils analytiques. Par
ailleurs, dans les prochains chapitres, on verra qu'on peut approcher (presque) toute fonction par
des polyndémes, de sorte qu'on pourra toujours approximer une fonction par un bon polynéme au
voisinage d'un point (comme vous I'avez déja vu en physique).

C'est d'ailleurs un raisonnement classique en mathématiques : on commence a établir une nouvelle
notion sur les polynémes, puis on I'étend aux fonctions grace a |'approximation d'une fonction par
une suite de polynémes.
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1 L'ALGEBRE K[X]

1 L’algebre K[X] des polyn6mes en une indéterminée

1.1 Généralités

On va commencer par donner une définition abstraite des polynémes. Elle n'est pas indispensable
et elle sera peu (voir jamais) utilisée en pratique. Mais elle est utile pour pouvoir faire des distinction
de nature d'objet. Il ne faut pas confondre un polynéme, qui est un objet abstrait, avec la fonction
polynomiale associée, qui est une fonction.

Les premiéres définitions que I'on va donner ici sont surtout la pour deux choses : d'abord créer
les polynémes a partir de rien et permettre d'en déduire toutes les propriétés que l'on veut; et
ensuite, permettre de bien comprendre que la nature profonde des polynémes est quelque chose de
contre-intuitif et donc, de ne pas se faire avoir par les manipulations apparemment simples que I'on
va en faire. C'est surtout le deuxiéme point qui est intéressant. En gardant a I'esprit la premiére
définition des polyndmes, on pourra rester vigilant pour éviter d'écrire des choses fausses suggérées
par l'intuition et de mieux comprendre les subtilités ultérieures. Le but est donc essentiellement
pédagogique.

1.1.1 Premiéres définitions

Définition 1.1 (Suites presque nulles [v]) :
Soit (an)neny € KN une suite 3 valeurs dans K.

On dit que la suite (a,,) est une suite presque nulle si elle est nulle a partir d'un certain rang,
i.e. si dng € N tel que Vn > ng, a, = 0. On a donc

(an)TLEN = (CL(), A1y ..., Qpy—1,Qng, 03 07 .. )

Attention ! Dans une suite presque nulle (a,,), il peut parfaitement y avoir des 0 dans les
premiers termes. L'important étant qu'a partir d’un certain rang, tous les termes doivent étre
A nuls. Mais ¢a ne dit rien sur les premiers termes. Les premiers termes peuvent prendre toutes
les valeurs possibles. |l peut donc en particulier y avoir des 0 qui trainent dans la premiére
partie de la suite.

Exemple 1.1 :
La suite définie par a,, = n pour 0 < n < 10 et a,, = max(0,10 —n) pour n > 11 est une suite
presque nulle. La suite b, = max(cos((2n + 1)7/2),sin(2f — n3—jrr1) pour tout n € N également.
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Définition 1.2 (Symbole de Kroenecker [v']) :
Le symbole de Krocenecker des entiers p et ¢, noté ¢, 4, est défini par :

1 sip=gq

g €N, Opg = {0 sinon

Le symbole de Kreenecker est treés utile dans les formules. |l sera particulierement utilisé dans le
chapitre sur les matrices. Mais on va en avoir besoin déja dans ce chapitre.

Définition 1.3 (L'indéterminée) :
On note X la suite (0,1,0,0,0,...) = (61,n)nen. Par extension, on note Vk € N, Xk =
(Ok,n)nen = (0,...,0,1,0,0,...) avec le 1 en k-eéme position. X s'appelle I'indéterminée.

[11t ATTENTION !!! |I

A L'indéterminé X est donc quelque chose de trés spécifique. C'est une suite et pas n'importe
quelle suite. On ne peut donc pas “remplacer” X par quoi ce que soit, et surtout pas par un
nombre. Ca n’aurait pas de sens de remplacer une suite par un nombre. Ce ne sont pas les
mémes natures d'objets.

Remarque :
La notations X% qui parait un peu artificielle pour le moment prendra tout son sens un peu plus

tard. On lui donnera sa raison d'étre avec la définition des opérations.

Remarque :
Avec cette définition, toute suite presque nulle est une combinaison linéaire des {X*, k € N}, c'est

a dire que si (an)nen est une suite presque nulle, alors Ing € N, tel que Yn > ng, a, = 0 et donc
a = (an)nGN = (CL(], ai,..., an070,0, . ) = Z’ZO:(] CLka.
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Définition 1.4 (Polynéme, Ensemble des polynémes [v']) :

= On appelle polynéme a coefficients dans K en I'indéterminée X tout objet noté

+o0
P(X) = Zaka:ag—|—a1X+a2X2+a3X3+-.-+adXd+,._
k=0
otl (an)nen € KN est une suite presque nulle de K.

La suite (a,,) est la suite des coefficients du polynéme P.

= On note K[X] I'ensemble des polyndme a coefficients dans K.

Remarque :

La définition d'un polyndme semble problématique a cause de la somme infinie qui n'est pas clairement
définie (convergence, existence, condition d'existence, etc. ..). En fait, comme on considére une suite
presque nulle de coefficients, elle ne contient que des zéros a partir d'un certain rang, et donc la

somme
—+00
> X"
ag
k=0

ne contient que des zéros a partir d'un certain rang et donc est, en réalité, une somme finie.
Donc I'apparence de probléeme de définition n'est, en fait, qu'apparent et n’existe pas dans la
réalité. Il ne faut pas se laisser tromper par les apparences qui sont, bien souvent, trompeuses.

Remarque :

On rappelle que la suite (ay)nen des coefficients des P est une suite presque nulle. Donc elle est
stationnaire en 0 a partir d'un rang d, mais on peut tout de méme trouver des zéros dans ces premiers
termes. Par exemple, le polyndme P(X) = X3+ X —1 est un polyndme dont la suite des coefficients
est nulle a partir du rang 4 et le coefficient d'indice 2 est nul aussi.

Remarque (Notation) :

Dans la littérature, on peut trouver parfois un polynéme noté P ou P(X), sans, parfois, de distinction
claire entre les deux. En fait, il est bon de réserver la simple lettre P lorsque I'on veut parler du
polyndme en toute généralité, si I'on veut parler de lui de fagon abstraite, en tant qu'individu de
I'ensemble K[X]. Mais il vaut mieux |'appeler P(X) dés que I'indéterminée prend de I'importance,
c'est a dire quand on veut calculer avec le polyndme. Il faut donc éviter d'écrire P = Zizo apXF.
C'est désagréable d'avoir une expression dépendant de I'indéterminée X a droite qui est égale a une
expression qui ne dépend plus a priori (du moins, moins clairement) de I'indéterminée X . Soit on
met des X partout, soit on en met pas. Mais c’'est génant de mélanger les deux.

En d’autres termes, il faut utiliser I'une ou I'autre des notations un peu comme on le ferait avec
des fonctions. Soit on utilise f pour parler de I'objet fonctionnelle, soit on écrit f(x) (en définissant
x) pour parler de I'expression de f et calculer, factuellement. Il faut faire de méme ici, mais avec
la particularité que X a déja une définition précise (c'est I'indéterminé, c'est la suite presque nulle

(51,n)n€N)'
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Cependant, vous croiserez certainement dans la littérature des auteurs qui écriront P = > ap XF.
Ce n'est pas trés heureux en fait un confusion entre le polynéme abstrait et son expression. Mais
pour éviter des maladresses rédactionnelles ultérieures, il vaut mieux éviter. Si on a les idées tres
claires (ce qui n'est encore notre cas), on peut le faire. Sinon, il vaut mieux éviter.

[11 ATTENTION !!! |I

Il faut prendre garde a la notation! C'est K[X] et pas K(X) ni K{X}. Il faut des crochets.
Et des crochets simples. Pas K[X]. K{X} n’est pas clairement défini, ca ne fait référence

A a rien de canonique. L'ensemble K(X) existe et correspond aux fractions rationnelles a
coefficients dans K qui n'est pas au programme. Et K[X] n'existe pas non plus (du moins
a ma connaissance) mais K[[X]| existe et correspond aux sommes formelles a coefficients
dans K. Ce n’est pas non plus au programme. Donc faites attention aux notations. Si vous
mettez des parenthéses, la majorité de ce que vous écrirez deviendra faux ou n'aura plus de
sens.

Exemple 1.2 :
Donner la suite des coefficients des polynémes 2 + X — X2 et X3 + X — 1.

Donner les polynémes P, et P, dont la suite des coefficients sont (a,) et (b,) définies dans
I'exemple précédent.

En résumé, un polyndbme n’est rien d'autre qu'une suite presque nulle. Un polynéme est une
suite particuliére. Et I'indéterminée est une suite spécifique a I'intérieur de cet ensemble. Penser aux
polynémes en ces termes devrait vous dissuader de donner des valeurs a I'indéterminé X. Ca n'a pas
de sens. On ne peut pas donner une valeur particuliére a une suite.

[11 ATTENTION !!! |I

A Il faut bien faire la différence entre X et z. Pour le moment, on introduit X qui est une
indéterminée (et que je ne vais pas définir complétement proprement dans ce cours par écrit).
On introduira ensuite la variable x. Et ce n'est pas la méme chose. L'indéterminée X n'est
PAS la variable z, qui n'est pas I'indéterminée X. Il faudra bien faire la distinction entre les
deux et j'insisterais beaucoup sur cette distinction.

6
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Remarque :
Il 'y a d'autres fagons de définir les polyndmes (et plus particulierement I'indéterminée X). Mais
celle-ci me parait encore la plus clair et la plus éclairante pour faire la distinction entre X et x.

Remarque :

Dans la mesure ou, dans la définition, les polyndmes sont des types de suites particuliéres (les suites
presque nulles), certaines opérations vont provenir des opérations sur les suites. Notamment |'addition
et la multiplication par un scalaire.

Définition 1.5 (Egalité dans K[X]) :
Soit deux polyndmes P(X) = Y20 ap X* et Q(X) = 3125 bpX* de K[X] (donc les suites
(ay) et (b,) sont donc des suites presque nulles.

On dit que P et ) sont égaux si les suites de leurs coefficients sont égales, i.e.

P=Q < VYneN, a,=0,

La notion d'égalité entre polyndmes provient donc de la notion d'égalité entre suites. Les po-
lynémes sont un cas particuliers de suites (ce sont des suites presque nulles).

Définition 1.6 (Polynéme constant, Polynéme nul) :

= On appelle polyndme constant de K[X] un polynéme de la forme CX° = (C,0,0,...)
avec C € K.

= En particulier, on appelle polyn6me nul, le polynéme constant égale a 0.

Remarque :
Du coup, au vu de la définition, on fait souvent un amalgame entre un polynéme constant et la valeur
de la constante (donc de son coefficient non nul). Ce n'est pas bien. C'est une erreur a strictement
parlé. Mais c'est pratique. On en a trés envie et ¢a allege beaucoup les notations. Un peu comme on
identifie une fonction constante avec sa valeur.

Autrement dit, par commodité, on identifiera les polyndmes constants a leur constante via la
bijection (que nous verrons étre une forme linéaire) C X — C.
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Définition 1.7 (Monéme) :
On appelle monéme de K[X] tout polynéme de la forme

aX"

avec a € K.

Etymologiquement, “mondme” veut dire un seul “ndme". Les “n6me" sont justement les éléments
constitutif de K[X], c’est a dire les objets de la forme aX™. Donc un monéme est un seul de ces
machins. Et étymologiquement, un “polynéme” est objet composé de plusieurs “néme”, c'est donc
un objet de la forme agX? + a1 X' + - + a, X™ avec plusieurs mondme.

En particulier, les polyndmes constants sont des mondmes (de la formes a X" avec toujours
a € K).

Remarque :
Un polyndme est donc une combinaison linéaire de mondme.

Définition 1.8 (Polynéme pair et polynéme impair) :
Soit P(X) = >20 a, X™ € K[X] un polynéme.

= On dit que P est pair ssi Vn € N, ag,+1 = 0.
= On dit que P est impair ssi Vn € N, aq, = 0.

Remarque :
On notera que le polyndme nul est a la fois pair et impair. C'est le seul (facile a montrer).

1.1.2 Degré

La notion de degré est aux polynémes ce que la notion de dimension est aux espaces vectoriels
de dimension finies.

Définition-Propriété 1.9 (Degré d'un polynéme [V']) :
Soit P(X) = 3720 arX* € K[X].

= Si P #0, on appelle degré de P le plus grand entier d € N tel que ag # 0. On
le note deg(P), i.e.

deg(P) = max{k € N, a; # 0}.

= Par convention, on note deg(0) = —oc.
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Démonstration :
On suppose P # 0. On rappelle que si P(X) = Z,;Z’B apX"* est un polynéme, alors la suite de ses
coefficients (a,,) est une suite presque nulle. Comme P # 0, alors (a,) # 0 et donc Ing € N tel que
any # 0. Donc {k € N, ay # 0} # 0.

La suite (a,,) étant une suite presque nulle, donc 3d € N tel que Vn > d, a,, = 0. On en déduit
donc que {k € N, ay # 0} est majorée par d.

Donc I'ensemble {k € N, aj, # 0} est un sous-ensemble non vide et majorée de N, donc il admet
un maximum. On note deg(P) ce maximum. O

[11t ATTENTION !!! |I

On ne parle de degré QUE pour des polynémes. Rien d'autres! (enfin pour nous...) Au
méme titre que I'on ne parle de dimension QUE pour des espaces vectoriels et rien d'autres.

A\

La convention est |a pour assurer un bon fonctionnement des formules qui vont venir par la suite.
Comme ¢a, on n'a pas besoin de se préoccuper (en général) du fait que P soit nul ou pas dans les
formules faisant intervenir le degré d'un polynéme.

Cet entier est unique :

Proposition 1.1 (Expression du degré et Unicité du degré) :

Soit P € K[X], P # 0.
Alors deg P = max{k € N, a; # 0} = min{k € N,Vn > k, a, = 0}.
En particulier, le degré est unique pour un polyndme donné.

La démonstration n'est pas trés dur. On pourrait I'exprimer autrement. Ces expressions ne sont
pas toujours trés utiles, mais elles ont I'avantage de justifier que le degré est unique pour un polynéme
donné et que I'on peut donc parlé DU degré d'un polynéme.
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[11 ATTENTION !!! |I

On rappelle qu'un polyndme est essentiellement une suite presque nulle. Donc on peut tou-

A jours écrire un polynéme P sout la forme P(X) = Zgzo apX". Attention cependant, avec
cette notation, cela ne veut pas dire que P est de degré d. Cela veux juste dire que deg P < d.
Cela veut dire qu'il n'y a pas de terme de degré plus grand que d. Mais pour que le degré
de P soit vraiment d, il faut imposer un condition supplémentaire (par exemple deg P = d
ou encore ag # 0). On a juste un majorant du degré avec cette notation.

Définition 1.10 (K, [X] [v]) :
Soit n € N. On note K,,[X] I'ensemble des polynémes de degré inférieur a n, i.e.

K,[X] = {P € K[X], deg(P) < n}.

Définition 1.11 (Coefficient dominant, Coefficient constant [v']) :
Soit P = Y¢_,ar X* € K[X] un polyndme non nul de degré d € N.

= On appelle coefficient dominant de P le coefficient aq de X?. C'est donc le dernier coeffi-
cient non nul.

= On appelle coefficient constant de P le coefficient ag devant X,

Remarque :

On pourra noter coeff dom(P) le coefficient dominant de P. Mais attention! Cette notation n'a rien
de canonique. C'est la mienne. Que j'utilise parce que c'est pratique. Et parce qu’elle est transparente
et parfaitement compréhensible. Mais ce n'est pas une notation standard. Il est possible que I'on vous
la reproche si vous I'utilisez.

Exemple 1.3 :
Déterminer deg(X?3 + X2 — 1) et deg(aX + b) en fonction de a et b deux éléments de K ainsi que
leurs coefficients dominants et constants.

Remarque (Caractérisation des polynémes constants) :
Les polynémes de degré 0 sont tres exactement les polynémes constants non nuls.

10
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Définition 1.12 (Polyndme unitaire [v]) :
Soit P € K[X], P # 0.
On dira que P est unitaire si coeff dom(P) = 1.

Remarque :
En particulier, tout polyndme unitaire est non nul. Forcément puisqu'il a un coefficient qui est 1 donc
non nul... (et ce coefficient doit &tre son coefficient dominant)

Exemple 1.4 :
Le polynéme X" — 1 est unitaire pour tout n € N*. Mais le polynébme 1 — X" ne |'est pas.

1.1.3 Opérations sur K[ X] et structure algébrique

Nous allons définir dans cette partie toutes les opérations qui existent entre polynémes. Il va y
en avoir 4 (5 sur C[X]).

1.1.3.1 Structure d’espace vectoriel

Définition-Propriété 1.13 (Combinaison linéaire) :
Soit P(X) =Y a, X", Q(X) =X/ 20b, X" € K[X] et A € K.

= On définit le polyndme P + @ de K[X] par

+oo

(P+Q)(X) = Z(an + bp) X"

n=0
= On définit le polynéme AP de K[X] par
+oo

(AP)(X) = _(Aan)X"

n=0

Démonstration :
[l faut montrer que P + @ et AP sont bien des polynémes a coefficients dans K, cad qu'il faut
montrer que la suite de leurs coefficients sont des suites presque nulles de K.

Soit np,ng € N tel que Vn > np, a, = 0 et Vn > ng, b, = 0 (attention, ce ne sont que des
majorants du degré). Alors Vn > np, Aa, = 0 donc la suite (Aa,) = A(ay,) est une suite presque

11



1 L'ALGEBRE K[X] 1.1 Généralités

nulles de K. Et Yn > max(np,ng), on a a, +b, = 040 = 0. Donc la suite (a,)+ (bn) = (an +bn)
est également une suite presque nulle. O

Remarque :
En fait, ce qu'on sous-entend, c’est que I'ensemble des suites presque nulles de K est un K-espace
vectoriel. Et comme cet ensemble “est” I'ensemble des polynémes ...

Exemple 1.5 :
Déterminer le polyndme (2+ X + X2) 4+ (X3 4+ X —1) et 2 - (X2 —1).

Théoreme 1.2 (K[X] est un K-ev [V]) :
(K[X],+, - ) est un K-espace vectoriel dont I'élément neutre est le polynéme nul

On a donc les relations

VP,Q € K[X], P+ Q € K[X], VA € K, A\P € K[X].
VP,QeK[X],P+Q=Q+P

JE € K[X], VP € K[X], P+ E = E+ P = P (ici E est le polynéme nul).
VPeK[X],3Q e K[X], P+ Q=Q+P=E.
VP,Q,ReK[X],(P+Q)+R=P+(Q+R)=P+Q+R
VPeK[X],1-P=P

VA peK, VP e K[X], AN+ u)P = AP+ uP

VA e K, VP, Q € K[X], M(P+ Q) = AP + \Q.

VA u e K, VP € KIX], AM(uP) = (Ap)P

© 0 N oo A D=

Démonstration :

1. Déja fait dans la définition [1.13]
2. Soit P,Q € K[X],
+o00 +o00
(P+Q)X) =) (an+b)X" = (by +an)X" = (Q + P)(X)

car I'addition est commutative dans K. (On aurait pu dire aussi que (K[X],+) est un sous-
groupe du groupe abélien (KN, +) mais ce n'est pas au programme).

