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Les polynômes sont en quelques sortes le couteau suisse des mathématiciens. Ils permettent de
tout faire, de tout simplifier et de faire des liens entre pleins de branches des mathématiques.

Les polynômes ont des propriétés algébriques formidables. On va pouvoir faire de
l’arithmétique sur les polynômes. On va donc définir une notion de divisibilité qui va fonctionner
exactement comme les entiers. On va également montrer que les opérations définis sur les polynômes
va munir l’ensemble des polynôme d’une structure d’espace vectoriel. On pourra donc faire de l’algèbre
linéaire sur les polynômes (c’est quasi systématique). Mais les polynômes peuvent également être vu
comme des fonctions polynomiales. On pourra alors leur appliquer tous les outils analytiques. Par
ailleurs, dans les prochains chapitres, on verra qu’on peut approcher (presque) toute fonction par
des polynômes, de sorte qu’on pourra toujours approximer une fonction par un bon polynôme au
voisinage d’un point (comme vous l’avez déjà vu en physique).

C’est d’ailleurs un raisonnement classique en mathématiques : on commence à établir une nouvelle
notion sur les polynômes, puis on l’étend aux fonctions grâce à l’approximation d’une fonction par
une suite de polynômes.
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Dans l’ensemble de ce cours, on se placera sur un corps K qui sera soit R soit C. Les résultats
seront donc valables indifféremment sur les deux corps, sauf s’il est précisé, bien sûr.
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1 L’ALGÈBRE K[X]

1 L’algèbre K[X] des polynômes en une indéterminée

1.1 Généralités

On va commencer par donner une définition abstraite des polynômes. Elle n’est pas indispensable
et elle sera peu (voir jamais) utilisée en pratique. Mais elle est utile pour pouvoir faire des distinction
de nature d’objet. Il ne faut pas confondre un polynôme, qui est un objet abstrait, avec la fonction
polynomiale associée, qui est une fonction.

Les premières définitions que l’on va donner ici sont surtout là pour deux choses : d’abord créer
les polynômes à partir de rien et permettre d’en déduire toutes les propriétés que l’on veut ; et
ensuite, permettre de bien comprendre que la nature profonde des polynômes est quelque chose de
contre-intuitif et donc, de ne pas se faire avoir par les manipulations apparemment simples que l’on
va en faire. C’est surtout le deuxième point qui est intéressant. En gardant à l’esprit la première
définition des polynômes, on pourra rester vigilant pour éviter d’écrire des choses fausses suggérées
par l’intuition et de mieux comprendre les subtilités ultérieures. Le but est donc essentiellement
pédagogique.

1.1.1 Premières définitions

Définition 1.1 (Suites presque nulles [✓]) :
Soit (an)n∈N ∈ KN une suite à valeurs dans K.

On dit que la suite (an) est une suite presque nulle si elle est nulle à partir d’un certain rang,
i.e. si ∃n0 ∈ N tel que ∀n ≥ n0, an = 0. On a donc

(an)n∈N = (a0, a1, . . . , an0−1, an0 , 0, 0, . . . )

"
Attention ! Dans une suite presque nulle (an), il peut parfaitement y avoir des 0 dans les

premiers termes. L’important étant qu’à partir d’un certain rang, tous les termes doivent être
nuls. Mais ça ne dit rien sur les premiers termes. Les premiers termes peuvent prendre toutes
les valeurs possibles. Il peut donc en particulier y avoir des 0 qui trâınent dans la première
partie de la suite.

Exemple 1.1 :
La suite définie par an = n pour 0 ≤ n ≤ 10 et an = max(0, 10 − n) pour n ≥ 11 est une suite
presque nulle. La suite bn = max(cos((2n + 1)π/2), sin(3π

2 − 3π
n+1) pour tout n ∈ N également.
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1 L’ALGÈBRE K[X] 1.1 Généralités

Définition 1.2 (Symbole de Krœnecker [✓]) :
Le symbole de Kroœnecker des entiers p et q, noté δp,q, est défini par :

∀p, q ∈ N, δp,q =
{

1 si p = q

0 sinon

Le symbole de Krœnecker est très utile dans les formules. Il sera particulièrement utilisé dans le
chapitre sur les matrices. Mais on va en avoir besoin déjà dans ce chapitre.

Définition 1.3 (L’indéterminée) :
On note X la suite (0, 1, 0, 0, 0, . . . ) = (δ1,n)n∈N. Par extension, on note ∀k ∈ N, Xk =
(δk,n)n∈N = (0, . . . , 0, 1, 0, 0, . . . ) avec le 1 en k-ème position. X s’appelle l’indéterminée.

"

!!! ATTENTION !!!

L’indéterminé X est donc quelque chose de très spécifique. C’est une suite et pas n’importe
quelle suite. On ne peut donc pas “remplacer” X par quoi ce que soit, et surtout pas par un
nombre. Ça n’aurait pas de sens de remplacer une suite par un nombre. Ce ne sont pas les
mêmes natures d’objets.

Remarque :
La notations Xk qui parâıt un peu artificielle pour le moment prendra tout son sens un peu plus
tard. On lui donnera sa raison d’être avec la définition des opérations.

Remarque :
Avec cette définition, toute suite presque nulle est une combinaison linéaire des {Xk, k ∈ N}, c’est
à dire que si (an)n∈N est une suite presque nulle, alors ∃n0 ∈ N, tel que ∀n ≥ n0, an = 0 et donc
a = (an)n∈N = (a0, a1, . . . , an0 , 0, 0, . . . ) =

∑n0
k=0 akXk.
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1 L’ALGÈBRE K[X] 1.1 Généralités

Définition 1.4 (Polynôme, Ensemble des polynômes [✓]) :
• On appelle polynôme à coefficients dans K en l’indéterminée X tout objet noté

P (X) =
+∞∑
k=0

akXk = a0 + a1X + a2X2 + a3X3 + · · · + adXd + . . .

où (an)n∈N ∈ KN est une suite presque nulle de K.

La suite (an) est la suite des coefficients du polynôme P .
• On note K[X] l’ensemble des polynôme à coefficients dans K.

Remarque :
La définition d’un polynôme semble problématique à cause de la somme infinie qui n’est pas clairement
définie (convergence, existence, condition d’existence, etc. . .). En fait, comme on considère une suite
presque nulle de coefficients, elle ne contient que des zéros à partir d’un certain rang, et donc la
somme

+∞∑
k=0

akXk

ne contient que des zéros à partir d’un certain rang et donc est, en réalité, une somme finie.
Donc l’apparence de problème de définition n’est, en fait, qu’apparent et n’existe pas dans la

réalité. Il ne faut pas se laisser tromper par les apparences qui sont, bien souvent, trompeuses.

Remarque :
On rappelle que la suite (an)n∈N des coefficients des P est une suite presque nulle. Donc elle est
stationnaire en 0 à partir d’un rang d, mais on peut tout de même trouver des zéros dans ces premiers
termes. Par exemple, le polynôme P (X) = X3 +X −1 est un polynôme dont la suite des coefficients
est nulle à partir du rang 4 et le coefficient d’indice 2 est nul aussi.

Remarque (Notation) :
Dans la littérature, on peut trouver parfois un polynôme noté P ou P (X), sans, parfois, de distinction
claire entre les deux. En fait, il est bon de réserver la simple lettre P lorsque l’on veut parler du
polynôme en toute généralité, si l’on veut parler de lui de façon abstraite, en tant qu’individu de
l’ensemble K[X]. Mais il vaut mieux l’appeler P (X) dès que l’indéterminée prend de l’importance,
c’est à dire quand on veut calculer avec le polynôme. Il faut donc éviter d’écrire P =

∑d
k=0 akXk.

C’est désagréable d’avoir une expression dépendant de l’indéterminée X à droite qui est égale à une
expression qui ne dépend plus a priori (du moins, moins clairement) de l’indéterminée X. Soit on
met des X partout, soit on en met pas. Mais c’est gênant de mélanger les deux.

En d’autres termes, il faut utiliser l’une ou l’autre des notations un peu comme on le ferait avec
des fonctions. Soit on utilise f pour parler de l’objet fonctionnelle, soit on écrit f(x) (en définissant
x) pour parler de l’expression de f et calculer, factuellement. Il faut faire de même ici, mais avec
la particularité que X a déjà une définition précise (c’est l’indéterminé, c’est la suite presque nulle
(δ1,n)n∈N).
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1 L’ALGÈBRE K[X] 1.1 Généralités

Cependant, vous croiserez certainement dans la littérature des auteurs qui écriront P =
∑n

k=0 akXk.
Ce n’est pas très heureux en fait un confusion entre le polynôme abstrait et son expression. Mais
pour éviter des maladresses rédactionnelles ultérieures, il vaut mieux éviter. Si on a les idées très
claires (ce qui n’est encore notre cas), on peut le faire. Sinon, il vaut mieux éviter.

"

!!! ATTENTION !!!

Il faut prendre garde à la notation ! C’est K[X] et pas K(X) ni K{X}. Il faut des crochets.
Et des crochets simples. Pas KJXK. K{X} n’est pas clairement défini, ça ne fait référence
à rien de canonique. L’ensemble K(X) existe et correspond aux fractions rationnelles à
coefficients dans K qui n’est pas au programme. Et KJXK n’existe pas non plus (du moins
à ma connaissance) mais K[[X]] existe et correspond aux sommes formelles à coefficients
dans K. Ce n’est pas non plus au programme. Donc faites attention aux notations. Si vous
mettez des parenthèses, la majorité de ce que vous écrirez deviendra faux ou n’aura plus de
sens.

Exemple 1.2 :
Donner la suite des coefficients des polynômes 2 + X − X2 et X3 + X − 1.

Donner les polynômes Pa et Pb dont la suite des coefficients sont (an) et (bn) définies dans
l’exemple précédent.

En résumé, un polynôme n’est rien d’autre qu’une suite presque nulle. Un polynôme est une
suite particulière. Et l’indéterminée est une suite spécifique à l’intérieur de cet ensemble. Penser aux
polynômes en ces termes devrait vous dissuader de donner des valeurs à l’indéterminé X. Ça n’a pas
de sens. On ne peut pas donner une valeur particulière à une suite.

"

!!! ATTENTION !!!

Il faut bien faire la différence entre X et x. Pour le moment, on introduit X qui est une
indéterminée (et que je ne vais pas définir complètement proprement dans ce cours par écrit).
On introduira ensuite la variable x. Et ce n’est pas la même chose. L’indéterminée X n’est
PAS la variable x, qui n’est pas l’indéterminée X. Il faudra bien faire la distinction entre les
deux et j’insisterais beaucoup sur cette distinction.
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1 L’ALGÈBRE K[X] 1.1 Généralités

Remarque :
Il y a d’autres façons de définir les polynômes (et plus particulièrement l’indéterminée X). Mais
celle-ci me parâıt encore la plus clair et la plus éclairante pour faire la distinction entre X et x.

Remarque :
Dans la mesure où, dans la définition, les polynômes sont des types de suites particulières (les suites
presque nulles), certaines opérations vont provenir des opérations sur les suites. Notamment l’addition
et la multiplication par un scalaire.

Définition 1.5 (Égalité dans K[X]) :
Soit deux polynômes P (X) =

∑+∞
k=0 akXk et Q(X) =

∑+∞
k=0 bkXk de K[X] (donc les suites

(an) et (bn) sont donc des suites presque nulles.
On dit que P et Q sont égaux si les suites de leurs coefficients sont égales, i.e.

P = Q ⇐⇒ ∀n ∈ N, an = bn

La notion d’égalité entre polynômes provient donc de la notion d’égalité entre suites. Les po-
lynômes sont un cas particuliers de suites (ce sont des suites presque nulles).

Définition 1.6 (Polynôme constant, Polynôme nul) :
• On appelle polynôme constant de K[X] un polynôme de la forme CX0 = (C, 0, 0, . . . )

avec C ∈ K.
• En particulier, on appelle polynôme nul, le polynôme constant égale à 0.

Remarque :
Du coup, au vu de la définition, on fait souvent un amalgame entre un polynôme constant et la valeur
de la constante (donc de son coefficient non nul). Ce n’est pas bien. C’est une erreur à strictement
parlé. Mais c’est pratique. On en a très envie et ça allège beaucoup les notations. Un peu comme on
identifie une fonction constante avec sa valeur.

Autrement dit, par commodité, on identifiera les polynômes constants à leur constante via la
bijection (que nous verrons être une forme linéaire) CX0 7→ C.
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1 L’ALGÈBRE K[X] 1.1 Généralités

Définition 1.7 (Monôme) :
On appelle monôme de K[X] tout polynôme de la forme

aXn

avec a ∈ K.

Étymologiquement, “monôme” veut dire un seul “nôme”. Les “nôme” sont justement les éléments
constitutif de K[X], c’est à dire les objets de la forme aXn. Donc un monôme est un seul de ces
machins. Et étymologiquement, un “polynôme” est objet composé de plusieurs “nôme”, c’est donc
un objet de la forme a0X0 + a1X1 + · · · + anXn avec plusieurs monôme.

En particulier, les polynômes constants sont des monômes (de la formes aX0 avec toujours
a ∈ K).
Remarque :
Un polynôme est donc une combinaison linéaire de monôme.

Définition 1.8 (Polynôme pair et polynôme impair) :
Soit P (X) =

∑+∞
n=0 anXn ∈ K[X] un polynôme.

• On dit que P est pair ssi ∀n ∈ N, a2n+1 = 0.
• On dit que P est impair ssi ∀n ∈ N, a2n = 0.

Remarque :
On notera que le polynôme nul est à la fois pair et impair. C’est le seul (facile à montrer).

1.1.2 Degré

La notion de degré est aux polynômes ce que la notion de dimension est aux espaces vectoriels
de dimension finies.

Définition-Propriété 1.9 (Degré d’un polynôme [✓]) :
Soit P (X) =

∑+∞
k=0 akXk ∈ K[X].

• Si P ̸= 0, on appelle degré de P le plus grand entier d ∈ N tel que ad ̸= 0. On
le note deg(P ), i.e.

deg(P ) = max{k ∈ N, ak ̸= 0}.

• Par convention, on note deg(0) = −∞.
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1 L’ALGÈBRE K[X] 1.1 Généralités

Démonstration :
On suppose P ̸= 0. On rappelle que si P (X) =

∑+∞
k=0 akXk est un polynôme, alors la suite de ses

coefficients (an) est une suite presque nulle. Comme P ̸= 0, alors (an) ̸= 0 et donc ∃n0 ∈ N tel que
an0 ̸= 0. Donc {k ∈ N, ak ̸= 0} ≠ ∅.

La suite (an) étant une suite presque nulle, donc ∃d ∈ N tel que ∀n ≥ d, an = 0. On en déduit
donc que {k ∈ N, ak ̸= 0} est majorée par d.

Donc l’ensemble {k ∈ N, ak ̸= 0} est un sous-ensemble non vide et majorée de N, donc il admet
un maximum. On note deg(P ) ce maximum. □

"
!!! ATTENTION !!!

On ne parle de degré QUE pour des polynômes. Rien d’autres ! (enfin pour nous. . .) Au
même titre que l’on ne parle de dimension QUE pour des espaces vectoriels et rien d’autres.

La convention est là pour assurer un bon fonctionnement des formules qui vont venir par la suite.
Comme ça, on n’a pas besoin de se préoccuper (en général) du fait que P soit nul ou pas dans les
formules faisant intervenir le degré d’un polynôme.

Cet entier est unique :

Proposition 1.1 (Expression du degré et Unicité du degré) :
Soit P ∈ K[X], P ̸= 0.

Alors deg P = max{k ∈ N, ak ̸= 0} = min{k ∈ N, ∀n > k, an = 0}.
En particulier, le degré est unique pour un polynôme donné.

La démonstration n’est pas très dur. On pourrait l’exprimer autrement. Ces expressions ne sont
pas toujours très utiles, mais elles ont l’avantage de justifier que le degré est unique pour un polynôme
donné et que l’on peut donc parlé DU degré d’un polynôme.
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1 L’ALGÈBRE K[X] 1.1 Généralités

"

!!! ATTENTION !!!

On rappelle qu’un polynôme est essentiellement une suite presque nulle. Donc on peut tou-
jours écrire un polynôme P sout la forme P (X) =

∑d
k=0 akXk. Attention cependant, avec

cette notation, cela ne veut pas dire que P est de degré d. Cela veux juste dire que deg P ≤ d.
Cela veut dire qu’il n’y a pas de terme de degré plus grand que d. Mais pour que le degré
de P soit vraiment d, il faut imposer un condition supplémentaire (par exemple deg P = d
ou encore ad ̸= 0). On a juste un majorant du degré avec cette notation.

Définition 1.10 (Kn[X] [✓]) :
Soit n ∈ N. On note Kn[X] l’ensemble des polynômes de degré inférieur à n, i.e.

Kn[X] = {P ∈ K[X], deg(P ) ≤ n}.

Définition 1.11 (Coefficient dominant, Coefficient constant [✓]) :
Soit P =

∑d
k=0 akXk ∈ K[X] un polynôme non nul de degré d ∈ N.

• On appelle coefficient dominant de P le coefficient ad de Xd. C’est donc le dernier coeffi-
cient non nul.

• On appelle coefficient constant de P le coefficient a0 devant X0.

Remarque :
On pourra noter coeff dom(P ) le coefficient dominant de P . Mais attention ! Cette notation n’a rien
de canonique. C’est la mienne. Que j’utilise parce que c’est pratique. Et parce qu’elle est transparente
et parfaitement compréhensible. Mais ce n’est pas une notation standard. Il est possible que l’on vous
la reproche si vous l’utilisez.

Exemple 1.3 :
Déterminer deg(X3 + X2 − 1) et deg(aX + b) en fonction de a et b deux éléments de K ainsi que
leurs coefficients dominants et constants.

Remarque (Caractérisation des polynômes constants) :
Les polynômes de degré 0 sont très exactement les polynômes constants non nuls.
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1 L’ALGÈBRE K[X] 1.1 Généralités

Définition 1.12 (Polynôme unitaire [✓]) :
Soit P ∈ K[X], P ̸= 0.

On dira que P est unitaire si coeff dom(P ) = 1.

Remarque :
En particulier, tout polynôme unitaire est non nul. Forcément puisqu’il a un coefficient qui est 1 donc
non nul... (et ce coefficient doit être son coefficient dominant)

Exemple 1.4 :
Le polynôme Xn − 1 est unitaire pour tout n ∈ N∗. Mais le polynôme 1 − Xn ne l’est pas.

1.1.3 Opérations sur K[X] et structure algébrique

Nous allons définir dans cette partie toutes les opérations qui existent entre polynômes. Il va y
en avoir 4 (5 sur C[X]).

1.1.3.1 Structure d’espace vectoriel

Définition-Propriété 1.13 (Combinaison linéaire) :
Soit P (X) =

∑+∞
n=0 anXn, Q(X) =

∑+∞
n=0 bnXn ∈ K[X] et λ ∈ K.