12
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3. Soit P € K[X]. On note E le polynédme nul. Alors
+o0
(P+E)(X)=) (ap+0)X Zaka
k=0

et £+ P = P est vérifiée automatiquement par commutativité de I'addition dans K[X].

4. Soit P(X) = 125 aX*. Alors la suite (—ay,) est une suite presque nulle de K donc on peut
considérer le polyndme Q(X) = Y720 —a, X" associé. Et (P+Q)(X) = 3720 (ag —ag) X* =
ZLOBO - X* = E(X). De méme pour 'autre identité par commutativité de I'addition.

5. 0n prend P(X) = Y72 apXF, Q(X) = 200, X", R(X) = 20 ¢, X™. Alors, par
définition de la somme de deux polynémes, ((P+ Q) + R)(X) = 320 ((an + bn) + ) X" =
Zn Zo(an + by + cp) X" = Zn “o(an + (bn + ) X" = (P +(Q + R))(X).

6. Soit P(X) = S/ arX® € K[X]. Alors 1 - P(X) = Y>720(1 - ap)X® = Y020 apXP =
P(X).

7. Soit A\, € K et P(X) = Y120 apX* € K[X]. Alors (A + p)P(X) = S50 (A + p)ap X* =

20 (Aayg + pag) X = AP(X) + pP(X) et il est clair que les suites en présences sont toutes
des suites presque nulles.

8. Soit A € Ket P(X) = X120 ar X¥,Q(X) = S0 b X* € K[X]. Alors A\(P(X) + Q(x)) =

AP+ Q)(X) = Y325 Mag + bp) X* = S0 (Aag + Abk) X* = AP(X) + AQ(X) avec que
des suites presque nulles partout.

9. soit A, € K et P(X) = 25 axX® € K[X]. Alors A(uP(X)) = A (225 paxX*) =
STESS AMpag) XP = 3528 (Aw)arX® = (Au)P(X). Ici encore, les suites sont des suites presque
nulles.

(Ouf!) O

Proposition 1.3 (Degré de \P [V]) :
Ona:
degP siA#0

VP € K[X], VA € K, deg(A\P) = .
—00 siA=0

Démonstration :

SiA =0, alors \P = 0 et donc deg(AP) = —00.Si A # 0et P =0, alors \P = 0 et donc deg(A\P) =
—o0 =deg P. Si A # 0 et P(X) = (2 4, X* avec deg P > 0, on a AP(X) = Y08 F \ay X*.
Mais, par définition de deg P, aqeg p 7 0, donc Aaqeg p # 0. Donc deg(AP) = deg P. O
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Proposition 1.4 (Degré d’une somme de polynémes [V]) :
Soit P, () € K[X]. Alors
deg(P + Q) < max(deg P,deg Q).

De plus :

deg(P) # deg(Q)
ou

{deg(P) = deg(Q)
coeff dom(P) + coeff dom(Q) # 0

deg(P + Q) = max(deg P,deg Q) <—

Démonstration :

On pose P(X) = Y 0_jar X" et Q(X) = S1_, bk X" avec p = deg P et ¢ = deg Q. Sans perte

de généralité, on peut supposer deg P < deg Q. Alors (P + Q)(X) =>4 _, ap Xk + > o b XF =

SP_olak +by) XF+ > i b X*. Si deg P < deg Q, alors deg(P + Q) = ¢ = max(deg P, deg Q).
Et si deg P = degQ, alors (P + Q)(X) = ¥ _(ay + by) X" donc deg(P + Q) < deg P selon

si a, + b, = 0 ou non. O

Remarque :
Si deg P = deg () et que les coefficients dominants de P et ) s’annulent, alors

deg(P 4 Q) < max(deg P, deg Q)

Exemple 1.6 :
Déterminer le degré de P+ Q avec P(X) = X3 - X +1et Q(X) = X2 - X3 - 1.

Proposition 1.5 :
Soit n € N. Alors K, [X] est un sev de K[X].

Démonstration :
Il suffit d'utiliser la caractérisation des sev. Ce n’est pas trés dur avec ce qui a été fait précédemment.
O
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Remarque :
En fait, K,,[X] est un K-ev de dimension finie, mais on le reverra plus tard.

1.1.3.2 L’anneau (K[X], +, )

On définit maintenant un produit sur K[X] :

Définition-Propriété 1.14 (Produit de polyndmes [v]) :
Soit P(X) = 3120 ap XF* et Q(X) = 3125 by X" deux polynémes de K[X].
On définit le polynéme PQ € K[X] par

+o0
PQ(X)=> e X*
k=0

ou Vn € N,

n n
Cp = Z apbq = Z apbp—p = Z Ap—kbr = agby, + a1bp—1 + - - + apbo.
k=0

p,qEN = k=0
pt+g=n

Démonstration :
Il faut montrer que PQ tel qu'il est définit est bien un polynéme, c'est-a-dire que la suite des ses
coefficients est une suite presque nulle.

On sait In € N et I3m € N tel que a; = 0 pour tout £ > n et b; = 0 pour tout j > m. En
prenant k > n + m, alors

k n k
Crp = Zajbk,j = Zajbk,j + Z ajbk,j =0
§=0 §=0 j=n+1
En effet, si0 < j <n,alorsm <k —j<kdoncb,_j=0etsin+1<j <k onaa;=0.Donc
(ck) est une suite nulle a partir de n + m, donc c'est une suite presque nulle et donc PQ est bien
un polynéme de K[X]. O

Remarque :
On vient en particulier de montrer que deg(PQ) < n+m = deg P + deg Q.

Remarque :
On définit une nouvelle opération sur les suites presque nulles. Qui est une multiplication différente
de celle définie sur les suites génériques. Sur K on a définie une multiplication terme a terme. Ici, on
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définit une nouvelle multiplication qui est plutét une sorte de développement pour coincider avec ce
qu'il se passe sur R avec des produits de sommes. Sur les suites presque nulles, c'est cette nouvelle
multiplication qui va étre intéressante, méme si |'autre fonctionne toujours. Elle aura simplement
moins d'intérét car moins cohérente avec la structure polynomiale.

Exemple 1.7 :
Déterminer le polyndme (2 + X — X?)(X3 + X —1).

Proposition 1.6 (Produit de monéme) :
Vp,q €N,
XP x X9 = XPta

Démonstration :
Pour les besoins de cette démo, on utilise le symbole de Kronecker dont on rappel la définition.

1 sip=gq

P q €N, Opg = {O sinon

Alors XP = Z;:“é 5k,pXk et X7 = ZZ;O?] 6;%qu. Alors XP x X9 = ZZ;’B e XF avec VEk € N,

k
cp = Z 03 pOk—iq
i=0

t=D
k—i=q

Z’:
— b
k=p+q
Donc ¢, # 0 <= k = p+q. Et dans ce cas, cpiqg = S 008 6ipOpiqiq = Oppdgq = 1. Donc
XP x X9=1x XPT4 = XP+q, g

51'7;05]@_@'7(1 75 0 <— {

Remarque :
Cette démo vient donc de justifier a posteriori la notation pour la suite presque nulle X* =
(0,...,0,1,0,...). On a bien
XFP=XxXx-xX.
k
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Proposition 1.7 (Degré d’un produit de polynémes [v]) :

VP, Q € K[X], deg(PQ) = deg P + deg @

Démonstration :
D’abord, par la définition du produit polynomiale, il est facile de voir que si P = 0 ou Q = 0, alors
PQ =0 et donc deg(PQ) = —oco = deg(P) + deg(Q). On suppose donc P # 0 et Q # 0.

On pose n = degP et m = deg@ et P(X) = Y0 oar X" et Q(X) = 7 b X", Alors
PQ(X) = Zzzo e X" avec ¢, = > ptq—k pbg €t d = deg(PQ). Or on a vu que ¢; = 0 pour tout
k > n+m. Donc deg PQ < n + m puisque deg(PQ) est le minimum de {k € N,Vj > k,c; = 0}.

Et Cogpm = Sr00" @ibntm—i = >0 @ibntm—i = anbm # 0. Donc deg(PQ) = n + m. O
Démonstration :
Déterminer le degré de (2 4+ X — X2)(X3 4+ X — 1) de I'exemple précédent. O

Théoreme 1.8 ((K[X],+, x) est un anneau.) :

(K[X],+, x) est un anneau commutatif, munit de ses deux LCl, dont I'élément neutre pour
le produit polynomial est le polynéme constant égal a 1. Le produit polynomial est bilinéaire
(i.e. (K[X],4, x, ) est une K-algébre commutative).

An d’autres termes :

1. VP, Q € K[X], PQ € K[X] [LCI]

2. VP,Q,R e K[X], VA, u e K, AP+ pQ)R = APR+ pQR [Linéarité a gauche]

3. VP,Q,R € K[X], VA\,u € K, PIAQ + uR) = APQ + uPR [Linéarité a droite]

4. VP,Q € K[X], PQ = QP [Commutativité]

5. 3U € K[X], VP € K[X], UP = PU = P (ot U = 1 € K[X]) [Elément neutre]

6. VP,Q,R € K[X], (PQ)R = P(QR) = PQR [Associativité]
Démonstration :

1. Déja fait dans la définition du produit de deux polynémes.

2. C'est un jeu d'écriture. On pose P(X) = Y7_ jar X" Q(X) = S1_ bk X" et R(X) =
S0 kX", On a alors (AP + pQ)R(X) = 3120 dp X" ou dy, = di—o(Aaj + pbj)eg—j =
AY g ajer—j + nYF_gbjcj—k. Donc (AP + uQ)R = APR + uQR.

3. On fait exactement la méme chose.
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4.

Soit P(X) = Y7 garX¥ et Q(X) = 20, br X" deux polyndmes a coefficients dans K
de degré n et m respectivement. Alors QP (X) = ZZ:[)” dpX* avec dj, = > ptq—k bpag =
> gip=tk Qqbp = ¢ ot PQ(X) = Sy ek X*. Donc PQ = QP

. On va montrer que le produit de polyndme admet un élément neutre qui est le polyndme

contant égal a 1. On note U le polyndme constant égal a 1. Donc U(X) = Z;ﬁ% Sop Xk =
1X% = 1. Soit P(X) = Yo arX* € K[X] de degré n. Alors UP(X) = Y7140 ¢, X* avec
L = Zp+q:k do,paq = ay donc UP = P. Et la commutativité se charge de I'autre identité.
Soit P(X) = 2% garX¥, Q(X) = Xk_,bi X" et R(X) = 7_, e X" trois polyndmes de
K[X]. Alors QR(X) = Y0700 dp X" ol dy, = Yy —p bics et (P(QR))(X) = S5 t5 ™7 e X*
oll e = Y,4qpapdg- On note enfin (PQ)(X) = Y077 fiX® ol fi = Y aiby et
(PQIR)(X) = Y020 gk X* ol gk = ¥ qi St Alors

e = Z apdy

ptq=k

=3 ap<z bl-cj)

p+Hq=k i+j=q

= Z Z apbicj

ptq=kit+j=q

= Z apbicj

ptiti=k

= Z CJ(Z apbz-)

q+j=k pti=q

= Z ¢ifq

q+j=k
= 9k

D’ou la relation.

Théoréme 1.9 (Binéme de Newton) :
Soit P, () € K[X]. Comme K[X] est commutatif (au sens de la multiplication polynomiale),

on a .

VneN, (P+Q)" = zn: (") pron—Fk

k=0 k
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[11 ATTENTION !!! |I

A On a déja vu que le bindbme de Newton ne fonctionne pas tous le temps. Ici ca marche bien.
Mais ce n'est pas parce qu'il y a un polyndme qui apparait que ca fonctionnera bien. Par
exemple, si f et g sont des endomorphismes d'un ev F, alors on ne peut rien dire, en toute
généralité, en ce qui concerne le développement de (P(f) + P(g))™!!

Comme K[X] est un anneau, il y a donc le groupe des inversibles.

Exemple 1.8 :
Le polynéme X n’est pas inversible.

[11 ATTENTION !!! |I

A La notion d'inversibilité dépend évidemment de la définition de I'opération que I'on considére,
mais également de I'ensemble dans lequel on se place.
Par exemple, on a une multiplication dans Z. 2 n'est pas inversible dans Z mais a un
inverse dans Q (et donc dans R aussi).

Proposition 1.10 (Polynémes inversibles [v]) :
Les polyndmes inversibles de K[X] pour la multiplication sont les polyndmes constants non
nuls, i.e. K[X]* = K*.

Autrement dit, I'ensemble des polynémes inversibles est Ko[X] \ {0} que I'on identifie 3 K\ {0}
via la forme linéaire bijective (donc I'isomorphisme) Ko[X] — K canonique défini par C X - C.

Démonstration :
Soit C' € K*. Alors % e K* et C' x % = 1. Donc le polynéme C' est inversible.

Réciproquement, soit P € K[X] un polynéme inversible. Donc 3Q € K[X] tel que PQ = 1.
Alors 0 = deg 1 = deg P + deg Q. Mais deg P,deg @@ € NU {—o0}. Donc deg P = deg @ = 0. Ce
sont donc des constantes non nuls. O
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Corollaire 1.11 (K[X] est intégre [v]) :
Il n'y a pas de diviseurs de 0 dans K[X], i.e. :

¥P,Q € K[X], (PQ=0 <= P=00uQ=0)

Vous le pressentez, on appelle diviseurs de 0, un élément pour lequel il existe un autre élément
dont le produit vaut 0 (i.e. on dit que P est un diviseur de 0 si 3Q € K[X] tq PQ = 0). Il existe
des ensembles dans lesquels ¢a existe. Ce n'est pas gagné a priori d'avoir la propriété du dessus.

Démonstration :
Le sens indirecte est évident.

On va démontrer la réciproque par contraposée. Supposons que P, @ € K[X]\{0}. Donc deg P >
0 et deg@ > 0. Alors deg PQ = deg P 4+ deg @@ > 0. Donc deg PQ) # —oo et donc PQ # 0. O

1.1.3.3 Composition de polynomes

Définition-Propriété 1.15 (Composition de polynéme [v']) :
Soit P,Q € K[X] avec P(X) = Y¢_, ax X* de degré d.
On définit alors le polynéme P o () par

d
PoQ =Y a,Q" € K[X]
k=0

La puissance étant a comprendre en tant que produit ici.

Autrement dit,

d
PoQ(X)=P(Q(X)) =) atQ(X)"
k=0

Démonstration :
Il faut montrer qu'on obtient un polynéme, c’est a dire que la suite des coefficients de P o () est
presque nulle.

OnaPoQ = ZZ:O apQ*. Or on sait que Vk € N, QF € K[X]. Et comme K[X] est un K-espace
vectoriel, il est stable par combinaison linéaire, donc Z%:o ap Q" est un polynéme. O

Remarque :
On voit plusieurs choses. D’abord, I'outil des espaces vectoriels est un outil trés efficace. On le
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savait déja, mais on enfonce le clou. Une fois qu'on s'est fatigué a montrer qu'un ensemble avait
la structure d'espace vectoriel, ¢a simplifie énormément pas mal de calcul ultérieur (voir carrément
les rend inutiles) et démontre tout un tas de propriétés d'un seul coup, sans avoir besoin de calculer
quoi que ce soit.

D’autre part, on voit qu'on fait des compositions. Or cette opération est normalement réservé
aux fonctions. Mais pour le moment ce n'est qu'une notation pour une nouvelle opération sur K[X].
On verra par la suite (partie page que c'est cohérent avec ce qu'il se passe pour les fonctions
polynomiales ce qui justifiera a posteriori cette notation. Mais ne pas confondre pour autant les
polyndmes avec des indéterminés X et les fonctions polyndmiales qui seront d'une variable x.

A [11t ATTENTION !!! |I

La composition n’est pas commutative. Donc P o Q # Q o P méme si les deux existes.

Proposition 1.12 (Degré de la composée de deux polyndémes [v]) :
Soit P,Q € K[X], Q # 0.
deg(P o Q) =deg P x deg Q)

Démonstration :
Supposons que P = 0. Alors bien siir, P o Q = 0 et donc la formule est vrai. Supposons donc que
P #0.

On pose P(X) = 26:%13 ayX®. Alors P o Q = Ziigop ap@Q*. Mais degQ* =

degQ +degQ +---+deg@Q = kdeg Q. Donc deg P o Q = deg Pdeg@, car Vk € N, degQ* <
k

deg QFF1 et adeg P 7 0 (et degré d'une somme de polynémes). O
Exemple 1.9 :

Déterminer Po @ avec P(X) =2+ X — X% et Q(X) = X3+ X — 1. Déterminer également R(X?)
et R(X)?si R(X) =Y f_garXF.
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Remarque :
SiQ =0, alors Po@Q = ag, le coefficient constant de P, qui est de degré 0 ou —oo selon que ag # 0
ou non.

Proposition 1.13 (Caractérisation de la parité d’'un polynéme) :
Soit P € K[X].

(i) P est paire si et seulement si P(—X) = P(X).

(ii) P est impaire si et seulement si P(—X) = —P(X).
ol P(—X) est la composée du polynéme P par le polynéme —X.

Donc la notion de parité qu'on a introduite auparavant (1.8} p. est cohérente avec celle que
['on connaissait déja.

Démonstration :

(i) On démarre de ce que I'on veut montrer :

P(—X)=P(X) <— ioaka = _io(—nkakxk
k=0 k=0
“+oo
Y (1= (D)MapX* =
k=0

VkeN, (1—(-1)"a, =0
Vk € N, 2a2141 =0
P pair

[

(i) On fait pareil pour I'imparité.

Proposition 1.14 (Propriété algébrique de la LCl o [V]) :
La loi de composition interne o sur K[X] vérifie :

1. VP,Q,R € K[X], (PQ)oR=(PoR)(QoR) [Distributivité de o sur x a gauche]

2. VP,Q,ReK[X],V\,peK, AP+ pQ)oR=APoR+ uQoR.
[La composition est linéaire a gauche]

Démonstration :
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1. On pose P(X) = Y% arXk, Q(X) = Y0 b X" et R(X) = Y720 X" On pose
également PQ(X) = Z,Jg:c’% dp X" avec dj, = >izoaibk—i. Alors (PQ) o R = E;;"O’ dpRF.
D’autre part, PoR = Y20 ap R* et QoR = 3120 b R. Alors (PoR) x (QoR) = 3120 di. RF.
D’ou I'égalité.

2. (AP + pQ) o R = Y120 (Aag + pby) R¥ = 3720 Mg RE + 37128 ubg R¥ = AP o R + @ o R.

O

Remarque :
Autrement dit,
K[X] x K[X] — K[X]
(P.Q) = PoQ

est linéaire par rapport a la variable de gauche. Mais pas la variable de droite.

Exemple 1.10 :
Onprend P(X) =2+ X —X?et Q(X) =X+ X —1let R(X)= X+ 1. Calculer (PQ)o R et
(B3P —-2Q)oR.

1.1.3.4 Conjugaison complexe

Dans C, vous savez qu’on dispose d'une opération supplémentaire qui est la conjugaison complexe.
On va donc regarder ce que ¢a fait sur les polynémes.

Définition 1.16 (Polynéme conjugué) :
Soit P(X) = Y% o arX* € C[X].
On appelle polynéme conjugué de P le polynéme

P(X) = i@X’“ € C[X]
k=0
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Proposition 1.15 (Conjugaison et opérations) :
Soit P,Q € C[X] et A\, u € C. Alors

1. P=P [Involution]
2. AP+ uQ = AP +71Q
3. PQ=PQ

Démonstration :
Je n'oserais vous faire |'affront de I'écrire. O

11t ATTENTION !!! |I

On rappelle que la conjugaison n'est PAS linéaire!! Mais la conjugaison est sesquilinéaire.
Vous reverrez cette notion dans le chapitre sur les espaces hermitiens en deuxiéme année.

A\

Proposition 1.16 (Caractérisation des polyndmes réels par leur conjugué) :
Soit P € C[X]. On a
PeR[X] & P=P

Démonstration :
Facile O

Remarque :
On peut faire une caractérisation des polyndmes imaginaires purs aussi de la méme facon. Mais ils
nous intéresseront moins a priori. On peut la faire tout de méme et donc il est possible de I'utiliser,
si besoin est.
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1.2 Fonctions polynomiales

Attention, il va y avoir dans ce paragraphe des distinctions assez subtiles du point de vue philoso-
phique. Elles sont nécessaires. Et vitales. Et elles proviennent directement de la définition (premiére)
des polyndomes.

Définition 1.17 (Evaluation d’un polynéme [v]) :
Soit P(X) = 3% _garX* € K[X] un polyndme et a € K. On appelle valeur de P en a, ou
évaluation de P en «, le scalaire >-7_ apa®.

Définition 1.18 (Fonctions polynomiales [v]) :
Soit P(X) = % garX* € K[X] un polyndme. On définit la fonction polynomiale associée a
P sur K, notée P, définie par

o= Yroo apzh

[11t ATTENTION !!! |I

A A strictement parlé, P # P. Ce n'est pas le méme objet. P est polynéme. C'est une suite
presque nulle. Alors que P est une fonction. Ce n’est pas le méme objet. Néanmoins, on peut
créer une fonction a partir d'un polynéme. On I'appelle P. Mais ce n'est plus un polynéme.
C'est une fonction polynomiale. Ne pas confondre les deux.

Remarque :

L’amalgame entre un polyndéme et sa fonction polynomiale associée étant tres tentante, elle sera
souvent faite en deuxieéme année. Et pourtant, vous devrez tout de méme savoir différencier les deux.
Vous pourrez simplement passer de I'un a I'autre sans le préciser, mais sans confondre les deux (donc
ne pas confondre les manipulations et les théorémes qu’on le droit d'appliquer).

Cet amalgame sera précisé dans les sujets. Attention, si ce n'est pas préciser, vous ne pourrez
pas le faire. La phrase usuelle pour permettre cet amalgame est “On identifiera un polynéme P de
K[X] a la fonction polynomiale associée sur R". Ou une autre phrase similaire.

On insistera pour cette année, puisque le programme demande de faire la distinction et que, si la
distinction n’est pas claire, au moment ol on s'autorisera de faire ces amalgames en sachant utiliser
les propriétés des uns et des autres sans se tromper et en les différenciant, les choses risquent de
s’embrumer. Ce n'est pas parce qu'on écrit plus la distinction qu'il ne faut pas savoir la faire. La
distinction sera toujours faite, mais on ne précisera plus qu'on I'a fait.
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Exemple 1.11 :
La fonction polynomiale associée au polyndme X2 + 1 de R[X] est la fonction

R — R
xr = 2241

Remarque :

En fait, pour fabriquer la fonction polynomiale, on récupére I'information essentielle du polynéme,
c'est-a-dire les coefficients d'une combinaison linéaire. Par définition, un polyndéme est essentielle-
ment des coefficients d'une combinaison linéaire finie. On peut alors considérer ces coefficients dans
n'importe quel espace vectoriel et transporté cette combinaison linéaire dans cet ev. Les coefficients
étant les méme, on appelle alors polynéme d'un vecteur (pour peu qu'on puisse donner un sens a
X™) cette combinaison linéaire dans ce nouvel ev.

Ce processus de fabrication est classique. On |'utilise trés régulierement. Et pas nécessairement
dans ce sens la. On I'a d'ailleurs déja utilisé dans un exo. A partir d'une combinaison linéaire de
vecteur, on peut extraire la suite des coefficients et du coup, fabriquer le polynéme dont la suite de
coefficients correspond a la suite des coefficients de la combinaison linéaire.

Définition 1.19 (Fonction évaluation) :
On définit les fonctions évaluations pour tout « € K, notée ev,, par

KX] - K
"P(X) — P(a)

CVqy

Remarque :
L'application ev,, est linéaire. C'est trés facile a vérifier.

Remarque :
On notera que P(0) est le coefficient constant de P. On peut faire d'autres petites remarques
relativement évidentes de ce genre |a.

Proposition 1.17 (Opérations et fonctions polynomiales) :
On a

1. VP,Q € K[X], VA, u € K, AP + uQ = AP + uQ [Linéarité]
2. VP,Q € K[X], PQ = PQ

P ~

3. VP,Q e K[X], PoQ=PoQ
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Démonstration :
Il suffit de I'écrire O

Compte tenu de ces relations, on peut définir une application

KX] — F(XKK)
P — P

cette application est compatible avec toutes les opérations sur K[X] (on peut dire que c’est un
homomorphisme d'algébre, mais encore une fois, cette structure algébrique est HP).
Remarque :

En particulier, en prenant un peu d'avance sur les prochains chapitres, on vient de montrer que

R[X] — C*(R,R)
P P

est une application linéaire (entre les deux R-ev). Il est facile de voir que cette application est injective
(I'étude du noyau est facile). En revanche, elle n'est pas du tout surjective. Par exemple exp n'a pas
d’'antécédent par cette application. Ni le cosinus.

La conséquence dramatique est que cette application n'a pas de réciproque. Et donc :

[11 ATTENTION !!! |I

A On ne peut pas passer d'une fonction a un polynéme! Méme si I'expression de la fonction
ressemble 3 une fonction polynomiale. Il faut poser un polynéme et vérifier que la fonction
polynomiale associée correspond a la fonction qu'on étudie. C'est une partie des problemes
de rédaction classiques et c’est ce qui rend les copies intéressantes. Ou pas.

Définition 1.20 (Racine d'un polynéme [v']) : N
Soit P € K[X] un polynéme. On appelle racine de P tout scalaire a € K tel que P(a) = 0.

27



1 L'ALGEBRE K[X] 1.2 Fonctions polynomiales

[11 ATTENTION !!! |I

La notion de racine d'un polyndme dépend du corps que I'on considere. Par exemple, le
A polynéme X2 + 1 est dans R[X] et dans C[X], mais il n'a pas de racines dans R (en tant
que polyndéme de R[X]) alors qu'il en a 2 dans C (en tant que polynéme de C[X]).

Ces distinctions seront I'objet de la derniére section. |l y a des différences notables avec
lesquelles il faut savoir jouer.

Exemple 1.12 :
Déterminer les racines du polynéme X™ — 1 dans C[X]| puis dans R[X].

Proposition 1.18 (Conjugué et évaluation) :
Soit P € C[X] et a € C. Alors

P(a) = P(a) = P(a)

Démonstration :
La encore, il suffit d'écrire les définition et de passer aux conjugués O

Remarque :

L'ordre dans lequel on conjugue (et ce qu'on conjugue, la nature de |'objet que I'on conjugue) n'a
finalement que peu d'influence. Que I'on conjugue un complexe (évaluation d'un polynéme), ou que
I'on conjugue I'évaluation d’un polyn6me en un conjugué, ou encore que I'on évalue le conjugué d'un
polyndme en un conjugué d’'un complexe, on obtient a chaque fois le méme résultat.

Dans le premier cas, c'est une conjugaison dans C classique, que I'on sait faire depuis le début
d'année; dans le second, on commence par considérer |'application associée a P, on la conjugue
en tant qu'applications; dans le troisieme cas, c'est la fonction polynomiale associée au polynéme
conjugué de P que I'on considere. Et conjugué I'image, ou la fonction polynomiale ou le polynéme,
c'est pareil.
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Définition 1.21 (Polynéme d'endomorphisme d'un ev) :
Soit E un K-ev et f € L(E). On définit une application

K[X] — L(FE)
P ]5(f)

oll, si P(X) = Y0 arX¥, P(f) = X"_,arf* au sens de la composition d’endomorphisme.

On verra d'autres évaluation polynomiale. En fait, dés qu'on a un espace vectoriel munit d'une
autre LCI (jouant le réle de multiplication) entre vecteur pour pouvoir donner un sens a la puissance
n-éme d'un vecteur, on peut définir une application de K[X] dans cet ensemble.
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Exemple 1.13 :

On prend E = R? et I'application f(x,y,2) = (y + z,2 + 2z,x + y). Calculer alors ]5(f) pour
P(X) = X?— X — 2. Que peut-on en déduire sur f?

Remarque : N
Si f € L(E), un polynéme P € K[X] tel que P(f) = 0 s'appelle un polynéme annulateur de f. lls
vont jouer un réle important dans la suite.

Proposition 1.19 (Propriété algébrique de I'application K[X| — L(E) [vV]) :
Soit E un K-ev et f € L(E).
L'application

est une application linéaire vérifiant

(i) VP,Q € K[X], PQ(f) = P(f) o Q(f)

—~—

(i) VP,Q € K[X], PoQ(f) = P(Q(f))

[11t ATTENTION !!! |I

Le sens de I'évaluation d'un polynéme et les opérations qu'on a le droit de lui faire dépend
A bien évidemment de la nature de I'objet sur lequel est évalué le polyndme. Autrement dit,
les opérations possibles sur JB(f)An_e/ sont pas les mémes si f € L(E), f € K etc.
En particulier, on notera que PQ(f) est une composition si f € L(E) et un produit (un
vrai) si f € K. Il y a une ambiguité sur I'opération qui est levée automatiquement par la
nature de f. Il faut donc étre délicat ici.

Remarque :

Dans cette propriété, on fixe f € L(FE) et on fait varier P € K[X]. Mais on pourrait faire l'inverse :
on pourrait fixer P € K[X] et faire varier f € L£(E) dans I'évaluation P(f). Autrement dit, on
pourrait regarder |'application [ +— ]5(f) ou P € K[X] est fixé.

Ces deux applications donnent naturellement naissance a des applications qui vont de L(FE)
dans un ensemble d'applications ou de K[X] dans un autre ensemble d'applications, selon si c’est
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f e L(E) ou P € K[X] qui est fixé en premier dans P(f).
Autrement dit, on pourrait également définir une application
LB) - L(KX],L(E))
e (P P(p)
et montrer qu’elle est également linéaire, puis voir les propriétés qu’elle a par rapport a la composition
etc. C'est un bon exercice. Ce n'est pas excessivement difficile mais c’est surtout un probléeme de
notation.
De la méme maniére, on peut faire le méme genre de jeu sur
K[X] — F(L(B),L(E))
P (feP()

et essayer de voir les propriétés.
On peut méme définir une application

K[X]x L(E) — L(E)
(P, f) = P(f)

mais elle serait un peu moins intéressante.

Proposition 1.20 (Factorisation de Horner) :
Soit P(X) = Y% _garX* € K[X] avec n € N. Alors

P(X) = (... (anX + an-1)X + an-2)X + an_3)...)X +a1)X + a

Démonstration :
On va démontrer le résultat par récurrence sur le degré de P. Si P est nul ou une constante, c'est
évident. Si P est de degré 1, aussi.

Si P(X)=aX?+bX +c, a,b,ccKeta#0.Alors P(X) = X(aX +b) +c.

Supposons que la factorisation de Hérner fonctionne pour tout polynéme de degré < n. Prenons
P(X) = Y045 ap X* un polyndme de degré n + 1. Alors

n+1
P(X)=> apX*
k=0

n+1
=X <Z aka_1> + ap

k=1
n
=X (Z ak+1Xk> + ap
k=0

Or 3% _gap+1X¥ est un polyndme de degré n, donc par principe de récurrence, il peut se factoriser
avec la factorisation de Horner. Et donc P également, compte tenu de la forme de la premiére
factorisation de P. O
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La factorisation de Horner permet de minimiser le nombre d'opérations nécessaire dans
I'évaluation d'un polynéme. Naivement, pour calculer f’(xo), on a besoin @ +d+d
opérations, ot d = deg(P). Avec la méthode de Horner, on aura (toujours naivement) seule-
ment d + d opérations. Ce qui permet d'améliorer grandement la complexité des algorithmes
utilisant des évaluations polynomiales.

Voir les TD d'info de début d'année pour des algorithmes permettant d'obtenir I'écriture

d'un polynémes avec la factorisation de Horner.

1.3 Dérivations

On va commencer ici par définir une “dérivation” dans K[X]. Ce n'est pas une dérivation au sens
fonctionnelle. C'est une nouvelle opération dans K[X]. Mais on se rendra compte que cette opération
coincide avec la dérivation fonctionnelle (classique). D'ou le choix de la terminologie.

Evidemment, il ne faudra pas confondre les deux.

1.3.1 Dérivée polynomiale premiere

Définition 1.22 (Dérivée formelle [v']) :
Soit P(X) = Y-¢_yapX* € K[X] un polynéme.
On appelle polynéme dérivé de P le polyndme, noté P’, défini par

Yoy kap Xt = SSEL(k + Dagp X5 si deg(P)

1
0 si deg(P) <0

IN IV

P/(X) = {

Exemple 1.14 :
Déterminer le polynéme dérivé de 3X3 + X2 — 5.

Proposition 1.21 (Degré et dérivé [v]) :
Soit P € K[X].
Alors deg(P’) < deg P — 1. Plus précisément, on a

—00 si degP <0

deg(P') =
8(F) {degP—l si degP >1

Démonstration :
Ca vient de I'expression de P’. Si P est constant, alors P(X) = >>2_, ax X*. Donc P’ est le polynéme
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nul. Et si P est non constant, alors il est de degré n € N* et a,, # 0 et P(X) = Y7, ax X*. Dans
ce cas, P'(X) = Y725 (k + 1)ap11 X" et na, # 0. Donc P’ est de degré n — 1 =degP —1. O

Corollaire 1.22 (Caractérisation des polynémes constants par les dérivés) :
Soit P € K[X].
P constant <= P =0

Démonstration :
On vient de voir le sens direct. [l manque juste la réciproque.

Supposons donc P’ = 0. Or si P(X) = ¥/ a;X*, on a P/(X) = 3725 kayX*~1. Donc
Vk > 1, ka = 0, c'est a dire Yk > 1, ax = 0 et donc P(X) = ag € Ko[X] ~ K. Donc P est
constant (éventuellement nul). O

Proposition 1.23 (Dérivation et opérations) :
La dérivation vérifie :

1. VP, Q € K[X], Y\, u € K, (AP + uQ) = AP + p@Q’ [La dérivation est linéaire]

2. VP,Q € K[X], (PQ) = P'Q+ PQ' [Formule de Leibniz]
Démonstration :
Exercice. Il suffit d'écrire chacun des polynémes qui interviennent avec leurs coefficients, puis les
dériver et voir que les formules sont vraies. O
Remarque :

Avec le premier point et le fait que K[X] est un K-espace vectoriel, on a :

. KX] = K[X]
P = P

est un endomorphisme de K[X].
Autrement dit, D € L(K[X]). C'est en ces termes qu'il faut le retenir.

En fait, grace au résultat sur le degré de la dérivé, la dérivation D est méme un endomorphisme
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de K, [X].

Proposition 1.24 (Et avec beaucoup de polynéme) :
Soit n € N* et Py,..., P, € K[X]. Alors

et en particulier,

Démonstration :
Il suffit de faire une petite récurrence pour le premier et de faire P, = --- = P, = P pour avoir la
deuxiéme relation. O

Corollaire 1.25 (Dérivé d'une composée de polynéme) :

Soit P,Q € K[X].
(PoQ) =Q xPoQ
Démonstration :
La encore c'est un jeu d'écriture. |l suffit d'écrire P et (Q en fonctions de leurs coefficients, et dérivé
P o Q gréce a la proposition précédente (on connait la dérivé de Qk). O

Vous remarquerez que ces formules sont les mémes que la dérivation de fonction qu'on
a vu dans le chapitre précédent. Cependant, ATTENTION!! Ce ne sont pas des fonctions,
mais des polynémes. |l faudrait des ~ pour avoir des fonctions. Cette dérivation ne correspond

A donc pas a celle du chapitre précédent. Il n'y a pas ici de limite. La définition n’est pas la

méme. On aurait donc pas du appeler ca comme ¢a. Attention donc. Le type de la dérivation
que vous utilisez (et donc sa définition intrinséque qui dépend de limite ou juste d'une relation
entre coefficients) dépend du type des objets que vous dérivez.
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Définition 1.23 (Polynéme primitif (HP ?)) :
Soit P € K[X].
On appelle polynéme primitif de P tout polyndme @ € K[X] tel que Q' = P.

ATTENTION! Il n'y a pas de primitive ici. La notion de primitive est réservée aux fonc-
tions. Elle dépend de la notion de dérivée avec des limite. On ne parle ici que de polyndme
primitif. C'est a dire de polynbme ayant une certaine propriété qui est celle de la définition.

Proposition 1.26 (Ensemble des polynémes primitifs (HP ?)) :

Tout polynéme P € K[X]| admet au moins un polyndme primitif @@ € K[X] et I'ensemble
de ses polyndmes primitifs est constitué des polynémes de la forme @ + ¢ avec ¢ € K, j.e.
{Q+c,ceK}=Q+K

Démonstration :
[l suffit de faire le lien avec les équations différentielles linéaire d'ordre 1 O

1.3.2 Dérivation polynomiale d’ordre supérieure
On a déja introduit
K[X] — K[X]

D:p’ o p

On peut donc considérer ses itérés D” = Idgx], D' = D et D" = DoDo---0D,
S —

n

Définition 1.24 (Dérivée n-éme d'un polyndme) :
Soit P € K[X] et n € N.
Le polyndme dérivé de P d’ordre n est le polynéme P(™) = D™(P).

C'est donc le polyndme dérivé de P par la dérivation polynomiale appliquée n-fois successive a
P.

Remarque :
En particulier, P = P, P(1) = P/, P(?) = (P') = P" etc.
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Proposition 1.27 (Degré d’une dérivée d’ordre n) :
Soit P € K[X]. Alors :

1. Vn > deg P, deg P = —c0
2. Vn < deg P, deg P(") = deg P — n.

Autrement dit ¥Yn > deg P, P"") = 0 puisque le polynéme nul est le seul polyndme de degré
—00.