• On définit le polynôme P + Q de K[X] par

(P + Q)(X) =
+∞∑
n=0

(an + bn)Xn

• On définit le polynôme λP de K[X] par

(λP )(X) =
+∞∑
n=0

(λan)Xn

Démonstration :
Il faut montrer que P + Q et λP sont bien des polynômes à coefficients dans K, càd qu’il faut
montrer que la suite de leurs coefficients sont des suites presque nulles de K.

Soit nP , nQ ∈ N tel que ∀n ≥ nP , an = 0 et ∀n ≥ nQ, bn = 0 (attention, ce ne sont que des
majorants du degré). Alors ∀n ≥ nP , λan = 0 donc la suite (λan) = λ(an) est une suite presque

11
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nulles de K. Et ∀n ≥ max(nP , nQ), on a an + bn = 0 + 0 = 0. Donc la suite (an) + (bn) = (an + bn)
est également une suite presque nulle. □

Remarque :
En fait, ce qu’on sous-entend, c’est que l’ensemble des suites presque nulles de K est un K-espace
vectoriel. Et comme cet ensemble “est” l’ensemble des polynômes ...

Exemple 1.5 :
Déterminer le polynôme (2 + X + X2) + (X3 + X − 1) et 2 · (X2 − 1).

Théorème 1.2 (K[X] est un K-ev [✓]) :
(K[X], +, · ) est un K-espace vectoriel dont l’élément neutre est le polynôme nul

On a donc les relations
1. ∀P, Q ∈ K[X], P + Q ∈ K[X], ∀λ ∈ K, λP ∈ K[X].
2. ∀P, Q ∈ K[X], P + Q = Q + P

3. ∃E ∈ K[X], ∀P ∈ K[X], P + E = E + P = P (ici E est le polynôme nul).
4. ∀P ∈ K[X], ∃Q ∈ K[X], P + Q = Q + P = E.
5. ∀P, Q, R ∈ K[X], (P + Q) + R = P + (Q + R) = P + Q + R

6. ∀P ∈ K[X], 1 · P = P

7. ∀λ, µ ∈ K, ∀P ∈ K[X], (λ + µ)P = λP + µP

8. ∀λ ∈ K, ∀P, Q ∈ K[X], λ(P + Q) = λP + λQ.
9. ∀λ, µ ∈ K, ∀P ∈ K[X], λ(µP ) = (λµ)P

Démonstration :

1. Déjà fait dans la définition 1.13.
2. Soit P, Q ∈ K[X],

(P + Q)(X) =
+∞∑
n=0

(an + bn)Xn =
+∞∑
n=0

(bn + an)Xn = (Q + P )(X)

car l’addition est commutative dans K. (On aurait pu dire aussi que (K[X], +) est un sous-
groupe du groupe abélien (KN, +) mais ce n’est pas au programme).

12
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3. Soit P ∈ K[X]. On note E le polynôme nul. Alors

(P + E)(X) =
+∞∑
k=0

(ak + 0)Xk =
+∞∑
k=0

akXk = P (X)

et E + P = P est vérifiée automatiquement par commutativité de l’addition dans K[X].
4. Soit P (X) =

∑+∞
k=0 akXk. Alors la suite (−an) est une suite presque nulle de K donc on peut

considérer le polynôme Q(X) =
∑+∞

k=0 −akXk associé. Et (P +Q)(X) =
∑+∞

k=0(ak −ak)Xk =∑+∞
k=0 0 · Xk = E(X). De même pour l’autre identité par commutativité de l’addition.

5. On prend P (X) =
∑+∞

k=0 akXk, Q(X) =
∑+∞

n=0 bnXn, R(X) =
∑+∞

n=0 cnXn. Alors, par
définition de la somme de deux polynômes, ((P + Q) + R)(X) =

∑+∞
n=0((an + bn) + cn)Xn =∑+∞

n=0(an + bn + cn)Xn =
∑+∞

n=0(an + (bn + cn))Xn = (P + (Q + R))(X).
6. Soit P (X) =

∑+∞
k=0 akXk ∈ K[X]. Alors 1 · P (X) =

∑+∞
k=0(1 · ak)Xk =

∑+∞
k=0 akXk =

P (X).
7. Soit λ, µ ∈ K et P (X) =

∑+∞
k=0 akXk ∈ K[X]. Alors (λ + µ)P (X) =

∑+∞
k=0(λ + µ)akXk =∑+∞

k=0(λak + µak)Xk = λP (X) + µP (X) et il est clair que les suites en présences sont toutes
des suites presque nulles.

8. Soit λ ∈ K et P (X) =
∑+∞

k=0 akXk, Q(X) =
∑+∞

k=0 bkXk ∈ K[X]. Alors λ(P (X) + Q(x)) =
λ(P + Q)(X) =

∑+∞
k=0 λ(ak + bk)Xk =

∑+∞
k=0(λak + λbk)Xk = λP (X) + λQ(X) avec que

des suites presque nulles partout.
9. soit λ, µ ∈ K et P (X) =

∑+∞
k=0 akXk ∈ K[X]. Alors λ(µP (X)) = λ

(∑+∞
k=0 µakXk

)
=∑+∞

k=0 λ(µak)Xk =
∑+∞

k=0(λµ)akXk = (λµ)P (X). Ici encore, les suites sont des suites presque
nulles.

(Ouf !) □

Proposition 1.3 (Degré de λP [✓]) :
On a :

∀P ∈ K[X], ∀λ ∈ K, deg(λP ) =
{

deg P si λ ̸= 0
−∞ si λ = 0

Démonstration :
Si λ = 0, alors λP = 0 et donc deg(λP ) = −∞. Si λ ̸= 0 et P = 0, alors λP = 0 et donc deg(λP ) =
−∞ = deg P . Si λ ̸= 0 et P (X) =

∑deg P
k=0 akXk avec deg P ≥ 0, on a λP (X) =

∑deg P
k=0 λakXk.

Mais, par définition de deg P , adeg P ̸= 0, donc λadeg P ̸= 0. Donc deg(λP ) = deg P . □
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Proposition 1.4 (Degré d’une somme de polynômes [✓]) :
Soit P, Q ∈ K[X]. Alors

deg(P + Q) ≤ max(deg P, deg Q).

De plus :

deg(P + Q) = max(deg P, deg Q) ⇐⇒


deg(P ) ̸= deg(Q)
ou{

deg(P ) = deg(Q)
coeff dom(P ) + coeff dom(Q) ̸= 0

Démonstration :
On pose P (X) =

∑p
k=0 akXk et Q(X) =

∑q
k=0 bkXk avec p = deg P et q = deg Q. Sans perte

de généralité, on peut supposer deg P ≤ deg Q. Alors (P + Q)(X) =
∑p

k=0 akXk +
∑q

k=0 bkXk =∑p
k=0(ak + bk)Xk +

∑q
k=p+1 bkXk. Si deg P < deg Q, alors deg(P + Q) = q = max(deg P, deg Q).

Et si deg P = deg Q, alors (P + Q)(X) =
∑p

k=0(ak + bk)Xk donc deg(P + Q) ≤ deg P selon
si ap + bp = 0 ou non. □

Remarque :
Si deg P = deg Q et que les coefficients dominants de P et Q s’annulent, alors

deg(P + Q) < max(deg P, deg Q)

Exemple 1.6 :
Déterminer le degré de P + Q avec P (X) = X3 − X + 1 et Q(X) = X2 − X3 − 1.

Proposition 1.5 :
Soit n ∈ N. Alors Kn[X] est un sev de K[X].

Démonstration :
Il suffit d’utiliser la caractérisation des sev. Ce n’est pas très dur avec ce qui a été fait précédemment.

□
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Remarque :
En fait, Kn[X] est un K-ev de dimension finie, mais on le reverra plus tard.

1.1.3.2 L’anneau (K[X], +, ×)

On définit maintenant un produit sur K[X] :

Définition-Propriété 1.14 (Produit de polynômes [✓]) :
Soit P (X) =

∑+∞
k=0 akXk et Q(X) =

∑+∞
k=0 bkXk deux polynômes de K[X].

On définit le polynôme PQ ∈ K[X] par

PQ(X) =
+∞∑
k=0

ckXk

où ∀n ∈ N,

cn =
∑

p,q∈N
p+q=n

apbq =
n∑

k=0
akbn−k =

n∑
k=0

an−kbk = a0bn + a1bn−1 + · · · + anb0.

Démonstration :
Il faut montrer que PQ tel qu’il est définit est bien un polynôme, c’est-à-dire que la suite des ses
coefficients est une suite presque nulle.

On sait ∃n ∈ N et ∃m ∈ N tel que ak = 0 pour tout k ≥ n et bj = 0 pour tout j ≥ m. En
prenant k > n + m, alors

ck =
k∑

j=0
ajbk−j =

n∑
j=0

ajbk−j +
k∑

j=n+1
ajbk−j = 0

En effet, si 0 ≤ j ≤ n, alors m < k − j ≤ k donc bk−j = 0 et si n + 1 ≤ j ≤ k, on a aj = 0. Donc
(ck) est une suite nulle à partir de n + m, donc c’est une suite presque nulle et donc PQ est bien
un polynôme de K[X]. □

Remarque :
On vient en particulier de montrer que deg(PQ) ≤ n + m = deg P + deg Q.

Remarque :
On définit une nouvelle opération sur les suites presque nulles. Qui est une multiplication différente
de celle définie sur les suites génériques. Sur KN on a définie une multiplication terme à terme. Ici, on
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définit une nouvelle multiplication qui est plutôt une sorte de développement pour cöıncider avec ce
qu’il se passe sur R avec des produits de sommes. Sur les suites presque nulles, c’est cette nouvelle
multiplication qui va être intéressante, même si l’autre fonctionne toujours. Elle aura simplement
moins d’intérêt car moins cohérente avec la structure polynomiale.

Exemple 1.7 :
Déterminer le polynôme (2 + X − X2)(X3 + X − 1).

Proposition 1.6 (Produit de monôme) :
∀p, q ∈ N,

Xp × Xq = Xp+q

Démonstration :
Pour les besoins de cette démo, on utilise le symbole de Kronecker dont on rappel la définition.

∀p, q ∈ N, δp,q =
{

1 si p = q

0 sinon

Alors Xp =
∑+∞

k=0 δk,pXk et Xq =
∑+∞

k=0 δk,qXk. Alors Xp × Xq =
∑+∞

k=0 ckXk avec ∀k ∈ N,

ck =
k∑

i=0
δi,pδk−i,q

Or

δi,pδk−i,q ̸= 0 ⇐⇒
{

i = p

k − i = q

⇐⇒
{

i = p

k = p + q

Donc ck ̸= 0 ⇐⇒ k = p + q. Et dans ce cas, cp+q =
∑p+q

i=0 δi,pδp+q−i,q = δp,pδq,q = 1. Donc
Xp × Xq = 1 × Xp+q = Xp+q. □

Remarque :
Cette démo vient donc de justifier a posteriori la notation pour la suite presque nulle Xk =
(0, . . . , 0, 1, 0, . . . ). On a bien

Xk = X × X × · · · × X︸ ︷︷ ︸
k

.
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Proposition 1.7 (Degré d’un produit de polynômes [✓]) :

∀P, Q ∈ K[X], deg(PQ) = deg P + deg Q

Démonstration :
D’abord, par la définition du produit polynomiale, il est facile de voir que si P = 0 ou Q = 0, alors
PQ = 0 et donc deg(PQ) = −∞ = deg(P ) + deg(Q). On suppose donc P ̸= 0 et Q ̸= 0.

On pose n = deg P et m = deg Q et P (X) =
∑n

k=0 akXk et Q(X) =
∑m

k=0 bkXk. Alors
PQ(X) =

∑d
k=0 ckXk avec ck =

∑
p+q=k apbq et d = deg(PQ). Or on a vu que ck = 0 pour tout

k > n + m. Donc deg PQ ≤ n + m puisque deg(PQ) est le minimum de {k ∈ N, ∀j ≥ k, cj = 0}.
Et cn+m =

∑n+m
i=0 aibn+m−i =

∑n
i=0 aibn+m−i = anbm ̸= 0. Donc deg(PQ) = n + m. □

Démonstration :
Déterminer le degré de (2 + X − X2)(X3 + X − 1) de l’exemple précédent. □

Théorème 1.8 ((K[X], +, ×) est un anneau.) :
(K[X], +, ×) est un anneau commutatif, munit de ses deux LCI, dont l’élément neutre pour
le produit polynomial est le polynôme constant égal à 1. Le produit polynomial est bilinéaire
(i.e. (K[X], +, ×, · ) est une K-algèbre commutative).

An d’autres termes :
1. ∀P, Q ∈ K[X], PQ ∈ K[X] [LCI]
2. ∀P, Q, R ∈ K[X], ∀λ, µ ∈ K, (λP + µQ)R = λPR + µQR [Linéarité à gauche]
3. ∀P, Q, R ∈ K[X], ∀λ, µ ∈ K, P (λQ + µR) = λPQ + µPR [Linéarité à droite]
4. ∀P, Q ∈ K[X], PQ = QP [Commutativité]
5. ∃U ∈ K[X], ∀P ∈ K[X], UP = PU = P (où U = 1 ∈ K[X]) [Élément neutre]
6. ∀P, Q, R ∈ K[X], (PQ)R = P (QR) = PQR [Associativité]

Démonstration :

1. Déjà fait dans la définition du produit de deux polynômes.
2. C’est un jeu d’écriture. On pose P (X) =

∑p
k=0 akXk, Q(X) =

∑q
k=0 bkXk et R(X) =∑r

k=0 ckXk. On a alors (λP + µQ)R(X) =
∑+∞

k=0 dkXk où dk =
∑k

j=0(λaj + µbj)ck−j =
λ
∑k

j=0 ajck−j + µ
∑k

j=0 bjcj−k. Donc (λP + µQ)R = λPR + µQR.
3. On fait exactement la même chose.
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4. Soit P (X) =
∑n

k=0 akXk et Q(X) =
∑m

k=0 bkXk deux polynômes à coefficients dans K
de degré n et m respectivement. Alors QP (X) =

∑m+n
k=0 dkXk avec dk =

∑
p+q=k bpaq =∑

q+p=k aqbp = ck où PQ(X) =
∑n+m

k=0 ckXk. Donc PQ = QP

5. On va montrer que le produit de polynôme admet un élément neutre qui est le polynôme
contant égal à 1. On note U le polynôme constant égal à 1. Donc U(X) =

∑+∞
k=0 δ0,kXk =

1X0 = 1. Soit P (X) =
∑n

k=0 akXk ∈ K[X] de degré n. Alors UP (X) =
∑n+0

k=0 ckXk avec
ck =

∑
p+q=k δ0,paq = ak donc UP = P . Et la commutativité se charge de l’autre identité.

6. Soit P (X) =
∑α

k=0 akXk, Q(X) =
∑β

k=0 bkXk et R(X) =
∑γ

k=0 ckXk trois polynômes de
K[X]. Alors QR(X) =

∑β+γ
k=0 dkXk où dk =

∑
i+j=k bicj et (P (QR))(X) =

∑α+β+γ
k=0 ekXk

où ek =
∑

p+q=k apdq. On note enfin (PQ)(X) =
∑α+β

k=0 fkXk où fk =
∑

i+j=k aibj et
((PQ)R)(X) =

∑α+β+γ
k=0 gkXk où gk =

∑
p+q=k fpcq. Alors

ek =
∑

p+q=k

apdq

=
∑

p+q=k

ap

 ∑
i+j=q

bicj


=

∑
p+q=k

∑
i+j=q

apbicj

=
∑

p+i+j=k

apbicj

=
∑

q+j=k

cj

 ∑
p+i=q

apbi


=

∑
q+j=k

cjfq

= gk

D’où la relation.
□

Théorème 1.9 (Binôme de Newton) :
Soit P, Q ∈ K[X]. Comme K[X] est commutatif (au sens de la multiplication polynomiale),
on a :

∀n ∈ N, (P + Q)n =
n∑

k=0

(
n

k

)
P kQn−k
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"

!!! ATTENTION !!!

On a déjà vu que le binôme de Newton ne fonctionne pas tous le temps. Ici ça marche bien.
Mais ce n’est pas parce qu’il y a un polynôme qui apparâıt que ça fonctionnera bien. Par
exemple, si f et g sont des endomorphismes d’un ev E, alors on ne peut rien dire, en toute
généralité, en ce qui concerne le développement de (P̃ (f) + P̃ (g))n ! !

Comme K[X] est un anneau, il y a donc le groupe des inversibles.
Exemple 1.8 :
Le polynôme X n’est pas inversible.

"

!!! ATTENTION !!!

La notion d’inversibilité dépend évidemment de la définition de l’opération que l’on considère,
mais également de l’ensemble dans lequel on se place.

Par exemple, on a une multiplication dans Z. 2 n’est pas inversible dans Z mais a un
inverse dans Q (et donc dans R aussi).

Proposition 1.10 (Polynômes inversibles [✓]) :
Les polynômes inversibles de K[X] pour la multiplication sont les polynômes constants non
nuls, i.e. K[X]× = K∗.

Autrement dit, l’ensemble des polynômes inversibles est K0[X] \ {0} que l’on identifie à K \ {0}
via la forme linéaire bijective (donc l’isomorphisme) K0[X] → K canonique défini par CX0 7→ C.

Démonstration :
Soit C ∈ K∗. Alors 1

C ∈ K∗ et C × 1
C = 1. Donc le polynôme C est inversible.

Réciproquement, soit P ∈ K[X] un polynôme inversible. Donc ∃Q ∈ K[X] tel que PQ = 1.
Alors 0 = deg 1 = deg P + deg Q. Mais deg P, deg Q ∈ N ∪ {−∞}. Donc deg P = deg Q = 0. Ce
sont donc des constantes non nuls. □
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Corollaire 1.11 (K[X] est intègre [✓]) :
Il n’y a pas de diviseurs de 0 dans K[X], i.e. :

∀P, Q ∈ K[X],
(
PQ = 0 ⇐⇒ P = 0 ou Q = 0

)
Vous le pressentez, on appelle diviseurs de 0, un élément pour lequel il existe un autre élément

dont le produit vaut 0 (i.e. on dit que P est un diviseur de 0 si ∃Q ∈ K[X] tq PQ = 0). Il existe
des ensembles dans lesquels ça existe. Ce n’est pas gagné à priori d’avoir la propriété du dessus.

Démonstration :
Le sens indirecte est évident.

On va démontrer la réciproque par contraposée. Supposons que P, Q ∈ K[X]\{0}. Donc deg P ≥
0 et deg Q ≥ 0. Alors deg PQ = deg P + deg Q ≥ 0. Donc deg PQ ̸= −∞ et donc PQ ̸= 0. □

1.1.3.3 Composition de polynômes

Définition-Propriété 1.15 (Composition de polynôme [✓]) :
Soit P, Q ∈ K[X] avec P (X) =

∑d
k=0 akXk de degré d.

On définit alors le polynôme P ◦ Q par

P ◦ Q =
d∑

k=0
akQk ∈ K[X]

La puissance étant à comprendre en tant que produit ici.

Autrement dit,

P ◦ Q(X) = P (Q(X)) =
d∑

k=0
akQ(X)k

Démonstration :
Il faut montrer qu’on obtient un polynôme, c’est à dire que la suite des coefficients de P ◦ Q est
presque nulle.

On a P ◦Q =
∑d

k=0 akQk. Or on sait que ∀k ∈ N, Qk ∈ K[X]. Et comme K[X] est un K-espace
vectoriel, il est stable par combinaison linéaire, donc ∑d

k=0 akQk est un polynôme. □

Remarque :
On voit plusieurs choses. D’abord, l’outil des espaces vectoriels est un outil très efficace. On le
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savait déjà, mais on enfonce le clou. Une fois qu’on s’est fatigué à montrer qu’un ensemble avait
la structure d’espace vectoriel, ça simplifie énormément pas mal de calcul ultérieur (voir carrément
les rend inutiles) et démontre tout un tas de propriétés d’un seul coup, sans avoir besoin de calculer
quoi que ce soit.

D’autre part, on voit qu’on fait des compositions. Or cette opération est normalement réservé
aux fonctions. Mais pour le moment ce n’est qu’une notation pour une nouvelle opération sur K[X].
On verra par la suite (partie 1.2 page 25) que c’est cohérent avec ce qu’il se passe pour les fonctions
polynomiales ce qui justifiera a posteriori cette notation. Mais ne pas confondre pour autant les
polynômes avec des indéterminés X et les fonctions polynômiales qui seront d’une variable x.

"
!!! ATTENTION !!!

La composition n’est pas commutative. Donc P ◦ Q ̸= Q ◦ P même si les deux existes.

Proposition 1.12 (Degré de la composée de deux polynômes [✓]) :
Soit P, Q ∈ K[X], Q ̸= 0.

deg(P ◦ Q) = deg P × deg Q

Démonstration :
Supposons que P = 0. Alors bien sûr, P ◦ Q = 0 et donc la formule est vrai. Supposons donc que
P ̸= 0.

On pose P (X) =
∑deg P

k=0 akXk. Alors P ◦ Q =
∑deg P

k=0 akQk. Mais deg Qk =
deg Q + deg Q + · · · + deg Q︸ ︷︷ ︸

k

= k deg Q. Donc deg P ◦ Q = deg P deg Q, car ∀k ∈ N, deg Qk <

deg Qk+1 et adeg P ̸= 0 (et degré d’une somme de polynômes). □

Exemple 1.9 :
Déterminer P ◦ Q avec P (X) = 2 + X − X2 et Q(X) = X3 + X − 1. Déterminer également R(X2)
et R(X)2 si R(X) =

∑r
k=0 akXk.
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Remarque :
Si Q = 0, alors P ◦Q = a0, le coefficient constant de P , qui est de degré 0 ou −∞ selon que a0 ̸= 0
ou non.

Proposition 1.13 (Caractérisation de la parité d’un polynôme) :
Soit P ∈ K[X].

(i) P est paire si et seulement si P (−X) = P (X).
(ii) P est impaire si et seulement si P (−X) = −P (X).

où P (−X) est la composée du polynôme P par le polynôme −X.

Donc la notion de parité qu’on a introduite auparavant (1.8 p.8) est cohérente avec celle que
l’on connaissait déjà.

Démonstration :

(i) On démarre de ce que l’on veut montrer :

P (−X) = P (X) ⇐⇒
+∞∑
k=0

akXk =
+∞∑
k=0

(−1)kakXk

⇐⇒
+∞∑
k=0

(1 − (−1)k)akXk = 0

⇐⇒ ∀k ∈ N, (1 − (−1)k)ak = 0
⇐⇒ ∀k ∈ N, 2a2k+1 = 0
⇐⇒ P pair

(ii) On fait pareil pour l’imparité.
□

Proposition 1.14 (Propriété algébrique de la LCI ◦ [✓]) :
La loi de composition interne ◦ sur K[X] vérifie :

1. ∀P, Q, R ∈ K[X], (PQ) ◦ R = (P ◦ R)(Q ◦ R) [Distributivité de ◦ sur × à gauche]
2. ∀P, Q, R ∈ K[X], ∀λ, µ ∈ K, (λP + µQ) ◦ R = λP ◦ R + µQ ◦ R.

[La composition est linéaire à gauche]

Démonstration :
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1. On pose P (X) =
∑+∞

k=0 akXk, Q(X) =
∑+∞

k=0 bkXk et R(X) =
∑+∞

k=0 ckXk. On pose
également PQ(X) =

∑+∞
k=0 dkXk avec dk =

∑k
i=0 aibk−i. Alors (PQ) ◦ R =

∑+∞
k=0 dkRk.

D’autre part, P ◦R =
∑+∞

k=0 akRk et Q◦R =
∑+∞

k=0 bkRk. Alors (P ◦R)×(Q◦R) =
∑+∞

k=0 dkRk.
D’où l’égalité.

2. (λP + µQ) ◦ R =
∑+∞

k=0(λak + µbk)Rk =
∑+∞

k=0 λakRk +
∑+∞

k=0 µbkRk = λP ◦ R + µQ ◦ R.
□

Remarque :
Autrement dit,

K[X] × K[X] → K[X]
(P, Q) 7→ P ◦ Q

est linéaire par rapport à la variable de gauche. Mais pas la variable de droite.

Exemple 1.10 :
On prend P (X) = 2 + X − X2 et Q(X) = X3 + X − 1 et R(X) = X + 1. Calculer (PQ) ◦ R et
(3P − 2Q) ◦ R.

1.1.3.4 Conjugaison complexe

Dans C, vous savez qu’on dispose d’une opération supplémentaire qui est la conjugaison complexe.
On va donc regarder ce que ça fait sur les polynômes.

Définition 1.16 (Polynôme conjugué) :
Soit P (X) =

∑n
k=0 akXk ∈ C[X].

On appelle polynôme conjugué de P le polynôme

P (X) =
n∑

k=0
akXk ∈ C[X]
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Proposition 1.15 (Conjugaison et opérations) :
Soit P, Q ∈ C[X] et λ, µ ∈ C. Alors

1. P = P [Involution]
2. λP + µQ = λ P + µQ

3. PQ = P Q

4. P ◦ Q = P ◦ Q

Démonstration :
Je n’oserais vous faire l’affront de l’écrire. □

"
!!! ATTENTION !!!

On rappelle que la conjugaison n’est PAS linéaire ! ! Mais la conjugaison est sesquilinéaire.
Vous reverrez cette notion dans le chapitre sur les espaces hermitiens en deuxième année.

Proposition 1.16 (Caractérisation des polynômes réels par leur conjugué) :
Soit P ∈ C[X]. On a

P ∈ R[X] ⇐⇒ P = P

Démonstration :
Facile □

Remarque :
On peut faire une caractérisation des polynômes imaginaires purs aussi de la même façon. Mais ils
nous intéresseront moins a priori. On peut la faire tout de même et donc il est possible de l’utiliser,
si besoin est.

24



1 L’ALGÈBRE K[X] 1.2 Fonctions polynomiales

1.2 Fonctions polynomiales

Attention, il va y avoir dans ce paragraphe des distinctions assez subtiles du point de vue philoso-
phique. Elles sont nécessaires. Et vitales. Et elles proviennent directement de la définition (première)
des polynômes.

Définition 1.17 (Évaluation d’un polynôme [✓]) :
Soit P (X) =

∑n
k=0 akXk ∈ K[X] un polynôme et α ∈ K. On appelle valeur de P en α, ou

évaluation de P en α, le scalaire ∑n
k=0 akαk.

Définition 1.18 (Fonctions polynomiales [✓]) :
Soit P (X) =

∑n
k=0 akXk ∈ K[X] un polynôme. On définit la fonction polynomiale associée à

P sur K, notée P̃ , définie par
P̃ : K → K

x 7→
∑n

k=0 akxk

"

!!! ATTENTION !!!

A strictement parlé, P̃ ̸= P . Ce n’est pas le même objet. P est polynôme. C’est une suite
presque nulle. Alors que P̃ est une fonction. Ce n’est pas le même objet. Néanmoins, on peut
créer une fonction à partir d’un polynôme. On l’appelle P̃ . Mais ce n’est plus un polynôme.
C’est une fonction polynomiale. Ne pas confondre les deux.

Remarque :
L’amalgame entre un polynôme et sa fonction polynomiale associée étant très tentante, elle sera
souvent faite en deuxième année. Et pourtant, vous devrez tout de même savoir différencier les deux.
Vous pourrez simplement passer de l’un à l’autre sans le préciser, mais sans confondre les deux (donc
ne pas confondre les manipulations et les théorèmes qu’on le droit d’appliquer).

Cet amalgame sera précisé dans les sujets. Attention, si ce n’est pas préciser, vous ne pourrez
pas le faire. La phrase usuelle pour permettre cet amalgame est “On identifiera un polynôme P de
K[X] à la fonction polynomiale associée sur R”. Ou une autre phrase similaire.

On insistera pour cette année, puisque le programme demande de faire la distinction et que, si la
distinction n’est pas claire, au moment où on s’autorisera de faire ces amalgames en sachant utiliser
les propriétés des uns et des autres sans se tromper et en les différenciant, les choses risquent de
s’embrumer. Ce n’est pas parce qu’on écrit plus la distinction qu’il ne faut pas savoir la faire. La
distinction sera toujours faite, mais on ne précisera plus qu’on l’a fait.
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Exemple 1.11 :
La fonction polynomiale associée au polynôme X2 + 1 de R[X] est la fonction

R → R
x 7→ x2 + 1

Remarque :
En fait, pour fabriquer la fonction polynomiale, on récupère l’information essentielle du polynôme,
c’est-à-dire les coefficients d’une combinaison linéaire. Par définition, un polynôme est essentielle-
ment des coefficients d’une combinaison linéaire finie. On peut alors considérer ces coefficients dans
n’importe quel espace vectoriel et transporté cette combinaison linéaire dans cet ev. Les coefficients
étant les même, on appelle alors polynôme d’un vecteur (pour peu qu’on puisse donner un sens à
Xn) cette combinaison linéaire dans ce nouvel ev.

Ce processus de fabrication est classique. On l’utilise très régulièrement. Et pas nécessairement
dans ce sens là. On l’a d’ailleurs déjà utilisé dans un exo. À partir d’une combinaison linéaire de
vecteur, on peut extraire la suite des coefficients et du coup, fabriquer le polynôme dont la suite de
coefficients correspond à la suite des coefficients de la combinaison linéaire.

Définition 1.19 (Fonction évaluation) :
On définit les fonctions évaluations pour tout α ∈ K, notée evα par

evα : K[X] → K
P (X) 7→ P̃ (α)

Remarque :
L’application evα est linéaire. C’est très facile à vérifier.

Remarque :
On notera que P̃ (0) est le coefficient constant de P . On peut faire d’autres petites remarques
relativement évidentes de ce genre là.

Proposition 1.17 (Opérations et fonctions polynomiales) :
On a

1. ∀P, Q ∈ K[X], ∀λ, µ ∈ K, ˜λP + µQ = λP̃ + µQ̃ [Linéarité]
2. ∀P, Q ∈ K[X], P̃Q = P̃ Q̃

3. ∀P, Q ∈ K[X], P̃ ◦ Q = P̃ ◦ Q̃
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Démonstration :
Il suffit de l’écrire □

Compte tenu de ces relations, on peut définir une application

K[X] → F(K,K)
P 7→ P̃

cette application est compatible avec toutes les opérations sur K[X] (on peut dire que c’est un
homomorphisme d’algèbre, mais encore une fois, cette structure algébrique est HP).
Remarque :
En particulier, en prenant un peu d’avance sur les prochains chapitres, on vient de montrer que

R[X] → C∞(R,R)
P 7→ P̃

est une application linéaire (entre les deux R-ev). Il est facile de voir que cette application est injective
(l’étude du noyau est facile). En revanche, elle n’est pas du tout surjective. Par exemple exp n’a pas
d’antécédent par cette application. Ni le cosinus.

La conséquence dramatique est que cette application n’a pas de réciproque. Et donc :

"

!!! ATTENTION !!!

On ne peut pas passer d’une fonction à un polynôme ! Même si l’expression de la fonction
ressemble à une fonction polynomiale. Il faut poser un polynôme et vérifier que la fonction
polynomiale associée correspond à la fonction qu’on étudie. C’est une partie des problèmes
de rédaction classiques et c’est ce qui rend les copies intéressantes. Ou pas.

Définition 1.20 (Racine d’un polynôme [✓]) :
Soit P ∈ K[X] un polynôme. On appelle racine de P tout scalaire a ∈ K tel que P̃ (a) = 0.
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"

!!! ATTENTION !!!

La notion de racine d’un polynôme dépend du corps que l’on considère. Par exemple, le
polynôme X2 + 1 est dans R[X] et dans C[X], mais il n’a pas de racines dans R (en tant
que polynôme de R[X]) alors qu’il en a 2 dans C (en tant que polynôme de C[X]).

Ces distinctions seront l’objet de la dernière section. Il y a des différences notables avec
lesquelles il faut savoir jouer.

Exemple 1.12 :
Déterminer les racines du polynôme Xn − 1 dans C[X] puis dans R[X].

Proposition 1.18 (Conjugué et évaluation) :
Soit P ∈ C[X] et a ∈ C. Alors

P̃ (a) = P̃ (a) = P̃ (a)

Démonstration :
Là encore, il suffit d’écrire les définition et de passer aux conjugués □

Remarque :
L’ordre dans lequel on conjugue (et ce qu’on conjugue, la nature de l’objet que l’on conjugue) n’a
finalement que peu d’influence. Que l’on conjugue un complexe (évaluation d’un polynôme), ou que
l’on conjugue l’évaluation d’un polynôme en un conjugué, ou encore que l’on évalue le conjugué d’un
polynôme en un conjugué d’un complexe, on obtient à chaque fois le même résultat.

Dans le premier cas, c’est une conjugaison dans C classique, que l’on sait faire depuis le début
d’année ; dans le second, on commence par considérer l’application associée à P , on la conjugue
en tant qu’applications ; dans le troisième cas, c’est la fonction polynomiale associée au polynôme
conjugué de P que l’on considère. Et conjugué l’image, ou la fonction polynomiale ou le polynôme,
c’est pareil.
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1 L’ALGÈBRE K[X] 1.2 Fonctions polynomiales

Définition 1.21 (Polynôme d’endomorphisme d’un ev) :
Soit E un K-ev et f ∈ L(E). On définit une application

K[X] → L(E)
P 7→ P̃ (f)

où, si P (X) =
∑n

k=0 akXk, P̃ (f) =
∑n

k=0 akfk au sens de la composition d’endomorphisme.

On verra d’autres évaluation polynomiale. En fait, dès qu’on a un espace vectoriel munit d’une
autre LCI (jouant le rôle de multiplication) entre vecteur pour pouvoir donner un sens à la puissance
n-ème d’un vecteur, on peut définir une application de K[X] dans cet ensemble.
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Exemple 1.13 :
On prend E = R3 et l’application f(x, y, z) = (y + z, x + z, x + y). Calculer alors P̃ (f) pour
P (X) = X2 − X − 2. Que peut-on en déduire sur f ?

Remarque :
Si f ∈ L(E), un polynôme P ∈ K[X] tel que P̃ (f) = 0 s’appelle un polynôme annulateur de f . Ils
vont jouer un rôle important dans la suite.

Proposition 1.19 (Propriété algébrique de l’application K[X] → L(E) [✓]) :
Soit E un K-ev et f ∈ L(E).

L’application
K[X] → L(E)

P 7→ P̃ (f)

est une application linéaire vérifiant
(i) ∀P, Q ∈ K[X], P̃Q(f) = P̃ (f) ◦ Q̃(f)

(ii) ∀P, Q ∈ K[X], P̃ ◦ Q(f) = P̃ (Q̃(f))

"

!!! ATTENTION !!!

Le sens de l’évaluation d’un polynôme et les opérations qu’on a le droit de lui faire dépend
bien évidemment de la nature de l’objet sur lequel est évalué le polynôme. Autrement dit,
les opérations possibles sur P̃ (f) ne sont pas les mêmes si f ∈ L(E), f ∈ K etc.

En particulier, on notera que P̃Q(f) est une composition si f ∈ L(E) et un produit (un
vrai) si f ∈ K. Il y a une ambigüıté sur l’opération qui est levée automatiquement par la
nature de f . Il faut donc être délicat ici.

Remarque :
Dans cette propriété, on fixe f ∈ L(E) et on fait varier P ∈ K[X]. Mais on pourrait faire l’inverse :
on pourrait fixer P ∈ K[X] et faire varier f ∈ L(E) dans l’évaluation P̃ (f). Autrement dit, on
pourrait regarder l’application f 7→ P̃ (f) où P ∈ K[X] est fixé.

Ces deux applications donnent naturellement naissance à des applications qui vont de L(E)
dans un ensemble d’applications ou de K[X] dans un autre ensemble d’applications, selon si c’est
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f ∈ L(E) ou P ∈ K[X] qui est fixé en premier dans P̃ (f).

Autrement dit, on pourrait également définir une application

L(E) → L
(
K[X], L(E)

)
f 7→

(
P 7→ P̃ (f)

)
et montrer qu’elle est également linéaire, puis voir les propriétés qu’elle a par rapport à la composition
etc. C’est un bon exercice. Ce n’est pas excessivement difficile mais c’est surtout un problème de
notation.

De la même manière, on peut faire le même genre de jeu sur

K[X] → F
(
L(E), L(E)

)
P 7→

(
f 7→ P̃ (f)

)
et essayer de voir les propriétés.

On peut même définir une application

K[X] × L(E) → L(E)
(P, f) 7→ P̃ (f)

mais elle serait un peu moins intéressante.

Proposition 1.20 (Factorisation de Hörner) :
Soit P (X) =

∑n
k=0 akXk ∈ K[X] avec n ∈ N. Alors

P (X) = ((. . . (((anX + an−1)X + an−2)X + an−3) . . . )X + a1)X + a0

Démonstration :
On va démontrer le résultat par récurrence sur le degré de P . Si P est nul ou une constante, c’est
évident. Si P est de degré 1, aussi.