Démonstration :
Petite récurrence sur n. O

Proposition 1.28 (Dérivée d’une combinaison linéaire et d’un produit) :
On a les relations :

1. VP,Q € K[X], VA, u € K, (AP + pQ)™ = AP 4 1, [Linéarité]
2. VP,Q € K[X], (PQ)™ = Y1_, (H)PHQ—F) [Formule de Leibniz]
Démonstration :

Le premier point s'obtient soit en faisant une récurrence sur n, soit en utilisant la linéarité de D
(pour plus tard). Et le second point est essentiellement la méme démo que la formule de Leibniz du
chapitre précédent. O

Exemple 1.15 ([V]) :
Exprimer p pour tout k,n € Nou Vn € N, P,(X) = X"

Proposition 1.29 (Expression de la dérivée n-éme [v]) :
Soit P(X) = Y2¢_g ap X* € K[X], alors

d
k!
Vn e {0,....d}, PM(X) = a
= " (k—n)!

d—n |
Xk‘—n _ Z Ut (n + )Xk
P k!
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Démonstration :
La démo vient directement de la linéarité de la dérivation, de la composition de la dérivation et de
I'exemple précédent avec le calcul de dérivée n-eme des mondmes. O

1.3.3 Formule de Taylor

Théoréeme 1.30 (Formule de Taylor pour les polynémes [v]) :
Soit P € K[X] et a € K. Alors

+o0 (n) a
n=0 :

Ce théoréme est fondamentale. On le reverra dans le chapitre suivant.

On donne ici une démonstration qui n'utilise que ce qu’il y a pour le moment dans ce cours. Par
la suite, on pourra le démontré en quelques lignes seulement. On aura des outils (d'algébre linéaire
encore et toujours) tres efficace qui nous permettrons de gagner beaucoup de temps et d’énergie.

Démonstration :
On donne une démo ne faisant appel qu'aux nouvelles notions polynomiales.

Soit P € K[X] et a € K. Si P =0, il n'y a rien a faire puisque Vn € N, P(® = 0. On
suppose donc P # 0. On pose d = deg P > 0. Donc Vk > d + 1, P®) = 0 et donc Q(X) =
P(’v)

5128 PO (x — a)f = 5y PO (X - )t € K],
Mais VZE{O,...,d}, PO(X) = Zk:iak(kkf!i)!Xk_i. Donc :
d N(i) a
Q) =y T x
=0 ’
LS R L) (X —a)
(P
& k! k—1 i
:Z;)kzziaki!(k‘—l)'a (X—a)
ko (k
:Z akz<i>ak_z(Xa)l>
k=0 i=0
= Zak(X—a—i-a)k
k=0
d
:Zaka
k=0
~ P(xX)
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O

On pourrait donner une démo d'algébre linéaire, mais il nous manque quelques petits détails pour
pouvoir le faire sans trop de douleur.

Remarque :
Par un petit changement de variable pas dur, on peut écrire la formule de Taylor sous la forme :

+00 Dk
Pk)
k=0 '

Corollaire 1.31 (Expression des coefficients avec les dérivées [v]) :
Soit P(X) = 3128 a;, X* € K[X]. Alors

P™)(0
VneN, a, = 0)
n!
Démonstration :
Il suffit d'appliquer la formule de Taylor en 0. O
Exemple 1.16 :

Soit le polyndme P(X) = X° — (3 + 2i)X* + (5 — i) X + 2. Déterminer ];(7‘)(0) et PA(E)(l) sans
calculé la dérivée de P.

Remarque :
On notera que cette relation est vraie pour tous les entiers. Dés que n dépassera le degré de P, les
coefficients sont nuls, mais les dérivées également. Donc c’est cohérent.
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1.3.4 Dérivée et fonction polynomiale

Théoréme 1.32 (Dérivée polynomiale et dérivée fonctionnelle coincident [v']) :
Si P € K[X], alors

/\// ~\/

(P) = (P)

Autrement dit, la fonction polynomiale du polyndme dérivée coincide avec la dérivée de la fonction
polynomiale. Et c'est tant mieux. Ce qui justifie, a posteriori, la notation et le choix des termes.

Démonstration :
On va faire la démo pour P(X) = Y¢_,apX* € K[X] avec d > 1. Soit a € K et z € K avec

T # a.

Donc

P(z) — P(a) S <k S a“)

car x + 01 ap 84 2o ~1 est une fonction polynomiale donc continue sur K.

Sid=1,0, c'est encore plus facile. Et si P = 0, on s’ennuie.

(P). O

~\/

Donc (P)

Cette proposition est possible sur K car on sait maintenant dériver des fonctions a valeur com-

plexe.
Exemple 1.17 :

— —

Avec le polyndme P(X) = X3 —2X2 +1,0n a (P')(x) = (P) (z).
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1.4 Le cas de K,[X] (algebre linéaire)

Définition 1.25 (Famille de polynémes échelonnée en degré [v']) :
Soit Py,..., P, € K[X]. On dit que la famille (Pi,...,P,) est échelonnée en degré si Vi €
{1,...,n—1}, deg P; < deg P;41.

Exemple 1.18 :

La famille (1, X, X2,..., X™) est échelonnée en degré. Cette famille est la base canonique de K, [X].
La famille ((1+ X)* k= 2,...,5) est échelonnée en degré. Tout comme la famille (1, X2, (1 +

XP, 24X+ X232+ (1+X?%)?+ (1+X2)%)2).

Proposition 1.33 (Liberté de famille échelonnée en degré [v]) :
Soit (P, ..., P,) une famille de polynéme de K[X] échelonnée en degré avec deg Py > 0.
Alors (FPo, ..., P,) est une famille libre.

On peut démontrer cette proposition par récurrence ou directement. On va faire les deux.

Démonstration (Récurrence) :
D’abord, pour n = 0, on ne considére qu'un polynéme non nul, donc il est forcément libre.
Supposons que toute famille de n + 1 polynéme échelonnée en degré soit libre, pour un certain
n > 0. Soit alors (Py, . .., P,y1) une famille de n+2 polyndme échelonnée en degré avec Py # 0. Soit
A0y -+ -5 Ant1 € K tels que ZZI& AP = 0. On pose également, Vi € {0,...,n+ 1}, d; = deg(F;).
Donc0<dy<dy < -+ <dp<dpyi-
C'est encore un polynéme. On peut le dériver plusieurs fois. Par exemple, on a

n+1 (do+1) 41 n+1
(Z AkPk> = 3" M P = 57 5 plht)
k=0 k=0 k=1
par linéarité de la dérivation et puisque deg(Py) = dyp < do + 1. Et par ailleurs, Vi € {1,...,n+ 1},
deg(Pi(dOH)) = d;—dy—1. Donc la famille (Pl(dOH), . ,Péiofl)) est une famille de n+1 polynémes
non nuls échelonnée en degré et est donc libre par hypothése de récurrence. On en déduit donc
Al=+"=Xp31=0.
Ce qui nous amene a \gFy = 0. Mais comme Py # 0, on en déduit également \g = 0 et donc la
famille est libre. O

Démonstration (Direct) :
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On reprend une famille (P, ..., P,) de polynémes non nuls échelonnée en degré et \g,..., A\, € K
tels que >3 _g AxPr = 0. On pose encore dj, = deg(Fy) pour 0 < k < n. On en déduit donc, par
dérivation successive,

n dn)  n

(Z )‘kpk> = > MBI = AP =0
k=0 k=0

par linéarité de la dérivation et puisque, Vk € {0,...,n — 1}, di < d,,. On en déduit donc A, = 0

puisque PT(Ld") = dp! coeff dom(P,) € K*. (Ici aussi, on pourrait alors entamer une autre récurrence).

On a donc ZZ;& AP = 0. Puis en dérivant d,,_1 fois, on trouve alors \,_1 = 0. En réitérant ce
processus 1 + 1 fois, on aboutit a A\g = --- = A, = 0 et la famille est donc libre. O

Définition 1.26 (K,,[X] Ensemble des polynémes de degré < n [v]) :
Pour tout n € N, on pose K,,[X] I'ensemble des polyndmes de K[X] de degré inférieur ou égale
an,ie.

K,[X] ={P € K[X],deg P < n}

En particulier Ko[X]| = {P € K[X],deg P < 0} est isomorphe a K.

Proposition 1.34 (Structure de I'’ensemble des polynémes de deg < n [v]) :
Pour tout n € N, K, [X] est un sous K-ev de K[X] de dimension finie dont (1, X,..., X")
est la base canonique et donc

dimK,[X]=n+1

Démonstration :
On sait déja que K[X] est un K-ev. |l suffit donc d'appliquer la caractérisation des sev. Laissé en
exercice.

Par ailleurs, on sait que

K,[z] = {P € K[X],deg P < n} = {Z arX¥ ag, ... an € K} = Vectg (1, X, ..., X")

k=0
(ce qui prouve également la structure d'ev). Donc la famille (1, X, ..., X™) est une famille génératrice
de K, [X]. Par ailleurs, c'est une famille échelonnée en degré de polynémes non nuls, donc elle est
libre. C'est donc une base de K, [X]. O
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1 L'ALGEBRE K[X] 1.4 Le cas de K, [X] (algebre linéaire)

Exemple 1.19 :
On considere la famille Py(X) =2, P(X) =3X — 1, Po(X) = (X —1)?2 et P3(X) = X3(X +1).
Montrer que (Py, Py, P2, P3) est une base de K3[X].

ﬁ Attention! La multiplication n'est pas une loi de composition interne sur K,[X]. Le
résultat n'est pas (toujours) dans K, [X]. La cause en est la formule du degré d'un produit.

Remarque :
Tout polyndme est dans un certain K, [X]. En effet, si on considére P € K[X], alors il existe n € N
tel que P € K,[X]. Il suffit de prendre n > deg P. On a méme P € K,,[X] pour tout n > deg P.

Remarque (”ldentifications des coefficients”) :
On sait maintenant a quoi correspond “l'identification des coefficients” que vous utilisiez plus jeune.
Elle correspond en fait a la liberté de la base canonique de K,[X]. Il faudra le dire en ces termes.
Et ne plus utilisez ce mot-valise qui n'a pas grand sens.

On peut utiliser I'isomorphisme

) K, [X] — K+
SO'ZTIGLZOG’IC‘)(R = (a’ovalv'--’an)

C’est un isomorphisme par théoréme de I'isomorphisme (utiliser la méme dimension et le noyau, ou le
fait que (1, X,..., X™) est une base de K, [X]). Cet isomorphisme permet de réduire un polynéme
a la seul information de ses coefficients. Et a partir du n-uplet, on peut utilisez ce que I'on sait de
K"*1. (Cet isomorphisme sera largement utilisé dans les chapitres ultérieurs).

Dit autrement, si on a P(X) = Q(X), on se place Ky .x(deg(P),deg(@)[X] qui est un ev de
dimension finie. Si on pose N = max(deg(P),deg(Q)) et (ap) et (by) la suite des coefficients de P
et Q, alors on a P(X) — Q(X) = 0 et donc "1 (ay — by)X* = 0. La liberté de la base canonique
de Kx[X] nous permet d’avoir alors immédiatement Vk € {0,..., N}, ar = by. C'est ce qui se passe
quand on utilise “I'identification des coefficients”.

Remarque :

On a donc en particulier Ko[X] isomorphe a K. On a donc tendance a “étendre” I'isomorphisme et
noté K encore les éléments de Ko[X] (ce qui, a strictement parlé, n'est pas trés correct, mais qu'on
a quand méme déja utilisé plusieurs fois par soucis de simplification de notations).
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2  ARITHMETIQUE DES POLYNOMES

Exemple 1.20 :
On considére |'application f définie par f(P)(X) = P(X + 1)+ P(X +2) — 2P(X). Montrer que
f € L(R3][X]). Donner une base de ker(f) et calculer rg(f).

2 Arithmétique des polynémes

Dans cette partie, on va apprendre a manipuler vraiment les polynémes. On va voir en fait qu'ils
se comportent un peu comme les entiers, c'est-a-dire qu'on va introduire une notion de polynéme
irréductible (I'équivalent des nombres premiers), de division euclidienne ce qui va nous permettre de
faire de I'arithmétique (lemme de Gauss etc) et aussi de décomposer un polynéme en produit de
polyndme irréductible. Cette étape est cruciale pour la suite (et plus particulierement pour I'année
prochaine et la réduction des endomorphismes qui nécessitera de faire de |'arithmétique sur les
polynémes).

2.1 Divisibilité

Officiellement, il n'est écrit au programme que la notion de diviseurs et multiples. Le probleme,
c'est que de ces notions découlent immédiatement de toute une flopée de petites propriétés qu'il n'est
pas raisonnable de ne pas mettre. On ne peut pas utiliser la divisibilité sans utiliser I'une ou I'autre
de ces petites propriétés. J'ai donc complété le programme par les propriétés qui me semblent les
plus utiles et les plus raisonnables (en termes de cohérence avec I'esprit du programme et d'utilité).
Vous en trouverez certainement d’autres ou moins dans la littérature. Ca dépend du point de vue de
["auteur.

La notion de divisibilité est difficilement contournable, mais comme elle est extrémement délicate
(I'arithmétique est I'une des branches les plus ardues des mathématiques), elle est a la limite du
programme. D'ou les frontieres floues et I'interprétation nécessaire de ces frontiéres.

Proposition 2.1 :
Si P,Q,R e K[X], si P#0,
PQ=PR = Q=R

Démonstration :
En effet, on a alors P(Q — R) = 0, ce qui veut dire P = 0 ou Q — R = 0, puisqu'il n'y a pas de
diviseurs de 0. Or P # 0, donc forcément Q — R =0, i.e. Q = R. O

C'est grace a cette proposition simplissime que I'on va pouvoir définir et parler de divisibilité. Il
faudra bien siir étre trés au clair de ce que I'on entend par divisibilité.
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On peut noter que la réciproque de cette proposition est vraie, mais n'a aucun intérét. On notera
également qu'en réalité, cette proposition est une reformulation du fait que K[X] soit intégre (qu'il
n'y ait pas de diviseurs de 0).

C'est surtout la démonstration de cette propriété qui est utile. C'est un type de raisonnement qui
est tres utile dans les polynémes.

Exemple 2.1 :
Montrer que si P € R[X] tel que (X —1)P(X)+1= X2+ X +2, alors P est unique.

Définition 2.1 (Divisibilité, Diviseurs, Multiples [v']) :
Soit A, B € K[X].

= On dira que A divise B si 3P € K[X] tel que B = AP. On notera alors A|B pour rappeler
la notation dans Z.

= On appelle diviseurs de B tout polynéme P € K[X] tel que P|B.
= On appelle multiple de B tout polynéme P € K[X] tel que B|P.

[11t ATTENTION !!! |I

La notion de divisibilité dépend entierement et complétement du corps sur lequel on se
place. Dans la définition, c'est “IP € K[X] [...]" donc la notion de divisibilité dépend de
I'existence d'un polynéme a coefficient dans le corps de base K. Si on change de corps (ce
qu'on fera), on peut perdre la relation de divisibilité.

Par exemple, X — i divise X2 + 1 dans C[X]. Donc X2 + 1 a des diviseurs non triviaux
A dans C[X| mais pas dans R[X]. En effet, s'il admettait un diviseur dans R[X] non trivial, ce
serait nécessairement un polynéme de degré 1. Mais alors il aurait une racine réelle, ce qui
est absurde.

On aurait pu (dii 7) noter la relation de divisibilité par |K pour indiquer dans quel corps
on divise les polyndmes. Mais cette notation n'a rien d'officielle. Néanmoins, vous pouvez
parfaitement la définir en début de probléme et |'utiliser sans vergogne par la suite si ¢a peut
vous trouver ¢a plus clair avec le corps de base en indice. Mais ATTENTION, n'oubliez pas
de définir cette notation en début de copie. Juste une phrase suffit : “On notera ‘K la relation
de divisibilité dans K[X]" par exemple.
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2  ARITHMETIQUE DES POLYNOMES 2.1 Divisibilité

Exemple 2.2 :

On a (X +1)|(X? — 1) dans R[X] et dans C[X] mais (X —i)|X? + 1 n’est valable que dans C[X]
et pas dans R[X].

Proposition 2.2 (Reformulation diviseur et multiple) :
Soit P € K[X].

1. @ € K[X] est un diviseur de P si et seulement si 3A € K[X] tel que P = AQ.
2. @ € K[X] est un multiple de P si et seulement si 3A € K[X] tel que Q = AP.

Exemple 2.3 :
Montrer que (X + 1)[(X* —1) et (X —1)|(X™ — 1) pour tout n € N.

Remarque :
Bien siir, tout polynéme est un diviseurs de 0 :

VP e K[X], P[0 car 0= P x 0.

Définition 2.2 (Diviseur trivial [v]) :
Soit P € K[X].

On appelle diviseur trivial de P tout polyndéme constant non nul ou tout polynéme de la forme
AP avec A € K*.

En effet, pour tout polynéme P, on aura toujours P = a X (%P) avec a € K*. Donc a est un
diviseurs de P mais également %P.
Exemple 2.4 :
5,1/2, V2, X2 +5/4, —8X? — 10 sont des diviseurs triviaux de 4X?2 + 5 ans R[X]. Dans C[X], on
peut rajouter i, 3+ 54, i.X2 4 5i/4 par exemple. Et encore beaucoup d'autres. La liste n'est bien siir
pas exhaustive.
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2  ARITHMETIQUE DES POLYNOMES 2.1 Divisibilité

Remarque :
Les diviseurs triviaux de P € K[X] sont donc les polynémes inversibles (au sens de la multiplication,
bien entendu) et les produits de P avec les polyndmes inversibles.

Remarque :
Si on fait un paralléle avec les entiers relatifs, dans Z, les diviseurs triviaux de n € Z sont 1, —1, n
et —n.

Proposition 2.3 (Se ramener a des polyndmes unitaires) :

Soit P € K[X].
Si P # 0 alors 3!Q € K[X] unitaire et Jla € K tels que P = aQ).
En particulier, deg P = deg Q).

Démonstration :
Il suffit de I'écrire. Si P(X) = Y 7_gar X" avec n > 0 et a,, # 0, alors P(X) = a, (ZZ:O Z—fLXk>
On pose donc Q(X) = >"1_o Z—lek. @ est clairement de degré n (puisque P l'est) et le coefficient
dominant de (@) est Z—Z = 1 donc @) est unitaire.

Supposons P = aQ = SR avec «, 5 € K et @, R € K[X] unitaire. Comme P,Q,R # 0, on a
o, # 0 etdonc @ = gR. Mais @) et R étant unitaire, on doit avoir f/a =1, i.e. f = «. Et par
suite Q = R. O

En fait, la construction de () et « fournissait aussi I'unicité, mais c'est pas tellement plus facile
a dire.

On rappelle aussi que les polyndmes inversibles de K[ X ] sont exactement les polynémes constants
non nuls.

Exemple 2.5 :
On prend P(X) = 5X% — 2X3 + 3 — 2i. Déterminer le polynéme unitaire de méme degré que P
proportionnel a P et le coefficient de proportionnalité.