Si P (X) = aX2 + bX + c, a, b, c ∈ K et a ̸= 0. Alors P (X) = X(aX + b) + c.
Supposons que la factorisation de Hörner fonctionne pour tout polynôme de degré ≤ n. Prenons

P (X) =
∑n+1

k=0 akXk un polynôme de degré n + 1. Alors

P (X) =
n+1∑
k=0

akXk

= X

(
n+1∑
k=1

akXk−1
)

+ a0

= X

(
n∑

k=0
ak+1Xk

)
+ a0

Or ∑n
k=0 ak+1Xk est un polynôme de degré n, donc par principe de récurrence, il peut se factoriser

avec la factorisation de Hörner. Et donc P également, compte tenu de la forme de la première
factorisation de P . □
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La factorisation de Hörner permet de minimiser le nombre d’opérations nécessaire dans
l’évaluation d’un polynôme. Näıvement, pour calculer P̃ (x0), on a besoin d(d+1)

2 + d + d
opérations, où d = deg(P ). Avec la méthode de Hörner, on aura (toujours näıvement) seule-
ment d + d opérations. Ce qui permet d’améliorer grandement la complexité des algorithmes
utilisant des évaluations polynomiales.

Voir les TD d’info de début d’année pour des algorithmes permettant d’obtenir l’écriture
d’un polynômes avec la factorisation de Hörner.

1.3 Dérivations

On va commencer ici par définir une “dérivation” dans K[X]. Ce n’est pas une dérivation au sens
fonctionnelle. C’est une nouvelle opération dans K[X]. Mais on se rendra compte que cette opération
cöıncide avec la dérivation fonctionnelle (classique). D’où le choix de la terminologie.

Évidemment, il ne faudra pas confondre les deux.

1.3.1 Dérivée polynomiale première

Définition 1.22 (Dérivée formelle [✓]) :
Soit P (X) =

∑d
k=0 akXk ∈ K[X] un polynôme.

On appelle polynôme dérivé de P le polynôme, noté P ′, défini par

P ′(X) =
{∑d

k=1 kakXk−1 =
∑d−1

k=0(k + 1)ak+1Xk si deg(P ) ≥ 1
0 si deg(P ) ≤ 0

Exemple 1.14 :
Déterminer le polynôme dérivé de 3X3 + X2 − 5.

Proposition 1.21 (Degré et dérivé [✓]) :
Soit P ∈ K[X].

Alors deg(P ′) ≤ deg P − 1. Plus précisément, on a

deg(P ′) =
{

−∞ si deg P ≤ 0
deg P − 1 si deg P ≥ 1

Démonstration :
Ça vient de l’expression de P ′. Si P est constant, alors P (X) =

∑0
k=0 akXk. Donc P ′ est le polynôme
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nul. Et si P est non constant, alors il est de degré n ∈ N∗ et an ̸= 0 et P (X) =
∑n

k=0 akXk. Dans
ce cas, P ′(X) =

∑n−1
k=0(k + 1)ak+1Xk et nan ̸= 0. Donc P ′ est de degré n − 1 = deg P − 1. □

Corollaire 1.22 (Caractérisation des polynômes constants par les dérivés) :
Soit P ∈ K[X].

P constant ⇐⇒ P ′ = 0

Démonstration :
On vient de voir le sens direct. Il manque juste la réciproque.

Supposons donc P ′ = 0. Or si P (X) =
∑+∞

k=0 akXk, on a P ′(X) =
∑+∞

k=1 kakXk−1. Donc
∀k ≥ 1, kak = 0, c’est à dire ∀k ≥ 1, ak = 0 et donc P (X) = a0 ∈ K0[X] ≈ K. Donc P est
constant (éventuellement nul). □

Proposition 1.23 (Dérivation et opérations) :
La dérivation vérifie :

1. ∀P, Q ∈ K[X], ∀λ, µ ∈ K, (λP + µQ)′ = λP ′ + µQ′ [La dérivation est linéaire]
2. ∀P, Q ∈ K[X], (PQ)′ = P ′Q + PQ′ [Formule de Leibniz]

Démonstration :
Exercice. Il suffit d’écrire chacun des polynômes qui interviennent avec leurs coefficients, puis les
dériver et voir que les formules sont vraies. □

Remarque :
Avec le premier point et le fait que K[X] est un K-espace vectoriel, on a :

D : K[X] → K[X]
P 7→ P ′

est un endomorphisme de K[X].
Autrement dit, D ∈ L(K[X]). C’est en ces termes qu’il faut le retenir.

En fait, grâce au résultat sur le degré de la dérivé, la dérivation D est même un endomorphisme
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de Kn[X].

Proposition 1.24 (Et avec beaucoup de polynôme) :
Soit n ∈ N∗ et P1, . . . , Pn ∈ K[X]. Alors

(
n∏

k=1
Pk

)′

=
n∑

k=1

P ′
k

∏
1≤i≤n

i̸=k

Pi


et en particulier,

(P n)′ = nP ′ × P n−1

Démonstration :
Il suffit de faire une petite récurrence pour le premier et de faire P1 = · · · = Pn = P pour avoir la
deuxième relation. □

Corollaire 1.25 (Dérivé d’une composée de polynôme) :
Soit P, Q ∈ K[X].

(P ◦ Q)′ = Q′ × P ′ ◦ Q

Démonstration :
Là encore c’est un jeu d’écriture. Il suffit d’écrire P et Q en fonctions de leurs coefficients, et dérivé
P ◦ Q grâce à la proposition précédente (on connâıt la dérivé de Qk). □

"

Vous remarquerez que ces formules sont les mêmes que la dérivation de fonction qu’on
a vu dans le chapitre précédent. Cependant, ATTENTION ! ! Ce ne sont pas des fonctions,
mais des polynômes. Il faudrait des ˜ pour avoir des fonctions. Cette dérivation ne correspond
donc pas à celle du chapitre précédent. Il n’y a pas ici de limite. La définition n’est pas la
même. On aurait donc pas du appeler ça comme ça. Attention donc. Le type de la dérivation
que vous utilisez (et donc sa définition intrinsèque qui dépend de limite ou juste d’une relation
entre coefficients) dépend du type des objets que vous dérivez.
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Définition 1.23 (Polynôme primitif (HP ?)) :
Soit P ∈ K[X].

On appelle polynôme primitif de P tout polynôme Q ∈ K[X] tel que Q′ = P .

"
ATTENTION ! Il n’y a pas de primitive ici. La notion de primitive est réservée aux fonc-

tions. Elle dépend de la notion de dérivée avec des limite. On ne parle ici que de polynôme
primitif. C’est à dire de polynôme ayant une certaine propriété qui est celle de la définition.

Proposition 1.26 (Ensemble des polynômes primitifs (HP ?)) :
Tout polynôme P ∈ K[X] admet au moins un polynôme primitif Q ∈ K[X] et l’ensemble
de ses polynômes primitifs est constitué des polynômes de la forme Q + c avec c ∈ K, i.e.
{Q + c, c ∈ K} = Q + K.

Démonstration :
Il suffit de faire le lien avec les équations différentielles linéaire d’ordre 1 □

1.3.2 Dérivation polynomiale d’ordre supérieure

On a déjà introduit
D : K[X] → K[X]

P 7→ P ′

On peut donc considérer ses itérés D0 = IdK[X], D1 = D et Dn = D ◦ D ◦ · · · ◦ D︸ ︷︷ ︸
n

.

Définition 1.24 (Dérivée n-ème d’un polynôme) :
Soit P ∈ K[X] et n ∈ N.

Le polynôme dérivé de P d’ordre n est le polynôme P (n) = Dn(P ).

C’est donc le polynôme dérivé de P par la dérivation polynomiale appliquée n-fois successive à
P .
Remarque :
En particulier, P (0) = P , P (1) = P ′, P (2) = (P ′)′ = P ′′ etc.
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Proposition 1.27 (Degré d’une dérivée d’ordre n) :
Soit P ∈ K[X]. Alors :

1. ∀n > deg P , deg P (n) = −∞
2. ∀n ≤ deg P , deg P (n) = deg P − n.

Autrement dit ∀n > deg P , P (n) = 0 puisque le polynôme nul est le seul polynôme de degré
−∞.

Démonstration :
Petite récurrence sur n. □

Proposition 1.28 (Dérivée d’une combinaison linéaire et d’un produit) :
On a les relations :

1. ∀P, Q ∈ K[X], ∀λ, µ ∈ K, (λP + µQ)(n) = λP (n) + µQ(n) [Linéarité]
2. ∀P, Q ∈ K[X], (PQ)(n) =

∑n
k=0

(n
k

)
P (k)Q(n−k) [Formule de Leibniz]

Démonstration :
Le premier point s’obtient soit en faisant une récurrence sur n, soit en utilisant la linéarité de D
(pour plus tard). Et le second point est essentiellement la même démo que la formule de Leibniz du
chapitre précédent. □

Exemple 1.15 ([✓]) :
Exprimer P

(k)
n pour tout k, n ∈ N où ∀n ∈ N, Pn(X) = Xn.

Proposition 1.29 (Expression de la dérivée n-ème [✓]) :
Soit P (X) =

∑d
k=0 akXk ∈ K[X], alors

∀n ∈ {0, . . . , d}, P (n)(X) =
d∑

k=n

ak
k!

(k − n)!X
k−n =

d−n∑
k=0

an+k
(n + k)!

k! Xk
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Démonstration :
La démo vient directement de la linéarité de la dérivation, de la composition de la dérivation et de
l’exemple précédent avec le calcul de dérivée n-ème des monômes. □

1.3.3 Formule de Taylor

Théorème 1.30 (Formule de Taylor pour les polynômes [✓]) :
Soit P ∈ K[X] et a ∈ K. Alors

P (X) =
+∞∑
n=0

P̃ (n)(a)
n! (X − a)n

Ce théorème est fondamentale. On le reverra dans le chapitre suivant.
On donne ici une démonstration qui n’utilise que ce qu’il y a pour le moment dans ce cours. Par

la suite, on pourra le démontré en quelques lignes seulement. On aura des outils (d’algèbre linéaire
encore et toujours) très efficace qui nous permettrons de gagner beaucoup de temps et d’énergie.

Démonstration :
On donne une démo ne faisant appel qu’aux nouvelles notions polynomiales.

Soit P ∈ K[X] et a ∈ K. Si P = 0, il n’y a rien à faire puisque ∀n ∈ N, P (n) = 0. On
suppose donc P ̸= 0. On pose d = deg P ≥ 0. Donc ∀k ≥ d + 1, P (k) = 0 et donc Q(X) =∑+∞

k=0
P̃ (k)(a)

k! (X − a)k =
∑d

k=0
P̃ (k)(a)

k! (X − a)k ∈ K[X].
Mais ∀i ∈ {0, . . . , d}, P (i)(X) =

∑d
k=i ak

k!
(k−i)!X

k−i. Donc :

Q(X) =
d∑

i=0

P̃ (i)(a)
i! (X − a)i

=
d∑

i=0

((
d∑

k=i

ak
k!

(k − i)!a
k−i

)
(X − a)i

i!

)

=
d∑

i=0

d∑
k=i

ak
k!

i!(k − i)!a
k−i(X − a)i

=
d∑

k=0

(
ak

k∑
i=0

(
k

i

)
ak−i(X − a)i

)

=
d∑

k=0
ak(X − a + a)k

=
d∑

k=0
akXk

= P (X)
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□

On pourrait donner une démo d’algèbre linéaire, mais il nous manque quelques petits détails pour
pouvoir le faire sans trop de douleur.
Remarque :
Par un petit changement de variable pas dur, on peut écrire la formule de Taylor sous la forme :

P (a + X) =
+∞∑
k=0

P̃ (k)(a)
k! Xk

Corollaire 1.31 (Expression des coefficients avec les dérivées [✓]) :
Soit P (X) =

∑+∞
k=0 akXk ∈ K[X]. Alors

∀n ∈ N, an = P̃ (n)(0)
n!

Démonstration :
Il suffit d’appliquer la formule de Taylor en 0. □

Exemple 1.16 :
Soit le polynôme P (X) = X5 − (3 + 2i)X4 + (5 − i)X + 2. Déterminer P̃ (4)(0) et P̃ (2)(1) sans
calculé la dérivée de P .

Remarque :
On notera que cette relation est vraie pour tous les entiers. Dès que n dépassera le degré de P , les
coefficients sont nuls, mais les dérivées également. Donc c’est cohérent.
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1.3.4 Dérivée et fonction polynomiale

Théorème 1.32 (Dérivée polynomiale et dérivée fonctionnelle cöıncident [✓]) :
Si P ∈ K[X], alors

(̃P ′) =
(
P̃
)′

Autrement dit, la fonction polynomiale du polynôme dérivée cöıncide avec la dérivée de la fonction
polynomiale. Et c’est tant mieux. Ce qui justifie, a posteriori, la notation et le choix des termes.

Démonstration :
On va faire la démo pour P (X) =

∑d
k=0 akXk ∈ K[X] avec d ≥ 1. Soit α ∈ K et x ∈ K avec

x ̸= α.

τ
P̃

(x, α) = P̃ (x) − P̃ (α)
x − α

= 1
x − α

d∑
k=1

ak(xk − αk)

=
d∑

k=1

(
ak

k−1∑
i=0

xiαk−i−1
)

Donc

P̃ (x) − P̃ (α)
x − α

−−−→
x→α

d∑
k=1

(
ak

k−1∑
i=0

αk−1
)

=
d∑

k=1
kakαk−1

=(̃P ′)(α)

car x 7→
∑d

k=1 ak
∑k−1

i=0 xiαk−i−1 est une fonction polynomiale donc continue sur K.
Si d = 1, 0, c’est encore plus facile. Et si P = 0, on s’ennuie.
Donc

(
P̃
)′

= (̃P ′). □

Cette proposition est possible sur K car on sait maintenant dériver des fonctions à valeur com-
plexe.
Exemple 1.17 :
Avec le polynôme P (X) = X3 − 2X2 + 1, on a (̃P ′)(x) = (̃P )

′
(x).
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1.4 Le cas de Kn[X] (algèbre linéaire)

Définition 1.25 (Famille de polynômes échelonnée en degré [✓]) :
Soit P1, . . . , Pn ∈ K[X]. On dit que la famille (P1, . . . , Pn) est échelonnée en degré si ∀i ∈
{1, . . . , n − 1}, deg Pi < deg Pi+1.

Exemple 1.18 :
La famille (1, X, X2, . . . , Xn) est échelonnée en degré. Cette famille est la base canonique de Kn[X].

La famille ((1 + X)k, k = 2, . . . , 5) est échelonnée en degré. Tout comme la famille (1, X2, (1 +
X)3, (2 + X + X2)3, (2 + (1 + X2)2 + (1 + X2)3)2).

Proposition 1.33 (Liberté de famille échelonnée en degré [✓]) :
Soit (P0, . . . , Pn) une famille de polynôme de K[X] échelonnée en degré avec deg P0 ≥ 0.

Alors (P0, . . . , Pn) est une famille libre.

On peut démontrer cette proposition par récurrence ou directement. On va faire les deux.

Démonstration (Récurrence) :
D’abord, pour n = 0, on ne considère qu’un polynôme non nul, donc il est forcément libre.

Supposons que toute famille de n + 1 polynôme échelonnée en degré soit libre, pour un certain
n ≥ 0. Soit alors (P0, . . . , Pn+1) une famille de n+2 polynôme échelonnée en degré avec P0 ̸= 0. Soit
λ0, . . . , λn+1 ∈ K tels que ∑n+1

k=0 λkPk = 0. On pose également, ∀i ∈ {0, . . . , n + 1}, di = deg(Pi).
Donc 0 ≤ d0 < d1 < · · · < dn < dn+1.

C’est encore un polynôme. On peut le dériver plusieurs fois. Par exemple, on a(
n+1∑
k=0

λkPk

)(d0+1)

=
n+1∑
k=0

λkP
(d0+1)
k =

n+1∑
k=1

λkP
(d0+1)
k

par linéarité de la dérivation et puisque deg(P0) = d0 < d0 + 1. Et par ailleurs, ∀i ∈ {1, . . . , n + 1},
deg(P (d0+1)

i ) = di−d0−1. Donc la famille (P (d0+1)
1 , . . . , P

(d0+1)
n+1 ) est une famille de n+1 polynômes

non nuls échelonnée en degré et est donc libre par hypothèse de récurrence. On en déduit donc
λ1 = · · · = λn+1 = 0.

Ce qui nous amène à λ0P0 = 0. Mais comme P0 ̸= 0, on en déduit également λ0 = 0 et donc la
famille est libre. □

Démonstration (Direct) :
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On reprend une famille (P0, . . . , Pn) de polynômes non nuls échelonnée en degré et λ0, . . . , λn ∈ K
tels que ∑n

k=0 λkPk = 0. On pose encore dk = deg(Pk) pour 0 ≤ k ≤ n. On en déduit donc, par
dérivation successive, (

n∑
k=0

λkPk

)(dn)

=
n∑

k=0
λkP

(dn)
k = λnP (dn)

n = 0

par linéarité de la dérivation et puisque, ∀k ∈ {0, . . . , n − 1}, dk < dn. On en déduit donc λn = 0
puisque P

(dn)
n = dn! coeff dom(Pn) ∈ K∗. (Ici aussi, on pourrait alors entamer une autre récurrence).

On a donc ∑n−1
k=0 λkPk = 0. Puis en dérivant dn−1 fois, on trouve alors λn−1 = 0. En réitérant ce

processus n + 1 fois, on aboutit à λ0 = · · · = λn = 0 et la famille est donc libre. □

Définition 1.26 (Kn[X] Ensemble des polynômes de degré ≤ n [✓]) :
Pour tout n ∈ N, on pose Kn[X] l’ensemble des polynômes de K[X] de degré inférieur ou égale
à n, i.e.

Kn[X] = {P ∈ K[X], deg P ≤ n}

En particulier K0[X] = {P ∈ K[X], deg P ≤ 0} est isomorphe à K.

Proposition 1.34 (Structure de l’ensemble des polynômes de deg ≤ n [✓]) :
Pour tout n ∈ N, Kn[X] est un sous K-ev de K[X] de dimension finie dont (1, X, . . . , Xn)
est la base canonique et donc

dimKn[X] = n + 1

Démonstration :
On sait déjà que K[X] est un K-ev. Il suffit donc d’appliquer la caractérisation des sev. Laissé en
exercice.

Par ailleurs, on sait que

Kn[x] = {P ∈ K[X], deg P ≤ n} =
{

n∑
k=0

akXk, a0, . . . , an ∈ K
}

= VectK(1, X, . . . , Xn)

(ce qui prouve également la structure d’ev). Donc la famille (1, X, . . . , Xn) est une famille génératrice
de Kn[X]. Par ailleurs, c’est une famille échelonnée en degré de polynômes non nuls, donc elle est
libre. C’est donc une base de Kn[X]. □
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Exemple 1.19 :
On considère la famille P0(X) = 2, P1(X) = 3X − 1, P2(X) = (X − 1)2 et P3(X) = X2(X + 1).
Montrer que (P0, P1, P2, P3) est une base de K3[X].

" Attention ! La multiplication n’est pas une loi de composition interne sur Kn[X]. Le
résultat n’est pas (toujours) dans Kn[X]. La cause en est la formule du degré d’un produit.