Proposition 2.4 (Réduction aux polyndme unitaires de la divisibilité) :
Soit P, € K[X] et A\, u € K*. Alors

(AP)|(pQ) < P|Q
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2  ARITHMETIQUE DES POLYNOMES 2.1 Divisibilité

Démonstration :
Ona:

(AP)|(nQ) <= 3R € K[X],pQ = APR
<~ JReK[X],Q=Px (2R>

— P|Q

Cette proposition nous dit que I'on peut s'affranchir des constantes multiplicatives dans I'étude
de divisibilité entre polyndme. Or, tout polynéme est égale (de fagon unique) a une constante (son
coefficient dominant) fois un polyndme unitaire. Donc en divisant par les coefficients dominants, on
se rameéne a étudier la divisibilité entre polynémes unitaires. Et c'est ce qu’on va faire.

Une autre fagon de le dire, est que les polyndmes inversibles sont “transparents” du point de vue
de la divisibilité. Qu'ils soient la ou non, ne change rien pour la divisibilité. On peut donc toujours
multiplier ou diviser par les polynémes unitaires. Et grace a ¢a, se ramener a des polyndmes unitaires.

Proposition 2.5 (Propriété algébrique de la relation de divisibilité) :
Soit A, B,C € K[X]. Alors :

1. A|B et B|C = A|C [Transitivité]
2. A|Bet BlJA = 3IX €K, A= )\B.

Démonstration :

1. On sait 3P,Q € K[X] tels que B = PA et C = BQ. Donc C = PAQ donc A|C car
PQ € K[X].

2. 3P, Q € K[X] tels que A = BP et B = AQ. Si A ou B est le polynéme nul, alors I'autre
aussi et donc on A = B ce qui est plus fort encore que ce qu'on veut montrer. On suppose A
et B non nul. Alors A = APQ. Mais comme A # 0, cf proposition p[20, on en déduit
P@Q = 1. Donc P (et Q) est inversible. Donc P € K[X]* = Ko[X]* = K*. D'ou le résultat.

O
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Attention, on a pas la symétrie ici de la relation de divisibilité. On obtient A et B
sont égaux a une constante multiplicative prés. Mais comme les constantes non nuls sont
précisément les inversibles de K[X], on peut dire plutét que A et B sont égaux a une mul-

A tiplication par un inversible pres. Cette formulation est plus agréable car peut se transporter
dans d’autres situations (et surtout, elle est plus cohérente avec ce qui se passe).

Ce sont ces “inversibles invisibles” qui empéche la relation de divisibilité d'étre une relation
d’ordre (partielle) sur K[X]. C'est bien une relation binaire, réflexive et transitive. Mais elle
n'est pas symétrique.

Remarque :

Pour avoir I'égalité entre A et B dans le second point, il faut rajouter quelque chose. Par exemple, le
fait que A et B ont le méme coefficient dominant (qui sera souvent 1 puisqu’on se rameénera souvent
au cas de polynémes unitaires). Mais ce n'est pas la seul fagcon de faire. De méme que dans Z, il
fallait rajouter une notion de signe pour avoir |'égalité.

Définition 2.3 (Polynémes associés) :
Soit A, B € K[X].
On dit que A et B sont associés si A|B et B|A.

Remarque :
Donc deux polynémes associés different d'une constante multiplicative.

Remarque :

Le probleme de la divisibilité est qu'il y a une catégorie de polynémes qu’elle ne “voit” pas, qu’elle ne
peut pas “attraper”. Les polyndmes en question sont les polyndmes inversibles qui sont les “invisibles”
du point de vue de la divisibilité.

Proposition 2.6 :
Soit A, B,C, D € K[X]. Alors

1. A|B et A|C = A|(AB + pC) pour tout A\, pn € K.
2. A|B et C|D = AC|BD.
3. AIB = VneN, A"|B".

Démonstration :

1. Soit P,Q € K[X] tels que B = AP et C' = AQ. Alors AB + uC = A(AP + 1Q).
2. Soit P,Q € K[X] tels que B= AP et D = CQ. Alors BD = ACPQ.
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3. Soit P € K[X] tel que B = AP et n € N. Alors B” = (AP)" = A"P™ car le produit de
polyndme est commutatif dans K[X].

[l
Exemple 2.6 :
Soit a,b € N. Montrer que
alp <= (X*-1)|(X’—1)
Proposition 2.7 (Conjugaison et divisibilité) :
Soit A, B € C[X]. Alors
AB = Z‘F
Démonstration :
Il suffit d'écrire la définition de la divisibilité et de passer ensuite aux conjugués. O

2.2 Division euclidienne

La division euclidienne, en revanche, celle 13 est clairement et entierement au programme. Il n'y
a pas de doute.

Théoréeme-Définition 2.4 (Division euclidienne polynomiale [v']) :
VA, B € K[X] avec B # 0, 3(Q, R) € K[X]? tel que

A=BQ+R et deg R < deg B

Les polyndmes @ et R sont appelés respectivement quotient et reste de la division
euclidienne de A par B.

Démonstration :
Soit A, B € K[X] avec B # 0. Donc deg B > 0.
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Commencons par montrer |'unicité (c'est ce qu'il y a de plus facile). Supposons donc que A =
BQ1 + R1 = BQ2 + Ry avec Q1,Q2, R1, R2 € K[X] et deg R1,deg Ry < deg B. Alors dans ce
cas B(Q1 — Q2) = Ry — Ry. Donc deg B + deg(Q1 — Q2) = deg(Re — R1) < deg B. Donc
deg(Q2 — Q1) < 0 et donc Q2 — Q1 = 0. Ce qui améne directement a (Q2, R2) = (Q1, R1) et donc
["'unicité.

D'abord, sideg B =0, alors B=be K* et A= b%A donc il suffit de poser ) = %A et R=0.
On peut donc désormais supposer deg B > 1.

On va montrer I'existence d'un tel couple par récurrence sur le degré de A. Si deg A < deg B, il
suffit de prendre B=0et R = A.

Si deg A = deg B, on note a le coefficient dominant de A et b celui de B. Alors A = §B +
(A—¢B).Onpose Q = ¢ et R=A — ¢ B. Alors le coefficient dominant de {5 est a et de degré
deg B = deg A, donc le coefficient de degré deg A de R est nul, donc deg R < deg A = deg B et
donc on a bien I'existence d'un couple (@, R) vérifiant la division euclidienne.

Supposons que In > deg B tel que VA € K,[X], 3(Q, R) € K[X] X Kyeg(p)—1[X] tel que
A= BQ + R.

Soit A € K[X] tel que deg A = n+1. Alors Ja € K*, 3A € K,[X] tels que A(X) = a X" 4+ A.
Donc 3Q1, Ry € K[X] tel que A= BQ1+ Ry et deg R1 < deg B. On note b le coefficient dominant
de B et d = deg B. Donc b # 0. Or

1B € K, [X], %BX"H*d =aX" + B

Donc 3Q2, R2 € K[X] tel que deg Ry < deg B =d et B = BQs + Ry. Finalement

A=aX" L A
= %BXnH*d — BQ2 — Ry + BQ1+ Ry
=B (ZXan — Q2+ Ql) + Ri — Ry

On pose ) = %X”“*d — Q2+ Q1 et R= Ry — Ry. Alors deg(R; — R2) < max(deg Ry,deg Rs) <
deg B. Donc 3Q, R € K[X] tel que A = BQ + R et deg(R) < deg(B).

Donc on vient de montrer par récurrence que VA € K[X] avec deg A > deg B, 3Q, R € K[X]
avec deg R < deg B tels que A = BQ + R. Mais le résultat est vrai aussi pour deg A < deg B (fait

avant la récurrence). D'ou le résultat. O
Exemple 2.7 :
Déterminer la division euclidienne de A par B avec :
AX)=X*-3X2+X -1 B(X)=X?-X+1
AX) =X - X*-2X?2-3X +1 B(X)=X?2+2
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Remarque : N
Dansle casoll B=X —a, on a A(X) = Q(X)(X —a) + A(a).

Exemple 2.8 :
Effectuer la division euclidienne de P € K[X] par (X — a)(X — b) avec a,b € K.

Bien entendu, on peut écrire un programme en @ python qui permet de calculer la division
euclidienne de deux polynémes. Mais le langage Python n'étant pas un langage de calcul

c
o
=
on
(N
L 8 formelle, c'est assez pénible a coder. Ca reste néanmoins faisable.

Proposition 2.8 (Caractérisation de la divisibilité par la division euclidienne [v]) :
Soit A, B € K[X] avec B# 0. On a

B|A <= le reste de la division euclidienne de A par B est 0

Démonstration :
Il suffit de I'écrire |

Remarque :

Dans la pratique, c'est souvent seulement le reste de la division euclidienne qui nous intéresse. Pour
déterminer le reste de la division euclidienne de A par B, on écrit (de fagon théorique) A = BQ+ R
avec R = Zze:gOB_l ap X", 1l faut déterminer les coefficients aq, ..., adeg B—1 de R. Il suffit alors
d'évaluer A (ou plus exactement A) sur deg B valeurs distinctes pour déterminer ces coefficients.
Tant qu'a faire, on choisit bien les valeurs ol évaluer la relation. Le mieux étant de choisir des racines
de B de sorte que l'on ait A(a) = R(«).

Exemple 2.9 :
Déterminer le reste de la division euclidienne de A(X) = X° — X%+ X2 + 2 par X2 — 2.
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Remarque :

Comme on a une notion de divisibilité, on vient de commencer 3 faire un peu d'arithmétique. On va
continuer a en faire un petit peu. Dans la droite de lignée de ce que I'on vient de faire, on pourrait
définir une notion de PGCD de polynémes et de PPCM.

2.3 Polynomes irréductibles

On revient a I'arithmétique pure et dure. La notion de polynémes irréductibles est parfaitement
au programme. Pas d'ambiguité. Et elle va étre trés délicate. J'ai essayé ici de ne mettre que ce qui
me semble le stricte minimum pour bien comprendre la suite. Mais cette partie va rester néanmoins
trés abstraite.

Définition 2.5 (Polynémes premiers entre eux [v']) :
Soit A, B € K[X]. On dit que A et B sont premiers entres eux si les seuls diviseurs communs a
A et B sont les constantes non nuls (i.e. les polynémes de degré 0).

Exemple 2.10 :
Soit a,b € K avec a # b. Montrer que X — a et X — b sont premiers entre eux.

Définition 2.6 (Polyndmes irréductibles [v']) :

Soit P € K[X] non constant. On dit que P est irréductible dans K[X] si ses seuls diviseurs sont
ses diviseurs triviaux (i.e. constantes non nulles et produit de P par une constante non nulle).
Autrement dit P est irréductible si et seulement si VQ € K[X] tel que Q|P, 3\ € K* tel que
Q=APou@=A\.

Remarque :
La contraposé est tres utile :

P € K[X] non irréductible <= 3Q € K[X],1 < deg@ < deg P, Q|P

Exemple 2.11 :
Soit a € K. Alors X — a est irréductible.

La notion de polynémes irréductibles est indispensable pour la suite. C'est la pierre angulaire de
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I'étude des polyndmes. Tous ce que vous savez sans en avoir conscience repose en réalité sur cette
définition.

L'idée est que les polyndmes irréductibles forment des sortes de briques élémentaires dans K[ X].
On peut alors décrire (du point de vue divisibilité) n'importe quel polynéme a I'aide de ces “briques
élémentaires”. Il est donc nécessaire dans un premier temps de bien comprendre comment fonctionnent
les polyndmes irréductibles pour arriver ensuite a la décomposition souhaitée dans le théoréme fon-

damentale de I'arithmétique page

Proposition 2.9 (L’irréductibilité est conservé par produit par un inversible [v]) :
Soit P € K[X] irréductible.
Alors VA € K*, AP est irréductible.

Démonstration :
Il suffit d’observer un diviseur de AP. O

[11 ATTENTION !!! |I

L'irréductibilité d'un polynéme dépend du corps K que I'on considére. On insistera la dessus
plus en détail un peu plus bas, mais autant le dire tout de suite : le polynéme P(X) = X2+1
est un polynéme de R[X] et aussi de C[X]. Sur C, il n'est pas irréductible, mais il I'est dans
R. C'est parce que la notion d'irréductible dépend complétement de la notion de divisibilité
qui, elle méme, dépend complétement du corps sur lequel on se place.

[11 ATTENTION !!! |I

AN A|BC = A|B ou A|C

Un contre-exemple est donné par A(X) = X? -1, B(X) =X +1etC(X)=X—1.1l
faut faire TRES attention! Votre intuition va étre mis a rude épreuve. Soyez trés prudent
avec l'arithmétique. C'est vraiment traftre.
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Théoréeme 2.10 (Lemme de Gauss) :
Soit A, B,C € K[X].
Si A et B sont premiers entre eux et si A|BC, alors A|C.

Ce théoréme est admis pour nous. La démonstration utilise des notions de PGCD et le théoreme
de Bézout qui sont HP. Donc tant pis.

Le théoreme de Gauss n'est pas explicitement au programme. Mais il est pratique et il nous sera
utile dans la suite (pour la démo du théoréme fondamental de I'arithmétique).

[11t ATTENTION !!! |I

A\ A|C et B|C =& AB|C

Un contre-exemple est donné par A(X) = X? -1, B(X) = (X +1)? et C(X) = (X +
1) (X2 -1).

Théoréme 2.11 (Réciproque partielle au théoréeme de Gauss) :
Soit A4, B,C € K[X].
Si A|C, B|C et A et B premiers entres eux, alors AB|C.

Démonstration :
Soit P € K[X] tel que C = BP. Alors A|BP. Mais A et B étant premiers entres eux, le théoréeme
de Gauss nous donne A|P et donc AB|BP = C. O

Proposition 2.12 (Condition suffisante pour étre premiers entres eux [v]) :
Soit A, P € K[X], P irréductible.
Si P ) A alors A et P sont premiers entre eux.

Démonstration :

[l faut montrer que les seuls diviseurs communs a A et P sont les constantes non nuls. Soit () un
diviseurs communs a A et P. Donc @ est en particulier un diviseurs de P. Mais P étant irréductibles,
ses seuls diviseurs sont les diviseurs triviaux, c’est a dire les constantes non nulles ou des multiples
de P par une constante non nulle. Donc 3\ € K* tel que @ = X ou Q = AP. Mais si () = AP, alors
AP|A, donc P|A ce qui aboutit 3 . Donc Q = \. Donc A et P sont premiers entres eux. O
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Proposition 2.13 (Lemme d’Euclide [v]) :
Soit A, B € K[X] et P € K[X] irréductible. Alors

P|AB = P|Aou P|B

Démonstration :
Si P|A, il n'y a rien a faire.

Supposons que P J A et montrons que P|B. Comme P [ A et P est irréductible, P et A sont
premiers entres eux. Donc le théoréme de Gauss nous donne directement P|B. O

Pareil que pour le théoréeme de Gauss. Le lemme d'Euclide n’est pas explicitement au programme
mais il est trés pratique et on va en avoir besoin dans les théorémes suivants.

Proposition 2.14 :
Soit a,b € K avec a # b et n,m € N.
Alors (X —a)™ et (X — b)"™ sont premiers entres eux.

Démonstration :

Supposons qu'ils ne le sont pas. Donc 3P € K[X] tel que P|(X —a)™ et P|(X —b)™ avec deg P > 1.
Or les seuls diviseurs de (X —a)™ sont les (X —a)* avec 0 < k < n et les multiples de ces polyndmes
par des constantes non nuls. Donc P est de la forme a(X — a)* avec a € K* et 0 < k < n. Donc
a(X — a)*|(X — b)™. En particulier, si k > 1, (X — a)|a(X — a)*|(X — b)™. Mais X — a est un
polynéme irréductible et il ne divise pas (X — b). Donc il ne divise pas (X —b)™. Donc si k > 1, on
aboutit 3 B. Donc k = 0. Donc P = o € K* et donc les seuls diviseurs communs & (X — a)" et
(X — b)™ sont les constantes non nuls. Ces deux polynémes sont donc premiers entres eux. O

En fait, cette proposition est plutot un exercice qu'une proposition. Mais il est pratique de la
connaitre. Elle permet de pouvoir commencer a faire de I'arithmétique avec plus de facilité surtout
si I'on connait le théoréeme fondamental de I'arithmétique [4.5]

2.4 PGCD

Proposition 2.15 (Ensemble des diviseurs communs) :
Soit A, B € K[X] avec (4, B) # (0,0).

L'ensemble des diviseurs communs de A et B est un ensemble de polynéme dont les degrés
sont majorés.
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Démonstration :

Soit D = {P € K[X], P|A, P|B} I'ensemble des diviseurs communs de A et B. Alors D # () car
K* C D car ce sont les diviseurs triviaux. De plus, VP € D, deg(P) < min(deg(A), deg(B)}. Donc
D = {deg(P), P € D} est un sous-ensemble non vide (0 € D) et majorée de N. Donc D admet un
maximum. u

Définition-Propriété 2.7 (PGCD de deux polynémes) :
Soit A, B € K[X] avec (4, B) # (0,0).
On appelle PGCD de A et B, tout diviseurs commun de A et B de degré maximal.

Démonstration :
On vient de voir que les degrés des diviseurs communs de A et B admettent un maximum. Il existe
donc des diviseurs communs de A et B de degré maximum. Ce sont les PGCD. O

A 11t ATTENTION !!! |I

Il n'y a pas unicité du PGCD. Il y a une infinité de PGCD.

Exemple 2.12 :

Avec A(X)=X?+2X +1et B(X)=X?-1, X +1 est un PGCD, mais 2X + 2 aussi, —3X — 3
également etc.

Remarque :
Si B=0, les PGCD de A et 0 sont les A4, A € K*.
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Proposition 2.16 (Ensemble des diviseurs communs) :
Soit A, B € K[X], (A, B) # (0,0). Soit D un PGCD de A et B.
Alors si on note Div I'ensemble des diviseurs,

Div(A, B) = Div(D).

Remarque :
En particulier, tous les PGCD ont le méme ensemble de diviseurs.

Démonstration :
On peut suppose A # 0 sans perte de généralités quitte a renommer les deux polynémes. On a déja
facilement Div(D) C Div(A, B) par transitivité de la relation de divisibilité.

Supposons B = 0 ou deg(B) = 0. Alors Div(A, B) = Div(A) et D = AA avec A € K*. Donc
ca marche.

Supposons que Div(A, B) = Div(D) pour tout polynéme B de degré < d (avec d € N). Soit B
un polyndme de degré d + 1. On effectue la division euclidienne de A par B : A = BQ + R avec
deg(R) < deg(B). De plus, il est facile de voir que Div(A, B) = Div(B, R). Donc D € Div(B, R) et
D est de degré maximal. Donc D est un PGCD de B et R. Comme deg(R) < d, on a Div(B, R) =
Div(D). Et donc Div(A, B) = Div(D). O

Remarque :
En particulier, on vient de montre qu'un PGCD de A et B est aussi un PGCD de B et R, ol R est
le reste de la division euclidienne de A par B.

Proposition 2.17 (Les PGCD sont associés) :
Soit A, B € K[X], (A, B) # (0,0).
Tous les PGCD de A et B sont associés.

Démonstration :

Il est clair que si P est un PGCD, alors tous les polynémes associés a P sont également des PGCD.
Soit P et Q deux PGCD de A et B. Alors Div(P) = Div(A, B) = Div(Q). En particulier, P|Q

et Q|P. Donc P et ) sont associés. O
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Proposition 2.18 (Caractérisation des PGCD) :
Soit A, B, D € K[X] avec (4, B) # (0,0).