Remarque :
Tout polynôme est dans un certain Kn[X]. En effet, si on considère P ∈ K[X], alors il existe n ∈ N
tel que P ∈ Kn[X]. Il suffit de prendre n ≥ deg P . On a même P ∈ Kn[X] pour tout n ≥ deg P .

Remarque (”Identifications des coefficients”) :
On sait maintenant à quoi correspond “l’identification des coefficients” que vous utilisiez plus jeune.
Elle correspond en fait à la liberté de la base canonique de Kn[X]. Il faudra le dire en ces termes.
Et ne plus utilisez ce mot-valise qui n’a pas grand sens.

On peut utiliser l’isomorphisme

φ : Kn[X] → Kn+1∑n
k=0 akXk 7→ (a0, a1, . . . , an)

C’est un isomorphisme par théorème de l’isomorphisme (utiliser la même dimension et le noyau, ou le
fait que (1, X, . . . , Xn) est une base de Kn[X]). Cet isomorphisme permet de réduire un polynôme
à la seul information de ses coefficients. Et à partir du n-uplet, on peut utilisez ce que l’on sait de
Kn+1. (Cet isomorphisme sera largement utilisé dans les chapitres ultérieurs).

Dit autrement, si on a P (X) = Q(X), on se place Kmax(deg(P ),deg(Q)[X] qui est un ev de
dimension finie. Si on pose N = max(deg(P ), deg(Q)) et (ap) et (bq) la suite des coefficients de P
et Q, alors on a P (X) − Q(X) = 0 et donc ∑N

k=0(ak − bk)Xk = 0. La liberté de la base canonique
de KN [X] nous permet d’avoir alors immédiatement ∀k ∈ {0, . . . , N}, ak = bk. C’est ce qui se passe
quand on utilise “l’identification des coefficients”.

Remarque :
On a donc en particulier K0[X] isomorphe à K. On a donc tendance à “étendre” l’isomorphisme et
noté K encore les éléments de K0[X] (ce qui, a strictement parlé, n’est pas très correct, mais qu’on
a quand même déjà utilisé plusieurs fois par soucis de simplification de notations).

42
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Exemple 1.20 :
On considère l’application f définie par f(P )(X) = P (X + 1) + P (X + 2) − 2P (X). Montrer que
f ∈ L(R3[X]). Donner une base de ker(f) et calculer rg(f).

2 Arithmétique des polynômes
Dans cette partie, on va apprendre à manipuler vraiment les polynômes. On va voir en fait qu’ils

se comportent un peu comme les entiers, c’est-à-dire qu’on va introduire une notion de polynôme
irréductible (l’équivalent des nombres premiers), de division euclidienne ce qui va nous permettre de
faire de l’arithmétique (lemme de Gauss etc) et aussi de décomposer un polynôme en produit de
polynôme irréductible. Cette étape est cruciale pour la suite (et plus particulièrement pour l’année
prochaine et la réduction des endomorphismes qui nécessitera de faire de l’arithmétique sur les
polynômes).

2.1 Divisibilité

Officiellement, il n’est écrit au programme que la notion de diviseurs et multiples. Le problème,
c’est que de ces notions découlent immédiatement de toute une flopée de petites propriétés qu’il n’est
pas raisonnable de ne pas mettre. On ne peut pas utiliser la divisibilité sans utiliser l’une ou l’autre
de ces petites propriétés. J’ai donc complété le programme par les propriétés qui me semblent les
plus utiles et les plus raisonnables (en termes de cohérence avec l’esprit du programme et d’utilité).
Vous en trouverez certainement d’autres ou moins dans la littérature. Ça dépend du point de vue de
l’auteur.

La notion de divisibilité est difficilement contournable, mais comme elle est extrêmement délicate
(l’arithmétique est l’une des branches les plus ardues des mathématiques), elle est à la limite du
programme. D’où les frontières floues et l’interprétation nécessaire de ces frontières.

Proposition 2.1 :
Si P, Q, R ∈ K[X], si P ̸= 0,

PQ = PR =⇒ Q = R

Démonstration :
En effet, on a alors P (Q − R) = 0, ce qui veut dire P = 0 ou Q − R = 0, puisqu’il n’y a pas de
diviseurs de 0. Or P ̸= 0, donc forcément Q − R = 0, i.e. Q = R. □

C’est grâce à cette proposition simplissime que l’on va pouvoir définir et parler de divisibilité. Il
faudra bien sûr être très au clair de ce que l’on entend par divisibilité.
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On peut noter que la réciproque de cette proposition est vraie, mais n’a aucun intérêt. On notera
également qu’en réalité, cette proposition est une reformulation du fait que K[X] soit intègre (qu’il
n’y ait pas de diviseurs de 0).

C’est surtout la démonstration de cette propriété qui est utile. C’est un type de raisonnement qui
est très utile dans les polynômes.
Exemple 2.1 :
Montrer que si P ∈ R[X] tel que (X − 1)P (X) + 1 = X2 + X + 2, alors P est unique.

Définition 2.1 (Divisibilité, Diviseurs, Multiples [✓]) :
Soit A, B ∈ K[X].

• On dira que A divise B si ∃P ∈ K[X] tel que B = AP . On notera alors A|B pour rappeler
la notation dans Z.

• On appelle diviseurs de B tout polynôme P ∈ K[X] tel que P |B.
• On appelle multiple de B tout polynôme P ∈ K[X] tel que B|P .

"

!!! ATTENTION !!!

La notion de divisibilité dépend entièrement et complètement du corps sur lequel on se
place. Dans la définition, c’est “∃P ∈ K[X] [...]” donc la notion de divisibilité dépend de
l’existence d’un polynôme à coefficient dans le corps de base K. Si on change de corps (ce
qu’on fera), on peut perdre la relation de divisibilité.

Par exemple, X − i divise X2 + 1 dans C[X]. Donc X2 + 1 a des diviseurs non triviaux
dans C[X] mais pas dans R[X]. En effet, s’il admettait un diviseur dans R[X] non trivial, ce
serait nécessairement un polynôme de degré 1. Mais alors il aurait une racine réelle, ce qui
est absurde.

On aurait pu (dû ?) noter la relation de divisibilité par
∣∣
K pour indiquer dans quel corps

on divise les polynômes. Mais cette notation n’a rien d’officielle. Néanmoins, vous pouvez
parfaitement la définir en début de problème et l’utiliser sans vergogne par la suite si ça peut
vous trouver ça plus clair avec le corps de base en indice. Mais ATTENTION, n’oubliez pas
de définir cette notation en début de copie. Juste une phrase suffit : “On notera

∣∣
K la relation

de divisibilité dans K[X]” par exemple.
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Exemple 2.2 :
On a (X + 1)

∣∣(X2 − 1) dans R[X] et dans C[X] mais (X − i)
∣∣X2 + 1 n’est valable que dans C[X]

et pas dans R[X].

Proposition 2.2 (Reformulation diviseur et multiple) :
Soit P ∈ K[X].

1. Q ∈ K[X] est un diviseur de P si et seulement si ∃A ∈ K[X] tel que P = AQ.
2. Q ∈ K[X] est un multiple de P si et seulement si ∃A ∈ K[X] tel que Q = AP .

Exemple 2.3 :
Montrer que (X + 1)

∣∣(X4 − 1) et (X − 1)
∣∣(Xn − 1) pour tout n ∈ N.

Remarque :
Bien sûr, tout polynôme est un diviseurs de 0 :

∀P ∈ K[X], P |0 car 0 = P × 0.

Définition 2.2 (Diviseur trivial [✓]) :
Soit P ∈ K[X].

On appelle diviseur trivial de P tout polynôme constant non nul ou tout polynôme de la forme
λP avec λ ∈ K∗.

En effet, pour tout polynôme P , on aura toujours P = a × ( 1
aP ) avec a ∈ K∗. Donc a est un

diviseurs de P mais également 1
aP .

Exemple 2.4 :
5, 1/2,

√
2, X2 + 5/4, −8X2 − 10 sont des diviseurs triviaux de 4X2 + 5 ans R[X]. Dans C[X], on

peut rajouter i, 3 + 5i, iX2 + 5i/4 par exemple. Et encore beaucoup d’autres. La liste n’est bien sûr
pas exhaustive.
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Remarque :
Les diviseurs triviaux de P ∈ K[X] sont donc les polynômes inversibles (au sens de la multiplication,
bien entendu) et les produits de P avec les polynômes inversibles.

Remarque :
Si on fait un parallèle avec les entiers relatifs, dans Z, les diviseurs triviaux de n ∈ Z sont 1, −1, n
et −n.

Proposition 2.3 (Se ramener à des polynômes unitaires) :
Soit P ∈ K[X].

Si P ̸= 0 alors ∃!Q ∈ K[X] unitaire et ∃!α ∈ K tels que P = αQ.
En particulier, deg P = deg Q.

Démonstration :
Il suffit de l’écrire. Si P (X) =

∑n
k=0 akXk avec n ≥ 0 et an ̸= 0, alors P (X) = an

(∑n
k=0

ak
an

Xk
)
.

On pose donc Q(X) =
∑n

k=0
ak
an

Xk. Q est clairement de degré n (puisque P l’est) et le coefficient
dominant de Q est an

an
= 1 donc Q est unitaire.

Supposons P = αQ = βR avec α, β ∈ K et Q, R ∈ K[X] unitaire. Comme P, Q, R ̸= 0, on a
α, β ̸= 0 et donc Q = β

αR. Mais Q et R étant unitaire, on doit avoir β/α = 1, i.e. β = α. Et par
suite Q = R. □

En fait, la construction de Q et α fournissait aussi l’unicité, mais c’est pas tellement plus facile
à dire.

On rappelle aussi que les polynômes inversibles de K[X] sont exactement les polynômes constants
non nuls.
Exemple 2.5 :
On prend P (X) = 5X4 − 2X3 + 3 − 2i. Déterminer le polynôme unitaire de même degré que P
proportionnel à P et le coefficient de proportionnalité.

Proposition 2.4 (Réduction aux polynôme unitaires de la divisibilité) :
Soit P, Q ∈ K[X] et λ, µ ∈ K∗. Alors

(λP )|(µQ) ⇐⇒ P |Q
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Démonstration :
On a :

(λP )|(µQ) ⇐⇒ ∃R ∈ K[X], µQ = λPR

⇐⇒ ∃R ∈ K[X], Q = P ×
(

λ

µ
R

)
⇐⇒ P |Q

□

Cette proposition nous dit que l’on peut s’affranchir des constantes multiplicatives dans l’étude
de divisibilité entre polynôme. Or, tout polynôme est égale (de façon unique) à une constante (son
coefficient dominant) fois un polynôme unitaire. Donc en divisant par les coefficients dominants, on
se ramène à étudier la divisibilité entre polynômes unitaires. Et c’est ce qu’on va faire.

Une autre façon de le dire, est que les polynômes inversibles sont “transparents” du point de vue
de la divisibilité. Qu’ils soient là ou non, ne change rien pour la divisibilité. On peut donc toujours
multiplier ou diviser par les polynômes unitaires. Et grâce à ça, se ramener à des polynômes unitaires.

Proposition 2.5 (Propriété algébrique de la relation de divisibilité) :
Soit A, B, C ∈ K[X]. Alors :

1. A|B et B|C =⇒ A|C [Transitivité]
2. A|B et B|A =⇒ ∃λ ∈ K, A = λB.

Démonstration :

1. On sait ∃P, Q ∈ K[X] tels que B = PA et C = BQ. Donc C = PAQ donc A|C car
PQ ∈ K[X].

2. ∃P, Q ∈ K[X] tels que A = BP et B = AQ. Si A ou B est le polynôme nul, alors l’autre
aussi et donc on A = B ce qui est plus fort encore que ce qu’on veut montrer. On suppose A
et B non nul. Alors A = APQ. Mais comme A ̸= 0, cf proposition 1.11 p.20, on en déduit
PQ = 1. Donc P (et Q) est inversible. Donc P ∈ K[X]× = K0[X]∗ = K∗. D’où le résultat.

□
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"

Attention, on a pas la symétrie ici de la relation de divisibilité. On obtient A et B
sont égaux à une constante multiplicative près. Mais comme les constantes non nuls sont
précisément les inversibles de K[X], on peut dire plutôt que A et B sont égaux à une mul-
tiplication par un inversible près. Cette formulation est plus agréable car peut se transporter
dans d’autres situations (et surtout, elle est plus cohérente avec ce qui se passe).

Ce sont ces “inversibles invisibles” qui empêche la relation de divisibilité d’être une relation
d’ordre (partielle) sur K[X]. C’est bien une relation binaire, réflexive et transitive. Mais elle
n’est pas symétrique.

Remarque :
Pour avoir l’égalité entre A et B dans le second point, il faut rajouter quelque chose. Par exemple, le
fait que A et B ont le même coefficient dominant (qui sera souvent 1 puisqu’on se ramènera souvent
au cas de polynômes unitaires). Mais ce n’est pas la seul façon de faire. De même que dans Z, il
fallait rajouter une notion de signe pour avoir l’égalité.

Définition 2.3 (Polynômes associés) :
Soit A, B ∈ K[X].

On dit que A et B sont associés si A|B et B|A.

Remarque :
Donc deux polynômes associés diffèrent d’une constante multiplicative.

Remarque :
Le problème de la divisibilité est qu’il y a une catégorie de polynômes qu’elle ne “voit” pas, qu’elle ne
peut pas “attraper”. Les polynômes en question sont les polynômes inversibles qui sont les “invisibles”
du point de vue de la divisibilité.

Proposition 2.6 :
Soit A, B, C, D ∈ K[X]. Alors

1. A|B et A|C =⇒ A|(λB + µC) pour tout λ, µ ∈ K.
2. A|B et C|D =⇒ AC|BD.
3. A|B =⇒ ∀n ∈ N, An|Bn.

Démonstration :

1. Soit P, Q ∈ K[X] tels que B = AP et C = AQ. Alors λB + µC = A(λP + µQ).
2. Soit P, Q ∈ K[X] tels que B = AP et D = CQ. Alors BD = ACPQ.
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3. Soit P ∈ K[X] tel que B = AP et n ∈ N. Alors Bn = (AP )n = AnP n car le produit de
polynôme est commutatif dans K[X].

□

Exemple 2.6 :
Soit a, b ∈ N. Montrer que

a
∣∣b ⇐⇒ (Xa − 1)

∣∣(Xb − 1)

Proposition 2.7 (Conjugaison et divisibilité) :
Soit A, B ∈ C[X]. Alors

A
∣∣B ⇐⇒ A

∣∣∣B
Démonstration :
Il suffit d’écrire la définition de la divisibilité et de passer ensuite aux conjugués. □

2.2 Division euclidienne

La division euclidienne, en revanche, celle là est clairement et entièrement au programme. Il n’y
a pas de doute.

Théorème-Définition 2.4 (Division euclidienne polynomiale [✓]) :
∀A, B ∈ K[X] avec B ̸= 0, ∃!(Q, R) ∈ K[X]2 tel que

A = BQ + R et deg R < deg B

Les polynômes Q et R sont appelés respectivement quotient et reste de la division
euclidienne de A par B.

Démonstration :
Soit A, B ∈ K[X] avec B ̸= 0. Donc deg B ≥ 0.
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Commençons par montrer l’unicité (c’est ce qu’il y a de plus facile). Supposons donc que A =
BQ1 + R1 = BQ2 + R2 avec Q1, Q2, R1, R2 ∈ K[X] et deg R1, deg R2 < deg B. Alors dans ce
cas B(Q1 − Q2) = R2 − R1. Donc deg B + deg(Q1 − Q2) = deg(R2 − R1) < deg B. Donc
deg(Q2 − Q1) < 0 et donc Q2 − Q1 = 0. Ce qui amène directement à (Q2, R2) = (Q1, R1) et donc
l’unicité.

D’abord, si deg B = 0, alors B = b ∈ K∗ et A = b1
b A donc il suffit de poser Q = 1

b A et R = 0.
On peut donc désormais supposer deg B ≥ 1.

On va montrer l’existence d’un tel couple par récurrence sur le degré de A. Si deg A < deg B, il
suffit de prendre B = 0 et R = A.

Si deg A = deg B, on note a le coefficient dominant de A et b celui de B. Alors A = a
b B +

(A − a
b B). On pose Q = a

b et R = A − a
b B. Alors le coefficient dominant de a

b B est a et de degré
deg B = deg A, donc le coefficient de degré deg A de R est nul, donc deg R < deg A = deg B et
donc on a bien l’existence d’un couple (Q, R) vérifiant la division euclidienne.

Supposons que ∃n ≥ deg B tel que ∀A ∈ Kn[X], ∃(Q, R) ∈ K[X] × Kdeg(B)−1[X] tel que
A = BQ + R.

Soit A ∈ K[X] tel que deg A = n+1. Alors ∃a ∈ K∗, ∃Â ∈ Kn[X] tels que A(X) = aXn+1 +Â.
Donc ∃Q1, R1 ∈ K[X] tel que Â = BQ1 +R1 et deg R1 < deg B. On note b le coefficient dominant
de B et d = deg B. Donc b ̸= 0. Or

∃B̂ ∈ Kn[X], a

b
BXn+1−d = aXn+1 + B̂

Donc ∃Q2, R2 ∈ K[X] tel que deg R2 < deg B = d et B̂ = BQ2 + R2. Finalement

A = aXn+1 + Â

= a

b
BXn+1−d − BQ2 − R2 + BQ1 + R1

= B

(
a

b
Xn+1−d − Q2 + Q1

)
+ R1 − R2

On pose Q = a
b Xn+1−d − Q2 + Q1 et R = R1 − R2. Alors deg(R1 − R2) ≤ max(deg R1, deg R2) <

deg B. Donc ∃Q, R ∈ K[X] tel que A = BQ + R et deg(R) < deg(B).
Donc on vient de montrer par récurrence que ∀A ∈ K[X] avec deg A ≥ deg B, ∃Q, R ∈ K[X]

avec deg R < deg B tels que A = BQ + R. Mais le résultat est vrai aussi pour deg A ≤ deg B (fait
avant la récurrence). D’où le résultat. □

Exemple 2.7 :
Déterminer la division euclidienne de A par B avec :

A(X) = X4 − 3X2 + X − 1 B(X) = X2 − X + 1

A(X) = X5 − X4 − 2X2 − 3X + 1 B(X) = X2 + 2
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Remarque :
Dans le cas où B = X − a, on a A(X) = Q(X)(X − a) + Ã(a).

Exemple 2.8 :
Effectuer la division euclidienne de P ∈ K[X] par (X − a)(X − b) avec a, b ∈ K.

Bien entendu, on peut écrire un programme en qui permet de calculer la division
euclidienne de deux polynômes. Mais le langage Python n’étant pas un langage de calcul
formelle, c’est assez pénible à coder. Ça reste néanmoins faisable.

Proposition 2.8 (Caractérisation de la divisibilité par la division euclidienne [✓]) :
Soit A, B ∈ K[X] avec B ̸= 0. On a

B|A ⇐⇒ le reste de la division euclidienne de A par B est 0

Démonstration :
Il suffit de l’écrire □

Remarque :
Dans la pratique, c’est souvent seulement le reste de la division euclidienne qui nous intéresse. Pour
déterminer le reste de la division euclidienne de A par B, on écrit (de façon théorique) A = BQ + R
avec R =

∑deg B−1
k=0 akXk. Il faut déterminer les coefficients a0, . . . , adeg B−1 de R. Il suffit alors

d’évaluer A (ou plus exactement Ã) sur deg B valeurs distinctes pour déterminer ces coefficients.
Tant qu’à faire, on choisit bien les valeurs où évaluer la relation. Le mieux étant de choisir des racines
de B de sorte que l’on ait A(α) = R(α).

Exemple 2.9 :
Déterminer le reste de la division euclidienne de A(X) = X5 − X4 + X2 + 2 par X2 − 2.
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Remarque :
Comme on a une notion de divisibilité, on vient de commencer à faire un peu d’arithmétique. On va
continuer à en faire un petit peu. Dans la droite de lignée de ce que l’on vient de faire, on pourrait
définir une notion de PGCD de polynômes et de PPCM.

2.3 Polynômes irréductibles

On revient à l’arithmétique pure et dure. La notion de polynômes irréductibles est parfaitement
au programme. Pas d’ambigüıté. Et elle va être très délicate. J’ai essayé ici de ne mettre que ce qui
me semble le stricte minimum pour bien comprendre la suite. Mais cette partie va rester néanmoins
très abstraite.

Définition 2.5 (Polynômes premiers entre eux [✓]) :
Soit A, B ∈ K[X]. On dit que A et B sont premiers entres eux si les seuls diviseurs communs à
A et B sont les constantes non nuls (i.e. les polynômes de degré 0).

Exemple 2.10 :
Soit a, b ∈ K avec a ̸= b. Montrer que X − a et X − b sont premiers entre eux.

Définition 2.6 (Polynômes irréductibles [✓]) :
Soit P ∈ K[X] non constant. On dit que P est irréductible dans K[X] si ses seuls diviseurs sont
ses diviseurs triviaux (i.e. constantes non nulles et produit de P par une constante non nulle).
Autrement dit P est irréductible si et seulement si ∀Q ∈ K[X] tel que Q|P , ∃λ ∈ K∗ tel que
Q = λP ou Q = λ.

Remarque :
La contraposé est très utile :

P ∈ K[X] non irréductible ⇐⇒ ∃Q ∈ K[X], 1 ≤ deg Q < deg P, Q|P

Exemple 2.11 :
Soit a ∈ K. Alors X − a est irréductible.

La notion de polynômes irréductibles est indispensable pour la suite. C’est la pierre angulaire de
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l’étude des polynômes. Tous ce que vous savez sans en avoir conscience repose en réalité sur cette
définition.

L’idée est que les polynômes irréductibles forment des sortes de briques élémentaires dans K[X].
On peut alors décrire (du point de vue divisibilité) n’importe quel polynôme à l’aide de ces “briques
élémentaires”. Il est donc nécessaire dans un premier temps de bien comprendre comment fonctionnent
les polynômes irréductibles pour arriver ensuite à la décomposition souhaitée dans le théorème fon-
damentale de l’arithmétique 4.5 page 80.

Proposition 2.9 (L’irréductibilité est conservé par produit par un inversible [✓]) :
Soit P ∈ K[X] irréductible.

Alors ∀λ ∈ K∗, λP est irréductible.

Démonstration :
Il suffit d’observer un diviseur de λP . □

"

!!! ATTENTION !!!

L’irréductibilité d’un polynôme dépend du corps K que l’on considère. On insistera là dessus
plus en détail un peu plus bas, mais autant le dire tout de suite : le polynôme P (X) = X2 +1
est un polynôme de R[X] et aussi de C[X]. Sur C, il n’est pas irréductible, mais il l’est dans
R. C’est parce que la notion d’irréductible dépend complètement de la notion de divisibilité
qui, elle même, dépend complètement du corps sur lequel on se place.

"

!!! ATTENTION !!!

A|BC ≠⇒ A|B ou A|C

Un contre-exemple est donné par A(X) = X2 − 1, B(X) = X + 1 et C(X) = X − 1. Il
faut faire TRÈS attention ! Votre intuition va être mis à rude épreuve. Soyez très prudent
avec l’arithmétique. C’est vraiment trâıtre.
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Théorème 2.10 (Lemme de Gauss) :
Soit A, B, C ∈ K[X].

Si A et B sont premiers entre eux et si A|BC, alors A|C.

Ce théorème est admis pour nous. La démonstration utilise des notions de PGCD et le théorème
de Bézout qui sont HP. Donc tant pis.

Le théorème de Gauss n’est pas explicitement au programme. Mais il est pratique et il nous sera
utile dans la suite (pour la démo du théorème fondamental de l’arithmétique).

"

!!! ATTENTION !!!

A|C et B|C ≠⇒ AB|C

Un contre-exemple est donné par A(X) = X2 − 1, B(X) = (X + 1)2 et C(X) = (X +
1)(X2 − 1).

Théorème 2.11 (Réciproque partielle au théorème de Gauss) :
Soit A, B, C ∈ K[X].

Si A|C, B|C et A et B premiers entres eux, alors AB|C.

Démonstration :
Soit P ∈ K[X] tel que C = BP . Alors A|BP . Mais A et B étant premiers entres eux, le théorème
de Gauss nous donne A|P et donc AB|BP = C. □

Proposition 2.12 (Condition suffisante pour être premiers entres eux [✓]) :
Soit A, P ∈ K[X], P irréductible.

Si P ̸ | A alors A et P sont premiers entre eux.

Démonstration :
Il faut montrer que les seuls diviseurs communs à A et P sont les constantes non nuls. Soit Q un
diviseurs communs à A et P . Donc Q est en particulier un diviseurs de P . Mais P étant irréductibles,
ses seuls diviseurs sont les diviseurs triviaux, c’est à dire les constantes non nulles ou des multiples
de P par une constante non nulle. Donc ∃λ ∈ K∗ tel que Q = λ ou Q = λP . Mais si Q = λP , alors
λP |A, donc P |A ce qui aboutit à A. Donc Q = λ. Donc A et P sont premiers entres eux. □
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Proposition 2.13 (Lemme d’Euclide [✓]) :
Soit A, B ∈ K[X] et P ∈ K[X] irréductible. Alors

P |AB =⇒ P |A ou P |B

Démonstration :
Si P |A, il n’y a rien à faire.

Supposons que P ̸ | A et montrons que P |B. Comme P ̸ | A et P est irréductible, P et A sont
premiers entres eux. Donc le théorème de Gauss nous donne directement P |B. □

Pareil que pour le théorème de Gauss. Le lemme d’Euclide n’est pas explicitement au programme
mais il est très pratique et on va en avoir besoin dans les théorèmes suivants.

Proposition 2.14 :
Soit a, b ∈ K avec a ̸= b et n, m ∈ N.

Alors (X − a)n et (X − b)m sont premiers entres eux.

Démonstration :
Supposons qu’ils ne le sont pas. Donc ∃P ∈ K[X] tel que P |(X −a)n et P |(X −b)m avec deg P ≥ 1.
Or les seuls diviseurs de (X −a)n sont les (X −a)k avec 0 ≤ k ≤ n et les multiples de ces polynômes
par des constantes non nuls. Donc P est de la forme α(X − a)k avec α ∈ K∗ et 0 ≤ k ≤ n. Donc
α(X − a)k|(X − b)m. En particulier, si k ≥ 1, (X − a)|α(X − a)k|(X − b)m. Mais X − a est un
polynôme irréductible et il ne divise pas (X − b). Donc il ne divise pas (X − b)m. Donc si k ≥ 1, on
aboutit à A. Donc k = 0. Donc P = α ∈ K∗ et donc les seuls diviseurs communs à (X − a)n et
(X − b)m sont les constantes non nuls. Ces deux polynômes sont donc premiers entres eux. □

En fait, cette proposition est plutôt un exercice qu’une proposition. Mais il est pratique de la
connâıtre. Elle permet de pouvoir commencer à faire de l’arithmétique avec plus de facilité surtout
si l’on connâıt le théorème fondamental de l’arithmétique 4.5.

2.4 PGCD

Proposition 2.15 (Ensemble des diviseurs communs) :
Soit A, B ∈ K[X] avec (A, B) ̸= (0, 0).

L’ensemble des diviseurs communs de A et B est un ensemble de polynôme dont les degrés
sont majorés.
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Démonstration :
Soit D = {P ∈ K[X], P |A, P |B} l’ensemble des diviseurs communs de A et B. Alors D ≠ ∅ car
K∗ ⊂ D car ce sont les diviseurs triviaux. De plus, ∀P ∈ D, deg(P ) ≤ min(deg(A), deg(B)}. Donc
D = {deg(P ), P ∈ D} est un sous-ensemble non vide (0 ∈ D) et majorée de N. Donc D admet un
maximum. □

Définition-Propriété 2.7 (PGCD de deux polynômes) :
Soit A, B ∈ K[X] avec (A, B) ̸= (0, 0).

On appelle PGCD de A et B, tout diviseurs commun de A et B de degré maximal.

Démonstration :
On vient de voir que les degrés des diviseurs communs de A et B admettent un maximum. Il existe
donc des diviseurs communs de A et B de degré maximum. Ce sont les PGCD. □

"
!!! ATTENTION !!!

Il n’y a pas unicité du PGCD. Il y a une infinité de PGCD.

Exemple 2.12 :
Avec A(X) = X2 + 2X + 1 et B(X) = X2 − 1, X + 1 est un PGCD, mais 2X + 2 aussi, −3X − 3
également etc.

Remarque :
Si B = 0, les PGCD de A et 0 sont les λA, λ ∈ K∗.
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Proposition 2.16 (Ensemble des diviseurs communs) :
Soit A, B ∈ K[X], (A, B) ̸= (0, 0). Soit D un PGCD de A et B.

Alors si on note Div l’ensemble des diviseurs,

Div(A, B) = Div(D).

Remarque :
En particulier, tous les PGCD ont le même ensemble de diviseurs.

Démonstration :
On peut suppose A ̸= 0 sans perte de généralités quitte à renommer les deux polynômes. On a déjà
facilement Div(D) ⊂ Div(A, B) par transitivité de la relation de divisibilité.

Supposons B = 0 ou deg(B) = 0. Alors Div(A, B) = Div(A) et D = λA avec λ ∈ K∗. Donc
ça marche.

Supposons que Div(A, B) = Div(D) pour tout polynôme B de degré ≤ d (avec d ∈ N). Soit B
un polynôme de degré d + 1. On effectue la division euclidienne de A par B : A = BQ + R avec
deg(R) < deg(B). De plus, il est facile de voir que Div(A, B) = Div(B, R). Donc D ∈ Div(B, R) et
D est de degré maximal. Donc D est un PGCD de B et R. Comme deg(R) ≤ d, on a Div(B, R) =
Div(D). Et donc Div(A, B) = Div(D). □

Remarque :
En particulier, on vient de montre qu’un PGCD de A et B est aussi un PGCD de B et R, où R est
le reste de la division euclidienne de A par B.

Proposition 2.17 (Les PGCD sont associés) :
Soit A, B ∈ K[X], (A, B) ̸= (0, 0).

Tous les PGCD de A et B sont associés.

Démonstration :
Il est clair que si P est un PGCD, alors tous les polynômes associés à P sont également des PGCD.

Soit P et Q deux PGCD de A et B. Alors Div(P ) = Div(A, B) = Div(Q). En particulier, P |Q
et Q|P . Donc P et Q sont associés. □
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Proposition 2.18 (Caractérisation des PGCD) :
Soit A, B, D ∈ K[X] avec (A, B) ̸= (0, 0).

D est un PGCD de A et B ⇐⇒
{

D|A, D|B
∀P ∈ K[X], P |A, P |B =⇒ P |D

Donc les PGCD sont les plus grands diviseurs communs de A et B au sens de la divisibilité.

Démonstration :
Le sens directe est évident. Si D est un PGCD, on sait déjà que D est un diviseur commun, par
définition. Et également, si P est un autre diviseur commun, alors P ∈ Div(A, B) = Div(D).

Inversement, on a Div(A, B) = Div(D). Er ∀P ∈ Div(A, B), P |D, donc deg(P ) ≤ deg(D).
Donc deg(D) est le maximum de {deg(P ), P ∈ Div(A, B)}. Et donc, par définition, D est un
PGCD de A et B. □

Définition 2.8 (A ∧ B) :
Soit (A, B) ∈ K[X]2 \ {(0, 0)}.

On note A ∧ B le PGCD de A et B unitaire. i.e. A ∧ B est un diviseur commun de A et B
de degré maximal et de coefficient dominant 1.

Remarque :
Tous les PGCD étant associés, ils sont tous proportionnels. i.e. l’ensemble des PGCD de A et B
forment une droite vectorielle (en y ajoutant 0). Et donc, il n’y en a qu’un de coefficient dominant
1 (prendre l’application P 7→ coeff dom(P ) qui est une forme linéaire sur l’ensemble des PGCD).

Remarque :
Par convention, on pose 0 ∧ 0 = 0. C’est une convention qui permet d’avoir une définition cohérente
avec les propriétés des PGCD. Par exemple, la caractérisation des PGCD fonctionne encore avec cette
convention.

Proposition 2.19 (Algorithme d’Euclide [✓]) :
Soit A, B ∈ K[X] avec (A, B) ̸= (0, 0).

On pose R0 = A et R1 = B. Pour n ∈ N∗, si Rn ̸= 0, on définit Rn+1 comme le reste de
la division euclidienne de Rn−1 par Rn.

Alors ∃N ∈ N tel que RN = 0, de plus (Rn)0≤n≤N est une suite de polynôme strictement
décroissante en degré et RN−1 est un PGCD de A et B.
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Démonstration :
On a Rk−1 = QkRk +Rk+1 avec deg(Rk+1) < deg(Rk). Donc tant qu’on peut effectuer les divisions
euclidiennes, la suite des degrés deg(Rk) fabriquée est une suite d’entier strictement décroissante.
Elle est donc stationnaire en 0. Et donc ∃N ∈ N tel que deg(RN ) = 0. Alors RN+1 = 0. Et le
processus d’arrête.

De plus, d’après ce qui précède, on a vu ∀k ∈ {0, . . . , N}, Div(Rk, Rk+1) = Div(Rk−1, Rk).
Donc Div(RN , RN+1) = Div(RN ) = Div(R0, R1) = Div(A, B). Et donc RN est un PGCD de A et
B. □

Théorème 2.20 (Relation de Bézout) :
Soit (A, B) ∈ K[X]2 \ {(0, 0)}. Alors

∃U, V ∈ K[X], AU + BV = A ∧ B.

Démonstration :
Comme dans Z : il suffit de reprendre l’algorithme d’Euclide, puis de renormaliser à la fin en divisant
par le coefficient dominant du PGCD qu’on a trouvé. □

Exemple 2.13 :
A(X) = X4 + X3 et B(X) = X2 + X + 1. Calculer un PGCD de A et B et déterminer la relation
de Bézout associé.

Proposition 2.21 :
Soit A, B, C ∈ K[X], (A, B) ̸= (0, 0) et C ̸= 0. Alors

(CA) ∧ (CB) = 1
coeff dom(C)C(A ∧ B).

Démonstration :
Sans perte de généralité, on peut suppose C unitaire. Alors C(A ∧ B) est un diviseur commun de
CA et CB. Donc C(A ∧ B)|(CA) ∧ (CB).

De plus, par Bézout, ∃U, V ∈ K[X] tels que AU + BV = A ∧ B. Donc (CA)U + (CB)V =
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C(A ∧ B). Donc (CA) ∧ (CB)|(C(A ∧ B)).
Or (CA) ∧ (CB) est unitaire par définition et C(A ∧ B) également. Donc C(A ∧ B) = (CA) ∧

(CB). □

Remarque :
On pourrait rajouter beaucoup de propriété similaire à ce qui c’est passé dans Z. Avec ce qu’on a
pour le moment, on peut tout reconstruire. Il faudra donc refaire les mini propriétés en fonction de
ce dont on a besoin.

Définition 2.9 (PGCD de plusieurs polynômes) :
Soit (A1, . . . , An) ∈ K[X]n \ {(0, . . . , 0)}.

On note ∧n
k=1 Ak = A1 ∧ A2 ∧ · · · ∧ An l’unique polynôme unitaire de degré maximal divisant

A1, A2, . . ., An.

Proposition 2.22 (Propriété algébriques du PGCD) :
Soit A, B, C, A1, . . . , An ∈ K[X] avec (A, B, C) ̸= (0, 0, 0) et (A1, . . . , An) ̸= (0, . . . , 0).

(i) A ∧ B ∧ C = (A ∧ B) ∧ C = A ∧ (B ∧ C) [Associativité]
(ii) Div(A1, . . . , An) = Div(

∧n
k=1 Ak).

(iii) ∃U1, . . . , Un ∈ K[X], ∧n
k=1 Ak =

∑n
k=1 AkUk. [Bézout]

Démonstration :
Avec une récurrence, essentiellement. □

2.5 Polynômes premiers entre eux

Définition 2.10 (Polynômes premiers entre eux) :
Soit (A, B) ∈ K[X]2 \ {(0, 0)}.

On dit que A et B sont premier entre eux si A ∧ B = 1, i.e. si le diviseur commun unitaire
de A et B est 1.
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Théorème 2.23 (Théorème de Bézout) :
Soit (A, B) ∈ K[X]2 \ {(0, 0)}.

A ∧ B = 1 ⇐⇒ ∃U, V ∈ K[X], AU + BV = 1

Démonstration :
La démonstration est essentiellement la même que dans Z. Le sens directe est déjà fait. Réciproquement,
si AU+BV = 1, alors (A∧B)|1 et donc A∧B est un polynôme constant unitaire, donc A∧B = 1. □

Proposition 2.24 (Lemme de Gauss) :
Soit A, B, C ∈ K[X].

Si A|BC et A ∧ B = 1, alors A|C.

Démonstration :
C’est la même que dans Z. On a ACU + BCV = C et donc la réciproque à la relation de Bézout
précédente. □

Proposition 2.25 (Se ramener à des polynômes premier entre eux) :
Soit (A, B) ∈ K[X]2 \ {(0, 0)}. Soit D = A ∧ B.

Alors ∃A1, B1 ∈ K[X], A1 ∧ B1 = 1 tel que A = DA1, B = DB1.

Démonstration :
On a DA1 = A et DB1 = B par définition de la divisibilité. Soit P = A1 ∧ B1. Alors P |A, B, donc
P |D. Si deg(P ) ≥ 1, alors D n’est pas de degré maximal et donc A. Donc deg(P ) = 0. Et donc,
A1 ∧ B1 = 1. □

Proposition 2.26 (”Transmission de la primalité relative”) :
Soit A, B, C ∈ K[X]. Alors

A ∧ (BC) = 1 ⇐⇒ A ∧ B = 1 = A ∧ C
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Démonstration :
Si A ∧ (BC) = 1, alors AU + BCV = 1 et donc (A ∧ B)|1 donc A ∧ B = 1. De même, A ∧ C = 1.