D|A, D|B

D est un PGCD de A et B <—
VP € K[X], P|A, P|IB = P|D

Donc les PGCD sont les plus grands diviseurs communs de A et B au sens de la divisibilité.

Démonstration :

Le sens directe est évident. Si D est un PGCD, on sait déja que D est un diviseur commun, par

définition. Et également, si P est un autre diviseur commun, alors P € Div(A4, B) = Div(D).
Inversement, on a Div(A, B) = Div(D). Er VP € Div(A, B), P|D, donc deg(P) < deg(D).

Donc deg(D) est le maximum de {deg(P), P € Div(A, B)}. Et donc, par définition, D est un

PGCD de A et B. O

Définition 2.8 (A A B) :
Soit (A, B) € K[X]?\ {(0,0)}.

On note AN B le PGCD de A et B unitaire. i,e. AN\ B est un diviseur commun de A et B
de degré maximal et de coefficient dominant 1.

Remarque :

Tous les PGCD étant associés, ils sont tous proportionnels. i.e. I'ensemble des PGCD de A et B
forment une droite vectorielle (en y ajoutant 0). Et donc, il n'y en a qu'un de coefficient dominant
1 (prendre I'application P +— coeff dom(P) qui est une forme linéaire sur I'ensemble des PGCD).

Remarque :

Par convention, on pose 0 A0 = 0. C'est une convention qui permet d'avoir une définition cohérente
avec les propriétés des PGCD. Par exemple, la caractérisation des PGCD fonctionne encore avec cette
convention.

Proposition 2.19 (Algorithme d’Euclide [V]) :
Soit A, B € K[X] avec (A, B) # (0,0).

On pose Ry = A et Ry = B. Pour n € N*, si R,, # 0, on définit R,,11 comme le reste de
la division euclidienne de R,,_1 par R,,.

Alors 3N € N tel que Ry = 0, de plus (Ry,)o<n<n est une suite de polynéme strictement
décroissante en degré et Ry_1 est un PGCD de A et B.
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Démonstration :
On a Ry—1 = Qi Ri+ Ri+1 avec deg(Ry11) < deg(Ry). Donc tant qu’'on peut effectuer les divisions
euclidiennes, la suite des degrés deg(Ry) fabriquée est une suite d'entier strictement décroissante.
Elle est donc stationnaire en 0. Et donc 3N € N tel que deg(Ry) = 0. Alors Ryy1 = 0. Et le
processus d'arréte.

De plus, d'apres ce qui précede, on a vu Yk € {0,...,N}, Div(Rg, Rk+1) = Div(Ri—1, R).
Donc Div(Ry, Ry+1) = Div(Ry) = Div(Rp, R1) = Div(A, B). Et donc Ry est un PGCD de A et
B. O

Théoréme 2.20 (Relation de Bézout) :
Soit (A, B) € K[X]?\ {(0,0)}. Alors

U,V € K[X], AU + BV = AA B.

Démonstration :
Comme dans Z : il suffit de reprendre |'algorithme d’'Euclide, puis de renormaliser a la fin en divisant
par le coefficient dominant du PGCD qu'on a trouvé. O
Exemple 2.13 :

A(X)=X*+ X3 et B(X)=X?+4 X + 1. Calculer un PGCD de A et B et déterminer la relation
de Bézout associé.

Proposition 2.21 :
Soit A, B,C € K[X], (A, B) # (0,0) et C # 0. Alors

1

(CANOB) = dom(C)

C(ANB).

Démonstration :

Sans perte de généralité, on peut suppose C unitaire. Alors C'(A A B) est un diviseur commun de
CA et CB. Donc C(A A B)|(CA) A (CB).
De plus, par Bézout, U,V € K[X] tels que AU + BV = A A B. Donc (CA)U + (CB)V =
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C(A A B). Donc (CA) A (CB)|(C(AA B)).
Or (CA) A (CB) est unitaire par définition et C(A A B) également. Donc C(A A B) = (CA) A
(CB). O

Remarque :

On pourrait rajouter beaucoup de propriété similaire a ce qui c'est passé dans Z. Avec ce qu'on a
pour le moment, on peut tout reconstruire. Il faudra donc refaire les mini propriétés en fonction de
ce dont on a besoin.

Définition 2.9 (PGCD de plusieurs polyndémes) :
Soit (A1,...,A,) € KIX]"\ {(0,...,0)}.

On note A\j_; Ay = A1 AAa A--- A Ay, I'unique polyndme unitaire de degré maximal divisant
A1, Ay, ..., A

Proposition 2.22 (Propriété algébriques du PGCD) :
Soit A, B,C, Ay,..., A, € K[X] avec (4,B,C) # (0,0,0) et (Ay,...,A4,) # (0,...,0).

(i) ANBANC=(AANB)ANC=AN(BAC) [Associativité]
(i) Div(Ay,...,A,) = Div(Ar—; Ak).
(ili) AUy,..., U, € K[X], Niz1 Ak = > jeq AkUs. [Bézout]
Démonstration :
Avec une récurrence, essentiellement. 4

2.5 Polynomes premiers entre eux

Définition 2.10 (Polynémes premiers entre eux) :
Soit (A, B) € K[X]?\ {(0,0)}.

On dit que A et B sont premier entre eux si AN\ B = 1, i.e. si le diviseur commun unitaire
de A et B est 1.
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Théoréeme 2.23 (Théoréme de Bézout) :
Soit (A, B) € K[X]2\ {(0,0)}.

AANB=1 < 3U,V e K[X], AU+ BV =1

Démonstration :
La démonstration est essentiellement la méme que dans Z. Le sens directe est déja fait. Réciproquement,
si AU+BYV =1, alors (AAB)|1 et donc AAB est un polynéme constant unitaire, donc AAB =1. O

Proposition 2.24 (Lemme de Gauss) :
Soit A, B,C € K[X].
Si A|BC et ANB =1, alors A|C.

Démonstration :
C'est la méme que dans Z. On a ACU + BCV = C et donc la réciproque a la relation de Bézout
précédente. O

Proposition 2.25 (Se ramener a des polyndmes premier entre eux) :
Soit (4, B) € K[X]?\ {(0,0)}. Soit D = A A B.
Alors A4, By € K[X], A1 NBy =1telque A= DA, B=DBhB;.

Démonstration :

On a DA; = A et DBy = B par définition de la divisibilité. Soit P = Ay A B;. Alors P|A, B, donc
P|D. Si deg(P) > 1, alors D n'est pas de degré maximal et donc &. Donc deg(P) = 0. Et donc,
AL NBp = 1. |

Proposition 2.26 (”Transmission de la primalité relative”) :
Soit A, B,C € K[X]. Alors

AN(BC)=1 <= AANB=1=ANC
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Démonstration :
Si AN(BC) =1, alors AU+ BCV =1 et donc (AA B)|1 donc AAB = 1. De méme, ANC = 1.
SiANB=ANC =1, Alors A(UiCV, + Usz) + BCV Vo = 1. O

Proposition 2.27 :
Soit A € K[X] et P € K[X] irréductible.
Alors P/ Aou PN A= 1.

Démonstration :
Voir Z : si P fA, alors D = P A\ A est un diviseur de P irréductible, donc D = 1 car D unitaire. O

Proposition 2.28 :
Soit A, B € K[X] et P irréductible dans K[X].
Si P|AB, alors P|A ou P|B.

Démonstration :
Comme dans Z : si P fA, alors P A A =1 et donc, par lemme de Gauss, P|B. O

Définition 2.11 (Polynémes premiers entre eux dans leur ensemble) :
Soit Ay,..., A, € K[X}
On dit que Ay,..., A, sont premiers entre eux dans leur ensemble si Nj_; Ax = 1.
Ay, ..., Ay sont dit deux a deux premiers entre eux si Vi, j € {1,...,n}, i #j, AiNA; =1.

62



2 ARITHMETIQUE DES POLYNOMES 2.5 Polyndmes premiers entre eux

[11 ATTENTION !!! |I

Bien siir, il ne faut pas confondre premier dans leur ensemble et deux a deux premiers entre
eux. Le second impliquant le premier. Si des polynémes sont deux a deux premiers eux, ils
sont automatiquement premier entre eux dans leur ensemble. Mais la réciproque est fausse.
On peut avoir des polyndmes premiers entre eux dans leur ensemble, sans qu'ils sont deux a
deux premier entre eux.

Contre-exemple :

Onprend A(X) = X +1, B(X) = X -1, C(X) = X? —1. Alors AABAC = 1 car
ANB =1.Donc A, B, C sont premiers dans leur ensembles. Mais ANC = Aet BAC = B.
Donc ils ne sont pas deux a deux premiers entre eux.

Proposition 2.29 (Caractérisation des polynémes premier dans leur ensemble par

Bézout) :
Soit Ay,..., A, € K[X].
A1, ..., Ay, sont premiers dans leur ensemble si, et seulement si, U7, ..., U, € K[X] tels

que 2221 AkUk = 1.

Démonstration :
Le sens indirecte est évident. Le directe s'obtient par récurrence et par Bézout grace a I'associativité
du PGCD. O

Proposition 2.30 :
Soit A, B,C € K[X].
Si ANB =1et A|C et B|C, alors AB|C.

Démonstration :
On a C = AP = BQ. Donc A|BQ. Mais AN\ B =1, donc A|Q. Et donc le résultat. O
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Remarque :
Ce résultat se généralise dans le cas de polynémes deux a deux premiers entre eux par récurrence
facile.

2.6 PPCM

Définition-Propriété 2.12 (PPCM) :
Soit A, B € K[X]\ {0}.

On appelle plus petit commun multiple de A et B, tout multiple commun de A
et B non nul de degré minimal.

Démonstration :
On note E = {deg(P), P € K[X]|, A|P, B|P}. Alors deg(A)+deg(B) € Edonc E# (et ECN
et N bien ordonnée donc existence d'un degré minimal et donc de polyn6me qui ont ce degré. I

Remarque :
Comme pour les PGCD, il n'y a pas unicité des PPCM. A cause des polynémes inversibles. Comme
pour les PGCD, on aurait unicité en imposant quelque chose sur le coefficient dominant.

Proposition 2.31 (Caractérisation des PPCM) :
Soit A, B € K[X], AB # 0 et soit M € K[X].
Alors

M %0
M est un PPCM de A et B <= { A, B € Div(M)
VP € K[X], A, B|P = M|P

Démonstration :
Méme principe que pour les entiers.
Si M est un PPCM, en faisant une division euclidienne, on a P = M@ + R et R multiple
commune de A et B avec deg(R) < deg(M). La minimalité nous donne R = 0 et donc le résultat.
Inversement, si M vérifie les trois propriétés, alors M est un multiple commun non nul de degré
minimal. Donc c'est un PPCM. (I
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Corollaire 2.32 (Ensemble des multiples communs) :
Soit A, B € K[X], AB # 0. Soit M un PCCM de A et B.
Alors
AK[X] N BK[X] = MK[X].

Démonstration :
C'est facile par minimalité du degré de M et par définition des ensembles. O

Définition-Propriété 2.13 (A V B) :
Soit A, B € K[X], AB # 0.
Il existe un unique PPCM de A et B unitaire, noté AV B. Et donc

coeff dom(M) =1
M =AVB < {AM, BIM
VP € K[X], A|P, B|P = M|P

Démonstration :
Imposé le coefficient dominant égal a 1 revient a imposé que M est non nul. Donc la deuxiéme partie
est évident.

AK[X] N BK[X] est une droite vectorielle. Et voila. O

Remarque :
On peut alors prendre comme convention AV 0 = 0.

Proposition 2.33 (Factorisation de PPCM) :
Soit A, B,C € K[X], ABC # 0. Alors

C

(CAVIOB) = o dom(C)

(AV B).
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Proposition 2.34 (PPCM et PGCD) :
Soit A, B € K[X], AB # 0. Alors

(l) SlA/\le, alorSA\/B:Wﬁ(AB)

(ii) En général (AN B)(AV B) = sdenany-

Démonstration :
Posons M = AV B. On a A|M et B|M et AANB = 1, donc AB|M. De plus, M|AB par ca-
ractérisation de M. Et donc M et AB sont associés. Mais M est unitaire. Donc AB = coeff dom(AB)(AV
B).

Ensuite, on se raméne a des polyndmes unitaires : on pose A1, By tel que A1 A By = 1 et
A= DA, B=DB;javec D =AAB. Alors AVB = D(A1VB;) = DA, B;. Et donc D(AV B) =
AB. U

Proposition 2.35 (PGCD et PPCM avec décompositions en produit de facteurs
irréductibles) :
Soit A, B € K[X]. Soit P,..., P, € K[X] les facteurs irréductibles de A et B. Autrement
dit : . .
AX)=a ] P(X)*,  B(X)=0b]] Pu(X)"
k=1 k=1

ouna,beK* ay,...,an,P1,...,0n € N (avec a; = 0si P; ne divise pas A et de méme 3, =0

si P, |B).
Alors
n . n
ANB =[] Pe(x)minlenh) et Av B =[] Pp(X)mxesbe)
k=1 k=1
Remarque :

On retrouve ici que AB = coeff dom(AB)(A A B)(AV B).

Remarque :

Ce théoréme provient en fait de la décomposition en produit de facteur irréductibles qui vient dans
la suite. On se contente de dire, pour le moment, que si on arrive a écrire A et B sous la forme de
produit de facteurs irréductibles, on a une expression des PGCD et PPCM. Mais on a pas |'assurance,
pour le moment, que I'ont sait obligatoirement écrire A et B sous la forme d'une produit de facteurs
irréductibles. C'est la partie manquante qui arrives plus bas et ot I'on va traiter le cas complexe et
réel séparément.

66



3 RACINES D'UN POLYNOME, POLYNOMES SCINDES

3 Racines d’'un polynéme, polyndmes scindés

On rappelle qu'une racine d'un polynéme P € K[X] est un élément a € K tel que ﬁ(a) = 0.

3.1 Racines et degré

Théoréeme 3.1 (Caractérisation des racines par la divisibilité [v']) :
Soit P € K[X] et a € K.
a est une racine de P si et seulement si (X — a)|P.

Démonstration :
Si (X —a)|P, alors 3Q € K[X] tel que P(X) = (X — a)Q(X). Alors P(a) = (a — a)Q(a) = 0 par
p[26l Donc a racine de P.

Réciproquement, si P est une racine de P. Par division euclidienne, on sait 3Q, R € K[X] tel
que P(X) = (X —a)Q(X) + R(X) et deg R < deg(X — a) = 1. Donc R € K. Et P(a) = 0 nous

donne R(a) = 0. Donc R = 0. Donc P(X) = (X — a)Q(X) et donc (X —a)|P. O

[1't ATTENTION !!! |I

La notion de racine dépend du corps que I'on considére. Un polyndme peut avoir certaines
racines dans R et d'autres dans C. Par exemple, le polynéme P(X) = X2 + 1 n'a aucune
racines dans R mais en a 2 distinctes dans C.

Corollaire 3.2 (Avec plusieurs racines) :

Soit P € K[X].
Soit aq, ..., a, des racines de P deux a deux distinctes. Alors
n
[T(X —ar) = (X —a1) x -+ x (X —an)| P(X)
k=1
Démonstration :
Par récurrence en utilisant le fait que (X —ay) [ (X —a; ) si k # j, le théoréeme de Gauss et le fait
que (X — a;) et (X — a;) sont premiers entre eux ici. O
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Théoréme 3.3 (Majorant du nombre de racines [v']) :
Soit P € K[X].
Si P # 0, alors P ne peut pas avoir plus de racines distinctes que son degré.

Ce théoréme est fondamental. Il est tres utile pour montrer qu'un polynéme est nul. Dés qu'un
polyndme a plus de racines que son degré, c'est nécessairement le polynéme nul, par contraposée de
ce théoréme.

Démonstration :

Soit P € K[X]*. Soit également a1, ...,a, ses racines distinctes. Alors, par le corollaire on a
(X—a1)...(X—an)|P(X). Et P non nul. Donc 3Q € K[X]* tel que P(X) = Q(X) [T5—1 (X —ak).
Alors dans ce cas, deg P = deg@Q + deg [[}—(X —ar) > 1+1+---+1 =n. Donc le nombre de

n

racines distinctes de P (ici n) est plus petit que deg P. [l

[11 ATTENTION !!! |I

A Ce théoréme ne dit pas qu'un polyndme a forcément des racines. Ni qu'il en a autant que
son degré. Il existe des polynémes n'ayant pas de racines (X2 + 1 dans R[X] par exemple)
ou d’autres avec moins de racines que leurs degré (par exemple X° — 1 dans R[X]). Ce
théoréme donne juste un majorant du nombre de racines de P.

On utilise souvent le corollaire suivant pour montrer qu'un polynéme est nul :

Corollaire 3.4 (Caractérisation de nullité par le nombre de racines [v]) :
Soit P € K[X].
P =0 <= P a uneinfinité de racines

Démonstration :

Le sens indirecte est évident. S'il a une infinité de racines, il en a en particulier plus que son degré
O

Exemple 3.1 :

68



3 RACINES D'UN POLYNOME, POLYNOMES SCINDES 3.2 Racines multiples

Soit P,Q, R € R[Xl avec P # 0. Montrer que JA > 0 tel que Vax > A, ﬁ(m) = 0. En déduire que

; Q@) _ R(=z) _
siVe > A, P — Bla) alors Q = R.

Corollaire 3.5 (Expression d’un polyndme de degré n ayant n racines distinctes) :
Soit P € K[X] avec n = deg P > 0, de coefficient dominant a € K* et ayant n racines
distinctes z1,...,x, € K.

Alors

P(X):a(X—xl)...(X—:cn):aH(X—xk)
k=1

Démonstration :
Récurrence sur n et corollaire du théoréme de la caractérisation des racines par la divisibilité. O

Ce théoreéme est le premier pas vers le théoreme fondamental de I'arithmétique [4.5] qui est une
généralisation de ce théoréme. Le but de la suite de cette partie est donc de poursuivre I'étude
amorcée ici et d'aboutir a un théoréme le plus général possible.

Exemple 3.2 :
Soit P € R3[X] unitaire tel que Vk € {1,2,3}, P(k) = k. Déterminer P.

3.2 Racines multiples

Définition 3.1 (Racine multiple [v]) :
Soit P € K[X] et a € K.
On dit que a est une racine multiple de P si (X — a)?|P.
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Définition-Propriété 3.2 (Multiplicité [v]) :
Soit P € K[X], P#0etacK

Si a est une racine de P, on appelle multiplicité de a (en tant que racine de P)
le plus grand entier m € N tel que (X — a)™|P. Autrement dit, la multiplicité de a
en tant que racine de P, est

m =max{n € N, (X —a)"|P}.

Démonstration :

Si P =0,il n'y arien a faire. Si P # 0. L'ensemble {k € N, (X — a)¥|P} est une partie de N
non vide (0 est dedans) et majoré (par le degré de P). Donc elle admet un maximum dans N qu'on
appelle multiplicité de a. [l

Remarque :
On a automatiquement |'unicité de la multiplicité d'une racine a donnée d'un polynéme P donné.