Si A ∧ B = A ∧ C = 1, Alors A(U1CV2 + U2) + BCV1V2 = 1. □

Proposition 2.27 :
Soit A ∈ K[X] et P ∈ K[X] irréductible.

Alors P |A ou P ∧ A = 1.

Démonstration :
Voir Z : si P ̸ |A, alors D = P ∧ A est un diviseur de P irréductible, donc D = 1 car D unitaire. □

Proposition 2.28 :
Soit A, B ∈ K[X] et P irréductible dans K[X].

Si P |AB, alors P |A ou P |B.

Démonstration :
Comme dans Z : si P ̸ |A, alors P ∧ A = 1 et donc, par lemme de Gauss, P |B. □

Définition 2.11 (Polynômes premiers entre eux dans leur ensemble) :
Soit A1, . . . , An ∈ K[X].

On dit que A1, . . . , An sont premiers entre eux dans leur ensemble si ∧n
k=1 Ak = 1.

A1, . . . , An sont dit deux à deux premiers entre eux si ∀i, j ∈ {1, . . . , n}, i ̸= j, Ai ∧ Aj = 1.
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"

!!! ATTENTION !!!

Bien sûr, il ne faut pas confondre premier dans leur ensemble et deux à deux premiers entre
eux. Le second impliquant le premier. Si des polynômes sont deux à deux premiers eux, ils
sont automatiquement premier entre eux dans leur ensemble. Mais la réciproque est fausse.
On peut avoir des polynômes premiers entre eux dans leur ensemble, sans qu’ils sont deux à
deux premier entre eux.

Contre-exemple :
On prend A(X) = X + 1, B(X) = X − 1, C(X) = X2 − 1. Alors A ∧ B ∧ C = 1 car
A ∧ B = 1. Donc A, B, C sont premiers dans leur ensembles. Mais A ∧ C = A et B ∧ C = B.
Donc ils ne sont pas deux à deux premiers entre eux.

Proposition 2.29 (Caractérisation des polynômes premier dans leur ensemble par
Bézout) :
Soit A1, . . . , An ∈ K[X].

A1, . . . , An sont premiers dans leur ensemble si, et seulement si, ∃U1, . . . , Un ∈ K[X] tels
que ∑n

k=1 AkUk = 1.

Démonstration :
Le sens indirecte est évident. Le directe s’obtient par récurrence et par Bézout grâce à l’associativité
du PGCD. □

Proposition 2.30 :
Soit A, B, C ∈ K[X].

Si A ∧ B = 1 et A|C et B|C, alors AB|C.

Démonstration :
On a C = AP = BQ. Donc A|BQ. Mais A ∧ B = 1, donc A|Q. Et donc le résultat. □
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Remarque :
Ce résultat se généralise dans le cas de polynômes deux à deux premiers entre eux par récurrence
facile.

2.6 PPCM

Définition-Propriété 2.12 (PPCM) :
Soit A, B ∈ K[X] \ {0}.

On appelle plus petit commun multiple de A et B, tout multiple commun de A
et B non nul de degré minimal.

Démonstration :
On note E = {deg(P ), P ∈ K[X], A|P, B|P}. Alors deg(A) + deg(B) ∈ E donc E ̸= ∅ et E ⊂ N
et N bien ordonnée donc existence d’un degré minimal et donc de polynôme qui ont ce degré. □

Remarque :
Comme pour les PGCD, il n’y a pas unicité des PPCM. À cause des polynômes inversibles. Comme
pour les PGCD, on aurait unicité en imposant quelque chose sur le coefficient dominant.

Proposition 2.31 (Caractérisation des PPCM) :
Soit A, B ∈ K[X], AB ̸= 0 et soit M ∈ K[X].

Alors

M est un PPCM de A et B ⇐⇒


M ̸= 0
A, B ∈ Div(M)
∀P ∈ K[X], A, B|P =⇒ M |P

Démonstration :
Même principe que pour les entiers.

Si M est un PPCM, en faisant une division euclidienne, on a P = MQ + R et R multiple
commune de A et B avec deg(R) < deg(M). La minimalité nous donne R = 0 et donc le résultat.

Inversement, si M vérifie les trois propriétés, alors M est un multiple commun non nul de degré
minimal. Donc c’est un PPCM. □
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Corollaire 2.32 (Ensemble des multiples communs) :
Soit A, B ∈ K[X], AB ̸= 0. Soit M un PCCM de A et B.

Alors
AK[X] ∩ BK[X] = MK[X].

Démonstration :
C’est facile par minimalité du degré de M et par définition des ensembles. □

Définition-Propriété 2.13 (A ∨ B) :
Soit A, B ∈ K[X], AB ̸= 0.

Il existe un unique PPCM de A et B unitaire, noté A ∨ B. Et donc

M = A ∨ B ⇐⇒


coeff dom(M) = 1
A|M, B|M
∀P ∈ K[X], A|P, B|P =⇒ M |P

Démonstration :
Imposé le coefficient dominant égal à 1 revient à imposé que M est non nul. Donc la deuxième partie
est évident.

AK[X] ∩ BK[X] est une droite vectorielle. Et voila. □

Remarque :
On peut alors prendre comme convention A ∨ 0 = 0.

Proposition 2.33 (Factorisation de PPCM) :
Soit A, B, C ∈ K[X], ABC ̸= 0. Alors

(CA) ∨ (CB) = C

coeff dom(C)(A ∨ B).
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Proposition 2.34 (PPCM et PGCD) :
Soit A, B ∈ K[X], AB ̸= 0. Alors

(i) Si A ∧ B = 1, alors A ∨ B = AB
coeff dom(AB)

(ii) En général (A ∧ B)(A ∨ B) = AB
coeff dom(AB) .

Démonstration :
Posons M = A ∨ B. On a A|M et B|M et A ∧ B = 1, donc AB|M . De plus, M |AB par ca-
ractérisation de M . Et donc M et AB sont associés. Mais M est unitaire. Donc AB = coeff dom(AB)(A∨
B).

Ensuite, on se ramène à des polynômes unitaires : on pose A1, B1 tel que A1 ∧ B1 = 1 et
A = DA1, B = DB1 avec D = A∧B. Alors A∨B = D(A1 ∨B1) = DA1B1. Et donc D(A∨B) =
AB. □

Proposition 2.35 (PGCD et PPCM avec décompositions en produit de facteurs
irréductibles) :
Soit A, B ∈ K[X]. Soit P1, . . . , Pn ∈ K[X] les facteurs irréductibles de A et B. Autrement
dit :

A(X) = a
n∏

k=1
Pk(X)αk , B(X) = b

n∏
k=1

Pk(X)βk

où a, b ∈ K∗, α1, . . . , αn, β1, . . . , βn ∈ N (avec αi = 0 si Pi ne divise pas A et de même βi = 0
si Pi ̸ |B).

Alors

A ∧ B =
n∏

k=1
Pk(X)min(αk,βk) et A ∨ B =

n∏
k=1

Pk(X)max(αk,βk)

Remarque :
On retrouve ici que AB = coeff dom(AB)(A ∧ B)(A ∨ B).

Remarque :
Ce théorème provient en fait de la décomposition en produit de facteur irréductibles qui vient dans
la suite. On se contente de dire, pour le moment, que si on arrive à écrire A et B sous la forme de
produit de facteurs irréductibles, on a une expression des PGCD et PPCM. Mais on a pas l’assurance,
pour le moment, que l’ont sait obligatoirement écrire A et B sous la forme d’une produit de facteurs
irréductibles. C’est la partie manquante qui arrives plus bas et où l’on va traiter le cas complexe et
réel séparément.
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3 Racines d’un polynôme, polynômes scindés
On rappelle qu’une racine d’un polynôme P ∈ K[X] est un élément a ∈ K tel que P̃ (a) = 0.

3.1 Racines et degré

Théorème 3.1 (Caractérisation des racines par la divisibilité [✓]) :
Soit P ∈ K[X] et a ∈ K.

a est une racine de P si et seulement si (X − a)|P .

Démonstration :
Si (X − a)|P , alors ∃Q ∈ K[X] tel que P (X) = (X − a)Q(X). Alors P̃ (a) = (a − a)Q̃(a) = 0 par
1.17 p.26. Donc a racine de P .

Réciproquement, si P est une racine de P . Par division euclidienne, on sait ∃Q, R ∈ K[X] tel
que P (X) = (X − a)Q(X) + R(X) et deg R < deg(X − a) = 1. Donc R ∈ K. Et P̃ (a) = 0 nous
donne R̃(a) = 0. Donc R = 0. Donc P (X) = (X − a)Q(X) et donc (X − a)|P . □

"
!!! ATTENTION !!!

La notion de racine dépend du corps que l’on considère. Un polynôme peut avoir certaines
racines dans R et d’autres dans C. Par exemple, le polynôme P (X) = X2 + 1 n’a aucune
racines dans R mais en a 2 distinctes dans C.

Corollaire 3.2 (Avec plusieurs racines) :
Soit P ∈ K[X].

Soit a1, . . . , an des racines de P deux à deux distinctes. Alors
n∏

k=1
(X − ak) = (X − a1) × · · · × (X − an)

∣∣∣∣∣P (X)

Démonstration :
Par récurrence en utilisant le fait que (X − ak) ̸ | (X − aj) si k ̸= j, le théorème de Gauss et le fait
que (X − ai) et (X − aj) sont premiers entre eux ici. □
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Théorème 3.3 (Majorant du nombre de racines [✓]) :
Soit P ∈ K[X].

Si P ̸= 0, alors P ne peut pas avoir plus de racines distinctes que son degré.

Ce théorème est fondamental. Il est très utile pour montrer qu’un polynôme est nul. Dès qu’un
polynôme a plus de racines que son degré, c’est nécessairement le polynôme nul, par contraposée de
ce théorème.

Démonstration :
Soit P ∈ K[X]∗. Soit également a1, . . . , an ses racines distinctes. Alors, par le corollaire 3.2, on a
(X −a1) . . . (X −an)|P (X). Et P non nul. Donc ∃Q ∈ K[X]∗ tel que P (X) = Q(X)

∏n
k=1(X −ak).

Alors dans ce cas, deg P = deg Q + deg
∏n

k=1(X − ak) ≥ 1 + 1 + · · · + 1︸ ︷︷ ︸
n

= n. Donc le nombre de

racines distinctes de P (ici n) est plus petit que deg P . □

"

!!! ATTENTION !!!

Ce théorème ne dit pas qu’un polynôme a forcément des racines. Ni qu’il en a autant que
son degré. Il existe des polynômes n’ayant pas de racines (X2 + 1 dans R[X] par exemple)
ou d’autres avec moins de racines que leurs degré (par exemple X5 − 1 dans R[X]). Ce
théorème donne juste un majorant du nombre de racines de P .

On utilise souvent le corollaire suivant pour montrer qu’un polynôme est nul :

Corollaire 3.4 (Caractérisation de nullité par le nombre de racines [✓]) :
Soit P ∈ K[X].

P = 0 ⇐⇒ P a une infinité de racines

Démonstration :
Le sens indirecte est évident. S’il a une infinité de racines, il en a en particulier plus que son degré
... □

Exemple 3.1 :
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Soit P, Q, R ∈ R[X] avec P ̸= 0. Montrer que ∃A > 0 tel que ∀x ≥ A, P̃ (x) ̸= 0. En déduire que
si ∀x ≥ A, Q̃(x)

P̃ (x)
= R̃(x)

P̃ (x)
, alors Q = R.

Corollaire 3.5 (Expression d’un polynôme de degré n ayant n racines distinctes) :
Soit P ∈ K[X] avec n = deg P ≥ 0, de coefficient dominant a ∈ K∗ et ayant n racines
distinctes x1, . . . , xn ∈ K.

Alors
P (X) = a(X − x1) . . . (X − xn) = a

n∏
k=1

(X − xk)

Démonstration :
Récurrence sur n et corollaire du théorème de la caractérisation des racines par la divisibilité. □

Ce théorème est le premier pas vers le théorème fondamental de l’arithmétique 4.5 qui est une
généralisation de ce théorème. Le but de la suite de cette partie est donc de poursuivre l’étude
amorcée ici et d’aboutir à un théorème le plus général possible.
Exemple 3.2 :
Soit P ∈ R3[X] unitaire tel que ∀k ∈ {1, 2, 3}, P̃ (k) = k. Déterminer P .

3.2 Racines multiples

Définition 3.1 (Racine multiple [✓]) :
Soit P ∈ K[X] et a ∈ K.

On dit que a est une racine multiple de P si (X − a)2|P .
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Définition-Propriété 3.2 (Multiplicité [✓]) :
Soit P ∈ K[X], P ̸= 0 et a ∈ K.

Si a est une racine de P , on appelle multiplicité de a (en tant que racine de P )
le plus grand entier m ∈ N tel que (X − a)m|P . Autrement dit, la multiplicité de a
en tant que racine de P , est

m = max{n ∈ N, (X − a)n|P}.

Démonstration :
Si P = 0, il n’y a rien à faire. Si P ̸= 0. L’ensemble {k ∈ N, (X − a)k|P} est une partie de N
non vide (0 est dedans) et majoré (par le degré de P ). Donc elle admet un maximum dans N qu’on
appelle multiplicité de a. □

Remarque :
On a automatiquement l’unicité de la multiplicité d’une racine a donnée d’un polynôme P donné.

Définition 3.3 (Racine simple, racine double [✓]) :
On appelle racine simple, une racine de multiplicité 1. On appelle racine double, une racine de
multiplicité 2.

Proposition 3.6 (Caractérisation des racines multiples par la division [✓]) :
Soit P ̸= 0 ∈ K[X] et a ∈ K une racine de P .

a est une racine multiple de P de multiplicité m si et seulement si (X − a)m|P et (X −
a)m+1 ̸ | P .

Démonstration :
Si a est une racine de multiplicité m de P , alors m = max{k ∈ N, (X − a)k|P}. Donc (X − a)m|P
puisque c’est un max et (X − a)m+1 ̸ | P sinon m ne serait pas un max.

Réciproquement, a est bien sûr une racine de P et on a clairement m ∈ {k ∈ N, (X − a)k|P}.
Si n ≥ m + 1, alors (X − a)m+1|(X − a)n. Mais (X − a)m+1 ̸ | P =⇒ (X − a)n ̸ | P . Donc m est
la multiplicité de a. □
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On peut aussi définir la multiplicité comme

m + 1 = min{k ∈ N, (X − a)k ̸ | P}

Corollaire 3.7 (Reformulation de la caractérisation des racines multiples par les divisions
[✓]) :
Soit P ∈ K[X] et a ∈ K et m ∈ N.

a est une racine de P de multiplicité m si et seulement si ∃Q ∈ K[X] tel que P (X) =
(X − a)mQ(X) et Q̃(a) ̸= 0.

Démonstration :
Corollaire immédiat de la proposition précédente □

Exemple 3.3 :
Montrer que i est une racine multiple de (X4 − 1)n et déterminer sa multiplicité.

Remarque :
Une racine de multiplicité 0 n’est pas une racine. En effet, cela veut dire que (X − a)0 = 1|P et
(X − a)1 ̸ | P . Donc a n’est pas une racine. Mais on utilisera pas (ou peu) ce résultat. La notion de
multiplicité n’a d’intérêt que pour une “vraie” racine.

Proposition 3.8 :
Soit P ∈ K[X] et a ∈ K et m ∈ N tel que (X − a)m|P .

Alors a est une racine de P de multiplicité au moins m.

Démonstration :
Évident par la définition de la multiplicité □

Remarque :
Attention à l’inégalité sur la multiplicité !
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Proposition 3.9 :
Soit P ∈ K[X] et a1, . . . , an ∈ K des racines de P deux à deux distinctes de multiplicités
respectives α1, . . . , αn. Alors

(X − a1)α1 . . . (X − an)αn
∣∣P

Démonstration :
On sait que (X − a1)α1 |P (X). Donc P (X) = (X − a1)α1Q(X). Maintenant (X − a2)α2 |(X −
a1)α1Q(X). Mais (X − a2)α2 et (X − a1)α1 sont premiers entres eux. Donc (X − a2)α2 |Q(X) grâce
au théorème de Gauss.

Et par récurrence, on aboutit au résultat. □

Proposition 3.10 (Nombre de racines comptées avec multiplicité [✓]) :
Soit P ∈ K[X], P ̸= 0.

Le nombre de racines de P compté avec multiplicité est inférieur ou égal au degré de P ,
i.e. Si a1, . . . , an sont les racines de P distinctes de multiplicité respectives m1, . . . , mn, alors

n∑
k=1

mk ≤ deg P

Démonstration :
On sait (X − a1)m1 . . . (X − an)mn

∣∣P donc ∑n
k=1 mk ≤ deg P en prenant les degré. □

Proposition 3.11 (Polynôme nul par nombre de racines [✓]) :
Soit P ∈ K[X] de degré d ∈ N ∪ {−∞}.

Si la somme des multiplicités des racines de P est > d, alors P = 0.

Démonstration :
Par l’absurde avec la proposition précédente. □
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Proposition 3.12 (Racines et conjugaison) :
Soit P ∈ C[X] et a ∈ C et m ∈ N∗. On a équivalence entre

(i) a est une racine de P de multiplicité m

(ii) a est une racine de P de multiplicité m

Démonstration :
On a

(X − a)m
∣∣P (X) ⇐⇒ (X − a)m

∣∣∣P (X)

□

Exemple 3.4 :
Soit P ∈ R2[X] unitaire tel que P̃ (i) = 0. Déterminer P .

Proposition 3.13 (Racines d’un PGCD) :
Soit A, B ∈ K[X], (A, B) ̸= (0, 0).

Les racines d’un PGCD sont les racines communes de A et B, de multiplicité, le minimum
des multiplicité

Démonstration :
Comme un PGCD divise A et B, par transitivité de la divisibilité et par caractérisation des racines
par divisibilité, les racines d’un PGCD sont racines de A et de B. Donc des racines communes.

Ensuite, il suffit de regarder les multiplicités. Si m est la multiplicité d’une racine d’un PGCD de
A et B, alors (X − a)m|A et (X − a)m|B. Donc la multiplicité de a en tant que racine de A et de
B est supérieure à celle en tant que racine d’un PGCD. Et par maximalité des degrés, on a ce qu’on
veut. □

Proposition 3.14 :
Soit P ∈ K[X] de degré d ∈ N.

Si P admet d racines distinctes, alors ce sont toutes les racines de P et elles sont toutes
simples.
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Démonstration :
P ne pas avoir plus de racines comptés avec multiplicité que son degré. Comme il en a déjà d
distinctes, elles ne peuvent pas être de multiplicité plus grande que 1 et donc elles sont toutes
simples. Et on en a le nombre maximum. □

Remarque :
Ce théorème est surtout utile pour trouver la factorisation d’un polynôme.