Définition 3.3 (Racine simple, racine double [v']) :
On appelle racine simple, une racine de multiplicité 1. On appelle racine double, une racine de
multiplicité 2.

Proposition 3.6 (Caractérisation des racines multiples par la division [v]) :
Soit P # 0 € K[X] et a € K une racine de P.

a est une racine multiple de P de multiplicité m si et seulement si (X — a)™|P et (X —
a)"tly P,

Démonstration :
Si a est une racine de multiplicité m de P, alors m = max{k € N, (X — a)¥|P}. Donc (X —a)™|P
puisque c’est un max et (X —a)™*! f P sinon m ne serait pas un max.

Réciproquement, a est bien siir une racine de P et on a clairement m € {k € N, (X — a)*|P}.
Sin>m+1, alors (X —a)™ (X —a)". Mais (X —a)™"'fP = (X —a)"fP. Donc m est
la multiplicité de a. O
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On peut aussi définir la multiplicité comme

m+1=min{k € N, (X —a)*f P}

Corollaire 3.7 (Reformulation de la caractérisation des racines multiples par les divisions
[v]) :
Soit P e K[X] et a € Ketm e N.

a est une racine de P de multiplicité m si et seulement si 3Q € K[X] tel que P(X) =

(X —a)"Q(X) et Q(a) #0.

Démonstration :
Corollaire immédiat de la proposition précédente [l

Exemple 3.3 :
Montrer que i est une racine multiple de (X* — 1)" et déterminer sa multiplicité.

Remarque :

Une racine de multiplicité O n'est pas une racine. En effet, cela veut dire que (X —a) = 1|P et
(X —a)! f P. Donc a n’est pas une racine. Mais on utilisera pas (ou peu) ce résultat. La notion de
multiplicité n'a d’intérét que pour une “vraie” racine.

Proposition 3.8 :
Soit P € K[X] et a € K et m € N tel que (X — a)™|P.
Alors a est une racine de P de multiplicité au moins m.

Démonstration :
Evident par la définition de la multiplicité (I

Remarque :
Attention a I'inégalité sur la multiplicité!
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Proposition 3.9 :
Soit P € K[X] et ay,...,a, € K des racines de P deux a deux distinctes de multiplicités
respectives asq, ..., qa,. Alors

(X —a)™ ... (X —an)*|P

Démonstration :
On sait que (X — a1)*|P(X). Donc P(X) = (X — a1)*Q(X). Maintenant (X — a2)*?|(X —
a1)* Q(X). Mais (X —az)*? et (X —aj)! sont premiers entres eux. Donc (X — ag)*?|Q(X) grace
au théoréme de Gauss.

Et par récurrence, on aboutit au résultat. O

Proposition 3.10 (Nombre de racines comptées avec multiplicité [v]) :
Soit P € K[X], P # 0.
Le nombre de racines de P compté avec multiplicité est inférieur ou égal au degré de P,

i.e. Siay,...,ay sont les racines de P distinctes de multiplicité respectives my, ..., my, alors
n
Z myg < deg P
k=1
Démonstration :
On sait (X —a1)™ ... (X — a,)™|P donc Y_j_; my < deg P en prenant les degré. O

Proposition 3.11 (Polynéme nul par nombre de racines [V]) :
Soit P € K[X] de degré d € NU {—00}.
Si la somme des multiplicités des racines de P est > d, alors P = 0.

Démonstration :
Par I'absurde avec la proposition précédente. O
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3.2 Racines multiples

Proposition 3.12 (Racines et conjugaison) :
Soit P € C[X] et a € C et m € N*. On a équivalence entre

(i) @ est une racine de P de multiplicité m

(i) @ est une racine de P de multiplicité m

Démonstration :
On a

Exemple 3.4 :
Soit P € Ry[X] unitaire tel que P(i) = 0. Déterminer P.

Proposition 3.13 (Racines d’'un PGCD) :
Soit A, B € K[X], (A, B) # (0,0).

Les racines d'un PGCD sont les racines communes de A et B, de multiplicité, le minimum

des multiplicité

Démonstration :

Comme un PGCD divise A et B, par transitivité de la divisibilité et par caractérisation des racines
par divisibilité, les racines d'un PGCD sont racines de A et de B. Donc des racines communes.
Ensuite, il suffit de regarder les multiplicités. Si m est la multiplicité d'une racine d'un PGCD de
A et B, alors (X —a)™|A et (X — a)™|B. Donc la multiplicité de a en tant que racine de A et de
B est supérieure a celle en tant que racine d'un PGCD. Et par maximalité des degrés, on a ce qu'on

veut.

Proposition 3.14 :
Soit P € K[X] de degré d € N.

O

Si P admet d racines distinctes, alors ce sont toutes les racines de P et elles sont toutes

simples.
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Démonstration :

P ne pas avoir plus de racines comptés avec multiplicité que son degré. Comme il en a déja d
distinctes, elles ne peuvent pas étre de multiplicité plus grande que 1 et donc elles sont toutes
simples. Et on en a le nombre maximum. [l

Remarque :
Ce théoréme est surtout utile pour trouver la factorisation d'un polynéme.

Exemple 3.5 :
Soit n € N*. Montrer que
n—1
xm—1=]] (x - ™)
k=0

Remarque :
Ce théoréme est les prémices des ennuis qui arrivent juste en dessous. C'est aussi le point de départ
le point de départ de la construction du théoréme fondamental de I'arithmétique.

3.3 Racines multiples et dérivation

Théoreme 3.15 :
Soit P € K[X]* et a € K une racine de P de multiplicité m > 1.
Alors a est une racine de P’ de multiplicité m — 1.

Démonstration :

On sait qu’on peut écrire P( ) = (X —a)™Q(X) avec Q(a) # 0. En dérivant, on trouve P'(X) =
m(X —a)"1Q(X) + (X —a)"Q'(X) = (X —a)" 1 (mQ(X) + (X —a)Q'(X)). On pose R(X) =
mQ(X) + (X —a)Q'(X). Et R(a) = mQ(a) # 0. Donc a est une racine de multiplicité m — 1 de

P ]
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Corollaire 3.16 (Caractérisation des racines simples par la dérivée) :
Soit P € K[X]*.

Les racines simples de P sont exactement les racines de P qui ne sont pas des racines de
P

Démonstration :

La proposition précédente montre que les racines de P de multiplicité > 2 sont également des
racines de P’. Et donc les racines simples de P ne sont pas des racines de P’. En effet, si a est
une racine simple de P, alors P(X) = (X — a)Q(X) avec Q(a) # 0. En dérivant, P'(X) =
Q(X) + (X —a)Q'(X). Alors P'(a) = Q(a) # 0. O

Exemple 3.6 :
Montrer que les racines de P(X) = X3 +3X + 1 € C[X] sont simples (sans les calculer).

Corollaire 3.17 (Caractérisation des racines simples) :
Soit P € C[X].
Les racines de P sont simples si, et seulement si, P et P’ sont premiers entres eux.

Démonstration :
Cela vient de la proposition précédente. O

Théoreme 3.18 (Caractérisation des racines multiples par les dérivées [v]) :
Soit P € K[X] \ {0}, a € K et m > 1. On a équivalence entre :

(i) a est une racine de P de multiplicité m

(i) P(a) = P'(a) = P"(a) =--- = P(m=1)(a) = 0 et P(M)(a) £ 0.

Démonstration :
(i) = (1i) | Comme a est une racine d'ordre m de P, on sait qu'il existe @ € K[X] tel que

P(X) = (X —a)™Q(X) avec Q(a) # 0. En utilisant la formule de Leibniz pour dériver ce produit,
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on trouve P (X) =" (1) (mﬂi!i)g(X —a)™ Q=) (X). En particulier, pour n =m — 1 on a :

k=0 k
Z(X—a)ml<m_1> . (X —a)y" 7RI IR (X)
= k (m —k)!
T (m—1 m!
— (X —a X kam k)
( )k;(k:—l)(m—k—l)'( ) (x)

7,?) (mnzl Wl (X —a)" QP (X) + mQ(X)
=(X-a)) <k”j 1) (m_”:_l)!(x — a)m QM= (X) 4 mlQ(X)

Donc P(m=1)(a) = 0 et P(™)(a) = m'Q( ) # 0.

(i) = (i) | La formule de Taylor nous donne :

+oo T) a
k=0 ’
+o00 ]/DT];) a

+oo]5\(g)
S SRl

k=m
+oo m—‘rk’)
Z ) _ a)k
prs (m+ k)!
On pose Q(X) = Y729 %(X — a)k. Alors Q(a) = % # 0. Donc a est une racine
multiple de P d’ordre m. O

Exemple 3.7 :
Montrer que Vn € N*, (X — 1)3 divise le polynéme nX"2 — (n +2) X" + (n +2)X —
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4 Polynomes scindés

Dans cette section, on va commencer a faire une distinction entre R et C. On va d’abord donner
quelques résultats généraux (mais ils sont presque tous déja donnés au dessus). Et on va spécifier
I'’étude des polynomes selon que I'on se place sur R ou sur C. Les choses seront assez différentes sur
les deux corps. Il faudra faire attention a ne pas mélanger les deux cas (et on aura des résultats qui
le feront ...)

4.1 Définition

Définition 4.1 (Polynéme scindé [v]) :

Un polynéme P € K[X] non constant est dit scindé s'il peut s'écrire comme le produit de
polyndmes de degré 1 de K[X], i.e. si Ja € K*, In € N*, Jx4,...,z, € K deux a deux distincts,
Imy,...,m, € N* tel que P(X) =a(X —x1)™ .. (X — )™ = a1 (X — xx)™*.

Remarque :
Dans ce cas, a est le coefficient dominant de P et x1,...,x, sont ses racines.

[1t ATTENTION !!! |I

La notion de polynéme scindé dépend entierement du corps sur lequel on se place. Il ne se
passe pas la méme chose sur R et sur C. Voir I'exemple suivant. Il est impératif de la garder
en téte.

Exemple 4.1 :

Le polyndme X2 + 1 est un polynéme de C[X] et de R[X]. Vu comme un polyndme de C[X], c'est
un polynéme scindé car X2 +1 = (X +i)(X — i) dans C[X]. Mais ce polyndme n’'a pas de racines
dans R donc il ne peut pas étre scindé dans R[X].

Théoréeme 4.1 (Caractérisation des polynémes scindés par les multiplicités [v']) :
Soit P € K[X] un polynéme de degré > 1. On a équivalence entre

(i) P est scindé dans K[X]

(ii) La somme des multiplicité des racines de P est égale a son degré.
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Démonstration :
(1) = (ii) | Comme P est scindé, on peut I'écrire P(X) = a[[}_;(X — xp)™ avec a € K*,
Z1,...,xn € Ketmy,...,my, € N*. On adoncdeg P = >"}_; my.

(i) = (4)| Soit z1,...,z, € K les racines de P de multiplicité mq,...,m, € N*. Alors

[Thei (X —a)™ | P(X). Donc P(X) = Q(X) [[1i=1(X — x)™*. Alors deg P = deg Q + > 11— m.
Mais la somme des multiplicité des racines de P est égale au degré de P, donc deg@ = 0 donc
Q(X)=a€K"etdonc P(X)=a[]p_1(X —xr)™. Donc P est scindé. O

Remarque :

Attention, ici on a choisi de décrire les racines de P avec les multiplicités. C'est rarement le cas. On
aurait pu aussi dire que P est scindé s'il s'écrit sous la forme P(X) = a[[}_;(X — x1). Dans cette
définition on ne précise pas que les x; sont distincts. Donc la méme valeurs peut apparaitre plusieurs
fois. Et si une racine a une multiplicité, elle va donc devoir apparaitre dans la liste (x1, ..., x,) autant
de fois que sa multiplicité.

Exemple 4.2 :

Soit P € R[X] tel que deg(P) = 3 et P@) (. Montrer que P est scindé.

x z—0

Proposition 4.2 (PGCD avec un polynéme scindé) :
Soit A, B € K[X], (4, B) # (0,0). Supposons que A ou B est scindé.
ANB =1 < Aet B n'ont pas de racines communes.

Démonstration :

Si ANB =1 alors A et B n'ont pas de racines communes a cause de Bézout (et ¢a ne dépend
pas que |I'un des deux soit scindé). Et s'ils n'ont pas de racines communes, comme |'un des deux est
scindés, tout ses diviseurs le sera également. En particulier, A A B est scindé. Et donc A A B a les
racines communes de A et B qui n’existent pas. Et donc AA B = 1. O
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4.2 Factorisation dans C

Nous allons essayer de “combler les trous” de la partie précédente dans les deux parties qui
suivent.

On a commencé a expliquer comment faire pour factoriser un polynémes. Mais pour cela, on
a besoin de connaitre toutes les racines d'un polynémes. Mais il faut connaitre les racines. Il reste
donc a prévoir le nombre de racines qu'il faut chercher. Si I'on arrive a prévoir le nombre de racines
d'un polyndme, on peut alors recoller avec les théorémes précédents pour prévoir si un polyndme est
scindé ou pas.

Ensuite, pour le factoriser réellement, factuellement, il faudra alors trouver exactement les racines.
Mais comme on saura exactement combien en chercher, la tache sera plus aisée (dés qu'on en trouve
le bon nombre, c’est qu'on les a toutes).

Remarque :

ATTENTION! Il y a un probléeme de comptage ici que nous avons déja touché du doigts dans la
partie précédente. Il faut étre clair sur ce que I'on entend par “compter les racines”. Compter les
racines distinctes n'est pas la méme chose que compter les racines avec leur multiplicités.

4.2.1 Théoréme de D’Alembert-Gauss

Théoréme 4.3 (Théoréme de D’Alembert-Gauss [v]) :
Tout polyndme non constant de C[X] admet au moins une racine.

Remarque (HP) :
On dit que C est un corps algébriquement clos.

On admet ce théoréme. La démonstration est officiellement hors programme. Il y a plusieurs
démonstrations possibles mais aucune n'est accessible avec le bagage mathématique de premiére
année. Certaines démo seront accessibles en seconde année, notamment avec les fonctions de plusieurs
variables ou le théoréme d'inversion locale. La méthode la plus simple serait de montrer que la fonction
polynomiale associée a un polyndme complexe de degré > 1 admet un minimum en 2 (il y a une
astuce 3 utiliser et il faut montrer que cette fonction est continue sur un compact, ce qui nécessite
d'utiliser des fonctions de plusieurs variables). En raisonnant ensuite par I'absurde, on suppose que
zp n'est pas une racine de P et on montre qu'il existe ¢ € C tel que Vt € R, |P(zp + tc)| < |P(z0)],
ce qui est clairement absurde. Et on peut alors conclure.

Corollaire 4.4 (Polynéme irréductible sur C [v]) :
Les polynémes irréductibles de C[X] sont les polynémes de degré 1

Ce corollaire est TRES important ! Il permet de tout faire. Il est I'alpha et I'oméga dans C[X].
Démonstration :

Soit P € C[X] un polyndme irréductible. Il n'est donc pas constant donc de degré > 1. Supposons
qu'il soit de degré d > 2. Par le théoréeme de D'Alembert-Gauss, P admet donc au moins une racine
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a € C. Donc P(X) = (X —a)Q(X) avec deg @ = d — 1. Donc @ n'est pas une constante. Et donc
P est divisible par X —a donc il n'est pas irréductible. Ce qui aboutit clairement 3 . Donc P n’est
pas de degré d > 2 donc P est de degré 1. O

Remarque :

Dans tous les corps que I'on considére, les polynd6mes de degré 1 sont toujours des polynémes
irréductibles. Mais dans C[X], ce sont les seuls, on vient de donner la liste de tous les polyndmes
irréductibles de C[X]. Tous les polynémes de degré sont irréductibles (on le savait déja), mais on
vient de montrer que ce sont les seuls. Or les polyndmes irréductibles sont les parpaings élémentaires
de la factorisation des polyndmes.

Exemple 4.3 :
Montrer que le polyndmes X* — 5X?2 4 3 n'est pas irréductible dans C[X].

Exemple 4.4 ([V]) :
Décomposer X™ — 1 en produit de facteurs irréductibles dans C[X], pour n > 1.

4.2.2 Décomposition en facteurs irréductibles dans C[X]

Théoréme 4.5 (Théoreme fondamental de I'algébre dans C[X] [v]) :
Soit P € C[X] non constant.

Alors da € C*, 9n € N*, dx1,...,z, € C deux a deux distincts et Imq,...,m, € N* tels
que

n
P(X)=a]](X —zp)™
k=1
De plus, cette décomposition est unique a I'ordre des facteurs prés

La décomposition est donc unique 3 une permutation sur I'ensemble des racines prés. C'est les
valeurs des racines qui est unique, pas |'ordre dans lequel on énumeére les racines en questions.

Cette décomposition est le paralléle du théoréme fondamental de I'arithmétique qui donne la
décomposition d'un entier en produit de facteurs premiers (unique aussi a I'ordre des facteurs premiers

pres).
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Démonstration :

Comme P est non contant, il est de degré d > 1. Donc, par théoréeme de D’'Alembert-Gauss, il
posséde au moins une racine x; € C. Cette racine est donc d'une certaine multiplicité m; € N*.
Alors P(X) = Q(X)(X — x1)™. Si m; < deg P, alors deg@ > 1 et on peut appliquer le méme
raisonnement a () etc jusqu’a n'obtenir qu'une constante qui sera nécessairement non nul (on a une
suite de degré strictement décroissante). ]

Remarque :
En fait, ce théoréme est équivalent au théoréme de D'Alembert-Gauss. Ce théoréme est donc une
reformulation du théoréme de D’Alembert-Gauss.

Corollaire 4.6 ([V]) :
Tout polyndme non constant de C[X] est scindé.

C'est juste le théoreme précédent formulé différemment.

A [1't ATTENTION !!! |I

Ce résultat n'est valable QUE dans C[X]. Penser & X2 + 1.

Corollaire 4.7 (Nombres de racines dans C [V]) :
Tout polynéme de C[X] de degré n € N posséde exactement n racines comptées avec
multiplicité.

Ca aussi, c'est une autre reformulation du théoreme fondamental de I'algebre.

Exemple 4.5 :
Factoriser dans C[X] les polynémes X? —2X cosf +1, X" — 1 et X4+ X2 +1.
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4.2.3 Arithmétiques et racines dans C

Proposition 4.8 :
Soit A, B € C[X]. On a équivalence entre

1. A|B

2. Les racines de A sont racines de B et leur multiplicité en tant que racine de A est
inférieur ou égale a leur multiplicité en tant que racine de B

Si on essaie d'écrire ¢a, ¢a donnerait : Ja € C*, Jx1,..., 2, € C, IMm,...,mp,m},...,m, €
N*, 3Q € C[X] tels que A(X) = a7 (X — )™ et B(X) = Q(X) TP (X — )™ avec
my < mj pour tout k € {1,...,n}.

Démonstration :

Si A est une constante, il n'y a rien a faire. On suppose donc désormais que A est de degré > 1.
Par le théoreme de d'Alembert-Gauss, on peut écrire A(X) = a[[}_1(X — zx)"™ pour un certain
ac€C*neN* z,...,2, € C, mq,...,m, € N*.

(i) = (i1)|Si A|B, on a facilement que z1,...,x, sont des racines de B de multiplicité au
moins mi, ..., My.

(ii) = (i) |Silesxy,...,x, sont des racines B de multiplicité supérieur ou égales a M, ..., my,
alors TT7_; (X — xx)™* divise B et donc A|B. O
Exemple 4.6 :

Montrer que X4 + X2 + 1| X18 — 1.

Proposition 4.9 (Caractérisation de polyndmes premiers entre eux dans C[X] [v]) :
Soit A, B € C[X]. On a équivalence entre :

(i) A et B sont premiers entres eux

(i) A et B n'ont pas de racines communes.

Démonstration :
On va démontrer ce théoréme par contraposée dans les deux sens.
(i) = (i7) | On suppose donc que A et B ont au moins une racine en commun. Donc Ja € C

tel que A(a) = B(a) = 0. donc (X — a)|A et (X — «)|B. Donc A et B ont un diviseur commun
dans C[X] qui n'est pas constants donc A et B ne sont pas premiers entres eux.
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(it) = (i) | On suppose que A et B ne sont pas premiers entres eux. Donc ils ont un facteurs

communs P € C[X] de degré > 1. Par théoréme de d'Alembert-Gauss, P admet au moins une racine
qui sera donc une racine de A et de B aussi, par divisibilité. O

Exemple 4.7 :
Montrer que X2 + 1 et X3 4+ X + 1 sont premiers entres eux.

[11 ATTENTION !!! |I

A Ces résultats ne sont valables QUE sur C. C'est la forme particuliere des polynémes
irréductibles de C qui fait tout le travail (di a d'Alembert-Gauss). Mais ailleurs (par ailleurs
j'entends particulierement R) tout ceci est faux. Les choses sont plus compliqués. Donc at-
tention au corps sur lequel vous vous placez.

4.3 Cas réel
4.3.1 Premiers liens avec C

Remarque :
Il est clair que R[X] C C[X].

Définition 4.2 (Racine complexe) :
Soit P € R[X].
On appelle racine complexe de P toute racine de P vu dans C[X].

Remarque :

La définition précise des racines complexes d'un polynéme réel n'est pas trés clair. L'intérét est
d’étendre le corps de base pour rajouter des racines et donc de considérer les racines complexes non
réelles. Mais avec uniquement ces racines, on ne peut pas faire grand chose. Il faut toutes les racines
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de P (réelles et complexes non réelles) pour pouvoir le factoriser correctement dans C[X] par le
théoréme fondamental de I'arithmétique. Donc a priori, les racines complexes devraient plutét étre
toutes les racines de P vu comme polynéme de C[X]. Seulement, comme P € R[X], on a souvent
déja calculer les racines réelles et le but est donc d'étudier les racines “qui manque”, donc les racines
non réelles. Etc.

Bref, les deux sont intéressants. Ca dépend un peu du contexte. Comme il est usuel de changer
de corps régulierement (ce que nous sommes en train d'amorcer), selon le corps dans lequel on se
place, on considére |'une ou I'autre définition. Si on garde P € R[X] et qu'on le traite en tant que
tel, on peut chercher ses racines non réelles (on fait une petite incartade timide dans le monde des
complexes). Mais on peut aussi décider de faire les chose un peu brutalement et voir P dans C[X]
pour pouvoir utiliser les outils dont on dispose dans C[X]. Auquel cas, les racines complexes de P
feraient plutot référence a toutes les racines de P, réelles ou non réelles.

Exemple 4.8 :
Ona X2+ X +1 € R[X] et j est une racine complexe de ce polyndme.

Proposition 4.10 (Nombres de racines complexes [v]) :
Soit P € R[X] de degré n € N
P possede exactement n racines complexes comptées avec multiplicité.

Démonstration :
Si P € R[X], alors P € C[X] et on a[4.7] O

La force des polynémes réels (donc leurs intéréts et donc leurs embétements) est que I'on peut les
voir comme des polynémes complexes et leur appliquer la batterie de résultats sympathiques qu'on a
dans le cas complexes. Il faut juste ne pas oublier de repasser dans R donc de transposer ces résultats
dans R. C'est a cette étape qu'il faut prendre des gants.

Proposition 4.11 (Racines non réelles d’un polynéme réel [V]) :
Les racines complexes non réelles d'un polyndme réel sont deux a deux conjuguées et deux
racines complexes conjuguées ont méme multiplicité.

Démonstration :
Soit P € R[X]. Si a € C\ R est une racine de P de multiplicité m, alors @ est une racine de
multiplicité m du polynéme P = P. O

84



4 POLYNOMES SCINDES 4.3 Cas réel

Exemple 4.9 :
Soit P € R[X] unitaire de degré 3 tel que P(2i) = 0 et P(0) = 1. Déterminer P.

4.3.2 Décomposition en facteurs irréductibles dans R[X]

Lemme 4.12 (Relations de divisibilité sur R vu dans C) :
Soit A, B € R[X]. Alors

A|B dans R[X| < A|B dans C[X]

Démonstration :
Donc il existe P € R[X] tel que B = AP. Mais A, B, P € C[X] aussi, donc on a A|B dans
C[X].

On suppose que 3P € C[X] tel que B = AP. Par décomposition en facteurs irréductibles
dans C[X], on sait que In € N, Jxy,...,2, € C, Imy,...,my, € N* et a € C* tel que P(X) =
allp—1(X—zx)"™. Donc B(X) = aA(X) [[;—; (X —x)™*. Donc les zj, sont des racines de B. Mais
étant réels, ses racines complexes (non réelles) sont deux a deux conjuguées et de méme multiplicité.
Donc Vk € {1,...,n}, soit z; € R, soit 3j € {1,...,n}\ {k} tel que x; = T} et m; = my,. Et dans
ce cas [[p_1 (X — k)™ € R[X]. Enfin, comme A, B,[]}_{(X — z)"™ € R[X], on en déduit que
a € R* également sinon on aboutirait 3 & (observer le coefficients dominant de B par exemple).
Donc P(X) = allf_1(X — zx)™ € R[X] et donc la relation de divisibilité est valable dans R[X]
donc A|B dans R[X]. O

Remarque :
On rappel que la notion de divisibilité est intrinsequement lié au corps de base. Pour que ce soit
plus clair, on aurait pu (di?) noté la relation de divisibilité dans K[X] par |, (ou mieux \K[X})
pour insister sur le fait que cette relation n'est valable que dans K[.X]. Mais cela aurait alourdi les
notations. Et cette notation n'est pas canonique, alors ....

Cependant, vous pouvez parfaitement la définir en début de probleme et I'utiliser comme bon
vous semble si ca peut vous aider a garder |'esprit clair.

Exemple 4.10 :
Montrer que (X2 +1)[(X3 — X2 + X — 1) dans R[X].
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Théoreme 4.13 (Polynémes irréductibles de R[X] [V]) :
Les polyndmes irréductibles de R[X] sont :

(i) Les polyndmes de degré 1

(ii) Les polynémes de degré 2 de discriminant < 0.

Ce théoréme est fondamental. C'est de lui que viennent les ennuis et donc toute la suite de cette
partie. C'est plus particulierement les polynémes irréductibles du second types qui causent toutes les
perturbations.

Démonstration :

Montrons d'abord que ce sont des polyndmes irréductibles. Soit P € R[X]. Si deg P = 1, alors P
est irréductible dans C[X] donc il I'est forcément dans R[X]. En effet, s'il ne I'était pas dans R[X]
il aurait un diviseur non trivial dans R[X] mais qui serait également un élément de C[X]| (puisque
R[X] C C[X]) et ne serait donc pas irréductibles dans C[X] ce qui aboutit 3 2, avec un corollaire
de d’'Alembert-Gauss.

Supposons maintenant que deg P = 2 et qu'il est de discriminant < 0. Il n’a donc pas de racines
réelles et ses deux racines complexes sont conjuguées. Considérons D € R[X| un diviseur de P. Donc
nécessairement, deg D < 2. Si deg D = 2 ou 0 c'est un diviseur trivial de P. Mais si deg D = 1,
alors D a nécessairement une racine dans R qui sera donc aussi une racine réelle de P. Et 13, {;E
Donc deg D # 1 et donc c’est un diviseur trivial. Donc P est irréductible.

Réciproquement, montrons que tout polynéme irréductible est de cette forme. Soit donc P €
R[X] irréductible. Donc deg P > 1 car P est non constant. Donc en tant que polynéme de C[X],
on peut lui appliquer le théoréme de d'Alembert-Gauss et donc il admet au moins une racine « dans
C. Donc (X — a)|P(X) dans C[X]. Si a € R, alors (X — «)|P(X) dans R[X]. Mais comme P est
irréductible, X — « doit étre un diviseurs trivial de P et donc P est de degré 1. Si o ¢ R, alors @
est également racines de P. Donc (X — a)(X — @)|P(X). Mais (X — a)(X — @) est un polyndme
a coefficient réel. Donc c'est un diviseurs de P(X) dans R[X]. Mais comme P est irréductible dans
R[X], le polynéme (X — «a)(X — @) est un diviseurs trivial de P et donc P est de degré 2 sans
racines réelles, i.e. il est de degré 2 de discriminant < 0. O

Exemple 4.11 :
Donner des exemples de polynémes irréductibles dans R[X]. Quand est-il de X2 —3X +27
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Théoreme 4.14 (Théoréeme fondamental de I'algébre dans R[X]| [v]) :

Soit P € R[X] non constant. Alors 3\ € R*, Iny,ne € N, Jay,...,a,, € R deux a deux
distincts, 3(p1,q1);-- - (Pny, Gn,) € R? deux 3 deux distincts tels que Vj € {1,...,na},
A :p?—llqj <0et3Jay,...,on,, 01, .-, Pn, € N* tels que

ni na
P(X) =\ [](X = ap)* [J(X?+p; X +g;)"
k=1 j=1

et cette décomposition est unique a I'ordre des facteurs pres.

Démonstration :

Si P(X) € R[X] de degré > 1, c'est en particulier un polynéme non constant de C[X]. Donc on
peut lui appliquer la décomposition en facteurs irréductibles dans C[X]. Puis on regroupe les facteurs
de degré 1 avec des racines complexes conjuguées (dés qu'il y a une racines complexes non réelles,
son conjuguée apparait nécessairement avec la méme multiplicité puisque P est a coefficient réel) ce
qui nous donne la forme voulue. O

Remarque :
Avec cette décomposition on a également

ni no
degP=> op+ Y 26
k=1 j=1

donc le degré de P et la somme des multiplicités de ses facteurs irréductibles de degré 1 et du doubles
des multiplicités de ses facteurs irréductibles de degré 2.

Remarque :
On rappelle qu'il y a toujours une légére ambiguité lors du calcul du nombre de racine d'un polynéme.
Soit on sous-entend qu’on s'intéresse aux racines distinctes, ou alors on prend en compte toute les
racines et il faut alors les comptés avec leur multiplicité (une racine double compte 2 fois, une racine
triple compte 3 fois etc).

Les théoremes donnent des informations sur le nombre de racines comptés avec multiplicité. Mais
avant de déterminer les multiplicités, il faut déja trouver toutes les racines distinctes.

Corollaire 4.15 :
Tout polyndme réel de degré impair a au moins une racine réelle.

Démonstration :
On le montre par contraposée : si P n'a pas de racines réelles, alors, dans sa décomposition en
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facteurs irréductibles dans R, on a n; = 0 et donc deg P = Zyil 2/3; donc P est de degré pair. []

Exemple 4.12 :
Factoriser dans R[X] le polynéme X° — 1.

Proposition 4.16 (Polynéme premiers entre eux) :
Soit A, B € R[X].
Si AANB =1, alors A et B n'ont pas de racines communes.

Démonstration :
C'est le sens facile avec Bézout. O

A 11t ATTENTION !!! |I

La réciproque est fausse dans R. Il faut imposer d"avoir A ou B scindé pour que ¢a fonctionne.

Contre-exemple :
@ Prendre A(X) = (X2+1)(X2+3) et B(X) = (X2+1)(X2+2). Alors AANB=X2+1et
pourtant A et B n’ont pas de racines réelles communes.

4.4 Relations Racines / Coefficients

On retourne ici dans K[X] avec K = R ou C.
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Proposition 4.17 (Relations coefficients/racines [v]) :
Soit P(X) = 37_oar X" € K[X] scindé dans K[X] et de degré n € N*. Soit z1,...,z, € K
ses racines comptées avec multiplicités. Alors

n a n a
Z T = — n—l et H T = (_1)n70
k=1 k=1

an an,

Démonstration :
Ona P(X) = an[[j—; (X —xy) car P est scindé sur K. Le coefficient constant de P est alors donné
par

ag = P(0) = a, [[(0— =) = (—1)" [] =&
k=1 k=1

d'ou la formule annoncée.

Le coefficient a,_1 est obtenu par le développement de la forme factorisée de P en ne sélectionnant
qu'une seule parenthése parmi les n disponible de laquelle on extrait la racine et les autres parenthese
donnant l'indéterminée X . La formule est alors obtenue en faisant varier la parenthése fournissant
la racine parmi toutes les parenthése disponible.

n n
Uno1=0n Y —Tp = —an »_ Tj
k=1 k=1

Proposition 4.18 (Cas des polynomes de degré 2) :
Soit P(X) = aX? +bX + ¢ € K[X] scindé dans K[X] de racines z; et x5. Alors

C
— = -1 — T2 et — = 2172
a a

Proposition 4.19 :
Soit a, 8 € K. Les solutions du systémes

{m t+ty=«
ry =p
sont exactement les racines du polyndmes X2 — aX + /3.

Démonstration :
Si le systéme des solutions z et y dans K, on considére le polynéme P(X) = (X —z)(X —y). Alors
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P(X)=X?—(z4+y)X +2y = X2 —aX + 3. Donc les solutions du systémes sont bien les racines
de ce polyn6mes.

Réciproquement, on considére le polyndme P(X) = X2 — aX + 3. Si ce polyndme a une racine
de K, il en a nécessairement un deuxieme et donc il est scindé dans K. On note a et b ses racines.
Donc on P(X) = (X —a)(X —b) car P est unitaire. Et les relations racines/coefficients nous donne
alorsa+b = a et ab = 3. Donc a et b sont bien des solutions du systéme. Et si P n'a pas de racines
dans K, le systeme n'a pas de solutions non plus par contraposée du premier paragraphe. O

Exemple 4.13 :
Résoudre les systemes

r+y=>5
zy = —1

rT—y=2
2+ y? =2

et

En fait, on peut définir des fonctions permettant d’éxprimer tous les coefficients en fonctions des
racines pour un polyndmes scindés. C'est ce qu'on appelle les fonctions symétriques élémentaires :

Définition (HP) 4.3 (Fonctions symétriques élémentaires)

Pourn € N* et x1,...,x, € K, on appelle fonctions symétriques élémentaires en les x1,...,xy
les fonctions
n
o1 = lem oy = Z Tixj, 03= Z TiZj T,
k=1 1<i<j<n 1<i<j<k<n

et plus généralement,

Vpe{l,...,n}, op= Z Tiy Tiy -+ - T,

1<iy<-<ip<n

et en particulier

n
On = H Tk
k=1

Remarque :
oy contient () termes dans la somme.
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Avec ces notations, on a

Propriété (HP) 4.20 (Relations coefficients/racines complétes)

Soit P(X) = Y"1 arX* € K[X] scindé de degré n € N* et de racines 1, ..., x, € K comptés
avec multiplicité. Alors

Vk€{0,...,n}, op = (—1)‘“?

En particulier, un polyndme unitaire de degré 2 avec deux racines et donné par X2 — 01 X + 09.
Un polynéme scindé unitaire de degré 3 est donné par X2 — 01 X? + 09X — 03. Etc. On peut donc
écrire
P(X)=a3X?+a2X?+ a1 X +ap = a3(X — 21)(X — 22)(X — z3)

dont on déduit en développant

—a3T1T2T3 = —a303 = do, az(z172 + r123 + T223) = 302 = ay,
—ag(xl + 9 + wg) = —a301] = Q3.

Exemple 4.14 :
Résoudre le systeme

r+y+z=2

ry+ 2 +yz=-—95

ryz = —6
Remarque :
En fait, on peut montrer que tout polyndbme en z1, ..., x, symétrique en x1, ..., T, peut s'exprimer
comme un polynéme en les o1,...,0,.

Par exemple, Sl = 2221 T =01, SQ = 2221 .%'z = U%—QO'Q ; Sg = 2221 .T% = U%—0102—3U3.
Etc.

4.5 Interpolation de Lagrange

L'interpolation est le principe de trouver une courbe passant par des points fixés du plan. En
I'occurrence, on peut montrer qu'on peut toujours interpoler n'importe quel nuage de point deux a
deux non alignés verticalement par un polynéme.
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Définition 4.4 (Polynémes interpolateurs de Lagrange) :
Soit n € N* et soit xg,...,2T, € K deux a deux distincts.
On appelle le k-éme polyndme interpolateur de Lagrange en (xq, ..., x,) le polynéme
oo (X — i)
LX) = =45———

Proposition 4.21 (Polynémes interpolateurs de Lagrange) :
Soit n;nN* et xg,...,z, € K deux a deux distincts. On note (Lyg,...,Ly) les polyndmes
interpolateurs de Lagrange en (xq,...,2,). Alors :

(i) Vie{0,...,n}, defgv(Li) =n.
(ii) Vi, j € {0, ce ,n}, Lz(l'j) = (51'7]‘.
(iii) (Lo,...,Ly) est une base de K, [X].

Démonstration :
I suffit de faire les calculs : Pour tout i € {0,...,n}, deg(L;) = > %0 1 =n.
ki
Le calcule montre aussi
n L—
— o el ma g Sii
Ll(xj) = Tm (N .. .
o (x; — x1) Isit =
ki
Finalement, si Ao, ..., A\, K tels que >°7_g AxLr = 0, alors en évaluant en les z;, on a A\; = 0.
Et donc la famille est libre. Or K,,[X] est de dimension n + 1, donc par caractérisation des bases en
dimension finie, (Lo, ..., Ly) est une base de K, [X]. O

Proposition 4.22 (Interpolation de Lagrange) :
Soit n € N* est zq,...,Tn, Yo, ---,Yn € K avec Zo, . .., Tn deux a deux distincts.
Alors 3P € K, [X] tel que Vi € {0,...,n}, P(z;) = y; et c'est le polynéme

P(X) = zn:ykLk(X)~
k=0

Démonstration :
On pose le polynéme P comme au dessus. Le calcul montre facilement P(z;) = y;. L'unicité est
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apporté par la liberté de la famille (Lo, ..., L,). Sinon, on peut la voir autrement : Si P et ) ont
les mémes propriétés, alors P — () est un polyndmes de degré < n et ayant n + 1 racines distinctes.
Donc P —Q = 0. U
Exemple 4.15 :

Soit ai,...,a, € Ri. Montrer qu'il existe un polynéme P tel que Vi € {1,...,n}, ﬁ(ai) =./a;.
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