Exemple 3.5 :
Soit n ∈ N∗. Montrer que

Xn − 1 =
n−1∏
k=0

(
X − e

2ikπ
n

)

Remarque :
Ce théorème est les prémices des ennuis qui arrivent juste en dessous. C’est aussi le point de départ
le point de départ de la construction du théorème fondamental de l’arithmétique.

3.3 Racines multiples et dérivation

Théorème 3.15 :
Soit P ∈ K[X]∗ et a ∈ K une racine de P de multiplicité m ≥ 1.

Alors a est une racine de P ′ de multiplicité m − 1.

Démonstration :
On sait qu’on peut écrire P (X) = (X − a)mQ(X) avec Q̃(a) ̸= 0. En dérivant, on trouve P ′(X) =
m(X − a)m−1Q(X) + (X − a)mQ′(X) = (X − a)m−1(mQ(X) + (X − a)Q′(X)). On pose R(X) =
mQ(X) + (X − a)Q′(X). Et R̃(a) = mQ̃(a) ̸= 0. Donc a est une racine de multiplicité m − 1 de
P ′. □
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Corollaire 3.16 (Caractérisation des racines simples par la dérivée) :
Soit P ∈ K[X]∗.

Les racines simples de P sont exactement les racines de P qui ne sont pas des racines de
P ′.

Démonstration :
La proposition précédente montre que les racines de P de multiplicité ≥ 2 sont également des
racines de P ′. Et donc les racines simples de P ne sont pas des racines de P ′. En effet, si a est
une racine simple de P , alors P (X) = (X − a)Q(X) avec Q̃(a) ̸= 0. En dérivant, P ′(X) =
Q(X) + (X − a)Q′(X). Alors P̃ ′(a) = Q̃(a) ̸= 0. □

Exemple 3.6 :
Montrer que les racines de P (X) = X3 + 3X + 1 ∈ C[X] sont simples (sans les calculer).

Corollaire 3.17 (Caractérisation des racines simples) :
Soit P ∈ C[X].

Les racines de P sont simples si, et seulement si, P et P ′ sont premiers entres eux.

Démonstration :
Cela vient de la proposition précédente. □

Théorème 3.18 (Caractérisation des racines multiples par les dérivées [✓]) :
Soit P ∈ K[X] \ {0}, a ∈ K et m ≥ 1. On a équivalence entre :

(i) a est une racine de P de multiplicité m

(ii) P̃ (a) = P̃ ′(a) = P̃ ′′(a) = · · · = P̃ (m−1)(a) = 0 et P̃ (m)(a) ̸= 0.

Démonstration :
(i) =⇒ (ii) Comme a est une racine d’ordre m de P , on sait qu’il existe Q ∈ K[X] tel que

P (X) = (X − a)mQ(X) avec Q̃(a) ̸= 0. En utilisant la formule de Leibniz pour dériver ce produit,
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on trouve P (n)(X) =
∑n

i=0
(n

i

)
m!

(m−i)!(X − a)m−iQ(n−i)(X). En particulier, pour n = m − 1 on a :

P (m−1)(X) =
m−1∑
k=0

(
m − 1

k

)
m!

(m − k)! (X − a)m−kQ(m−1−k)(X)

= (X − a)
m−1∑
k=0

(
m − 1

k

)
m!

(m − k)! (X − a)m−1−kQ(m−1−k)(X)

= (X − a)
m∑

k=1

(
m − 1
k − 1

)
m!

(m − k − 1)!(X − a)m−kQ(m−k)(X)

et pour n = m, on a :

P (m)(X) =
m∑

k=0

(
m

k

)
m!

(m − k)! (X − a)m−kQ(m−k)(X)

= (X − a)
m−1∑
k=0

(
m

k

)
m!

(m − k)! (X − a)m−k−1Q(m−k)(X) + m!Q(X)

= (X − a)
m∑

k=1

(
m

k − 1

)
m!

(m − k − 1)!(X − a)m−kQ(m−k+1)(X) + m!Q(X)

Donc P̃ (m−1)(a) = 0 et P̃ (m)(a) = m!Q̃(a) ̸= 0.

(ii) =⇒ (i) La formule de Taylor nous donne :

P (X) =
+∞∑
k=0

P̃ (k)(a)
k! (X − a)k

=
+∞∑
k=m

P̃ (k)(a)
k! (X − a)k

= (X − a)m
+∞∑
k=m

P̃ (k)(a)
k! (X − a)k−m

= (X − a)m
+∞∑
k=0

P̃ (m+k)(a)
(m + k)! (X − a)k

On pose Q(X) =
∑+∞

k=0
˜P (m+k)(a)
(m+k)! (X − a)k. Alors Q̃(a) = P̃ (m)(a)

m! ̸= 0. Donc a est une racine
multiple de P d’ordre m. □

Exemple 3.7 :
Montrer que ∀n ∈ N∗, (X − 1)3 divise le polynôme nXn+2 − (n + 2)Xn+1 + (n + 2)X − n.

76
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4 Polynômes scindés
Dans cette section, on va commencer à faire une distinction entre R et C. On va d’abord donner

quelques résultats généraux (mais ils sont presque tous déjà donnés au dessus). Et on va spécifier
l’étude des polynômes selon que l’on se place sur R ou sur C. Les choses seront assez différentes sur
les deux corps. Il faudra faire attention à ne pas mélanger les deux cas (et on aura des résultats qui
le feront ...)

4.1 Définition

Définition 4.1 (Polynôme scindé [✓]) :
Un polynôme P ∈ K[X] non constant est dit scindé s’il peut s’écrire comme le produit de
polynômes de degré 1 de K[X], i.e. si ∃a ∈ K∗, ∃n ∈ N∗, ∃x1, . . . , xn ∈ K deux à deux distincts,
∃m1, . . . , mn ∈ N∗ tel que P (X) = a(X − x1)m1 . . . (X − xn)mn = a

∏n
k=1(X − xk)mk .

Remarque :
Dans ce cas, a est le coefficient dominant de P et x1, . . . , xn sont ses racines.

"
!!! ATTENTION !!!

La notion de polynôme scindé dépend entièrement du corps sur lequel on se place. Il ne se
passe pas la même chose sur R et sur C. Voir l’exemple suivant. Il est impératif de la garder
en tête.

Exemple 4.1 :
Le polynôme X2 + 1 est un polynôme de C[X] et de R[X]. Vu comme un polynôme de C[X], c’est
un polynôme scindé car X2 + 1 = (X + i)(X − i) dans C[X]. Mais ce polynôme n’a pas de racines
dans R donc il ne peut pas être scindé dans R[X].

Théorème 4.1 (Caractérisation des polynômes scindés par les multiplicités [✓]) :
Soit P ∈ K[X] un polynôme de degré ≥ 1. On a équivalence entre

(i) P est scindé dans K[X]
(ii) La somme des multiplicité des racines de P est égale à son degré.
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Démonstration :
(i) =⇒ (ii) Comme P est scindé, on peut l’écrire P (X) = a

∏n
k=1(X − xk)mk avec a ∈ K∗,

x1, . . . , xn ∈ K et m1, . . . , mn ∈ N∗. On a donc deg P =
∑n

k=1 mk.

(ii) =⇒ (i) Soit x1, . . . , xn ∈ K les racines de P de multiplicité m1, . . . , mn ∈ N∗. Alors∏n
k=1(X − xk)mk

∣∣∣P (X). Donc P (X) = Q(X)
∏n

k=1(X − xk)mk . Alors deg P = deg Q +
∑n

k=1 mk.
Mais la somme des multiplicité des racines de P est égale au degré de P , donc deg Q = 0 donc
Q(X) = a ∈ K∗ et donc P (X) = a

∏n
k=1(X − xk)mk . Donc P est scindé. □

Remarque :
Attention, ici on a choisi de décrire les racines de P avec les multiplicités. C’est rarement le cas. On
aurait pu aussi dire que P est scindé s’il s’écrit sous la forme P (X) = a

∏n
k=1(X − xk). Dans cette

définition on ne précise pas que les xi sont distincts. Donc la même valeurs peut apparâıtre plusieurs
fois. Et si une racine a une multiplicité, elle va donc devoir apparâıtre dans la liste (x1, . . . , xn) autant
de fois que sa multiplicité.

Exemple 4.2 :
Soit P ∈ R[X] tel que deg(P ) = 3 et P̃ (x)

x −−−→
x→0

0. Montrer que P est scindé.

Proposition 4.2 (PGCD avec un polynôme scindé) :
Soit A, B ∈ K[X], (A, B) ̸= (0, 0). Supposons que A ou B est scindé.

A ∧ B = 1 ⇐⇒ A et B n’ont pas de racines communes.

Démonstration :
Si A ∧ B = 1 alors A et B n’ont pas de racines communes à cause de Bézout (et ça ne dépend
pas que l’un des deux soit scindé). Et s’ils n’ont pas de racines communes, comme l’un des deux est
scindés, tout ses diviseurs le sera également. En particulier, A ∧ B est scindé. Et donc A ∧ B a les
racines communes de A et B qui n’existent pas. Et donc A ∧ B = 1. □
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4.2 Factorisation dans C

Nous allons essayer de “combler les trous” de la partie précédente dans les deux parties qui
suivent.

On a commencé à expliquer comment faire pour factoriser un polynômes. Mais pour cela, on
a besoin de connâıtre toutes les racines d’un polynômes. Mais il faut connâıtre les racines. Il reste
donc à prévoir le nombre de racines qu’il faut chercher. Si l’on arrive à prévoir le nombre de racines
d’un polynôme, on peut alors recoller avec les théorèmes précédents pour prévoir si un polynôme est
scindé ou pas.

Ensuite, pour le factoriser réellement, factuellement, il faudra alors trouver exactement les racines.
Mais comme on saura exactement combien en chercher, la tâche sera plus aisée (dès qu’on en trouve
le bon nombre, c’est qu’on les a toutes).
Remarque :
ATTENTION ! Il y a un problème de comptage ici que nous avons déjà touché du doigts dans la
partie précédente. Il faut être clair sur ce que l’on entend par “compter les racines”. Compter les
racines distinctes n’est pas la même chose que compter les racines avec leur multiplicités.

4.2.1 Théorème de D’Alembert-Gauss

Théorème 4.3 (Théorème de D’Alembert-Gauss [✓]) :
Tout polynôme non constant de C[X] admet au moins une racine.

Remarque (HP) :
On dit que C est un corps algébriquement clos.

On admet ce théorème. La démonstration est officiellement hors programme. Il y a plusieurs
démonstrations possibles mais aucune n’est accessible avec le bagage mathématique de première
année. Certaines démo seront accessibles en seconde année, notamment avec les fonctions de plusieurs
variables ou le théorème d’inversion locale. La méthode la plus simple serait de montrer que la fonction
polynomiale associée à un polynôme complexe de degré ≥ 1 admet un minimum en z0 (il y a une
astuce à utiliser et il faut montrer que cette fonction est continue sur un compact, ce qui nécessite
d’utiliser des fonctions de plusieurs variables). En raisonnant ensuite par l’absurde, on suppose que
z0 n’est pas une racine de P et on montre qu’il existe c ∈ C tel que ∀t ∈ R, |P (z0 + tc)| < |P (z0)|,
ce qui est clairement absurde. Et on peut alors conclure.

Corollaire 4.4 (Polynôme irréductible sur C [✓]) :
Les polynômes irréductibles de C[X] sont les polynômes de degré 1

Ce corollaire est TRÈS important ! Il permet de tout faire. Il est l’alpha et l’oméga dans C[X].

Démonstration :
Soit P ∈ C[X] un polynôme irréductible. Il n’est donc pas constant donc de degré ≥ 1. Supposons
qu’il soit de degré d ≥ 2. Par le théorème de D’Alembert-Gauss, P admet donc au moins une racine
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a ∈ C. Donc P (X) = (X − a)Q(X) avec deg Q = d − 1. Donc Q n’est pas une constante. Et donc
P est divisible par X − a donc il n’est pas irréductible. Ce qui aboutit clairement àA. Donc P n’est
pas de degré d ≥ 2 donc P est de degré 1. □

Remarque :
Dans tous les corps que l’on considère, les polynômes de degré 1 sont toujours des polynômes
irréductibles. Mais dans C[X], ce sont les seuls, on vient de donner la liste de tous les polynômes
irréductibles de C[X]. Tous les polynômes de degré sont irréductibles (on le savait déjà), mais on
vient de montrer que ce sont les seuls. Or les polynômes irréductibles sont les parpaings élémentaires
de la factorisation des polynômes.

Exemple 4.3 :
Montrer que le polynômes X4 − 5X2 + 3 n’est pas irréductible dans C[X].

Exemple 4.4 ([✓]) :
Décomposer Xn − 1 en produit de facteurs irréductibles dans C[X], pour n ≥ 1.

4.2.2 Décomposition en facteurs irréductibles dans C[X]

Théorème 4.5 (Théorème fondamental de l’algèbre dans C[X] [✓]) :
Soit P ∈ C[X] non constant.

Alors ∃a ∈ C∗, ∃n ∈ N∗, ∃x1, . . . , xn ∈ C deux à deux distincts et ∃m1, . . . , mn ∈ N∗ tels
que

P (X) = a
n∏

k=1
(X − xk)mk

De plus, cette décomposition est unique à l’ordre des facteurs près

La décomposition est donc unique à une permutation sur l’ensemble des racines près. C’est les
valeurs des racines qui est unique, pas l’ordre dans lequel on énumère les racines en questions.

Cette décomposition est le parallèle du théorème fondamental de l’arithmétique qui donne la
décomposition d’un entier en produit de facteurs premiers (unique aussi à l’ordre des facteurs premiers
près).
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Démonstration :
Comme P est non contant, il est de degré d ≥ 1. Donc, par théorème de D’Alembert-Gauss, il
possède au moins une racine x1 ∈ C. Cette racine est donc d’une certaine multiplicité m1 ∈ N∗.
Alors P (X) = Q(X)(X − x1)m1 . Si m1 < deg P , alors deg Q ≥ 1 et on peut appliquer le même
raisonnement à Q etc jusqu’à n’obtenir qu’une constante qui sera nécessairement non nul (on a une
suite de degré strictement décroissante). □

Remarque :
En fait, ce théorème est équivalent au théorème de D’Alembert-Gauss. Ce théorème est donc une
reformulation du théorème de D’Alembert-Gauss.

Corollaire 4.6 ([✓]) :
Tout polynôme non constant de C[X] est scindé.

C’est juste le théorème précédent formulé différemment.

"
!!! ATTENTION !!!

Ce résultat n’est valable QUE dans C[X]. Penser à X2 + 1.

Corollaire 4.7 (Nombres de racines dans C [✓]) :
Tout polynôme de C[X] de degré n ∈ N possède exactement n racines comptées avec

multiplicité.

Ça aussi, c’est une autre reformulation du théorème fondamental de l’algèbre.
Exemple 4.5 :
Factoriser dans C[X] les polynômes X2 − 2X cos θ + 1, Xn − 1 et X4 + X2 + 1.
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4.2.3 Arithmétiques et racines dans C

Proposition 4.8 :
Soit A, B ∈ C[X]. On a équivalence entre

1. A|B
2. Les racines de A sont racines de B et leur multiplicité en tant que racine de A est

inférieur ou égale à leur multiplicité en tant que racine de B

Si on essaie d’écrire ça, ça donnerait : ∃a ∈ C∗, ∃x1, . . . , xn ∈ C, ∃m1, . . . , mn, m′
1, . . . , m′

n ∈
N∗, ∃Q ∈ C[X] tels que A(X) = a

∏n
k=1(X − xk)mk et B(X) = Q(X)

∏n
k=1(X − xk)m′

k avec
mk ≤ m′

k pour tout k ∈ {1, . . . , n}.

Démonstration :
Si A est une constante, il n’y a rien à faire. On suppose donc désormais que A est de degré ≥ 1.
Par le théorème de d’Alembert-Gauss, on peut écrire A(X) = a

∏n
k=1(X − xk)mk pour un certain

a ∈ C∗, n ∈ N∗, x1, . . . , xn ∈ C, m1, . . . , mn ∈ N∗.
(i) =⇒ (ii) Si A|B, on a facilement que x1, . . . , xn sont des racines de B de multiplicité au

moins m1, . . . , mn.

(ii) =⇒ (i) Si les x1, . . . , xn sont des racines B de multiplicité supérieur ou égales à M1, . . . , mn,
alors ∏n

k=1(X − xk)mk divise B et donc A|B. □

Exemple 4.6 :
Montrer que X4 + X2 + 1|X18 − 1.

Proposition 4.9 (Caractérisation de polynômes premiers entre eux dans C[X] [✓]) :
Soit A, B ∈ C[X]. On a équivalence entre :

(i) A et B sont premiers entres eux
(ii) A et B n’ont pas de racines communes.

Démonstration :
On va démontrer ce théorème par contraposée dans les deux sens.

(i) =⇒ (ii) On suppose donc que A et B ont au moins une racine en commun. Donc ∃α ∈ C
tel que Ã(α) = B̃(α) = 0. donc (X − α)|A et (X − α)|B. Donc A et B ont un diviseur commun
dans C[X] qui n’est pas constants donc A et B ne sont pas premiers entres eux.
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(ii) =⇒ (i) On suppose que A et B ne sont pas premiers entres eux. Donc ils ont un facteurs
communs P ∈ C[X] de degré ≥ 1. Par théorème de d’Alembert-Gauss, P admet au moins une racine
qui sera donc une racine de A et de B aussi, par divisibilité. □

Exemple 4.7 :
Montrer que X2 + 1 et X3 + X + 1 sont premiers entres eux.

"

!!! ATTENTION !!!

Ces résultats ne sont valables QUE sur C. C’est la forme particulière des polynômes
irréductibles de C qui fait tout le travail (dû à d’Alembert-Gauss). Mais ailleurs (par ailleurs
j’entends particulièrement R) tout ceci est faux. Les choses sont plus compliqués. Donc at-
tention au corps sur lequel vous vous placez.

4.3 Cas réel

4.3.1 Premiers liens avec C

Remarque :
Il est clair que R[X] ⊂ C[X].

Définition 4.2 (Racine complexe) :
Soit P ∈ R[X].

On appelle racine complexe de P toute racine de P vu dans C[X].

Remarque :
La définition précise des racines complexes d’un polynôme réel n’est pas très clair. L’intérêt est
d’étendre le corps de base pour rajouter des racines et donc de considérer les racines complexes non
réelles. Mais avec uniquement ces racines, on ne peut pas faire grand chose. Il faut toutes les racines
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de P (réelles et complexes non réelles) pour pouvoir le factoriser correctement dans C[X] par le
théorème fondamental de l’arithmétique. Donc a priori, les racines complexes devraient plutôt être
toutes les racines de P vu comme polynôme de C[X]. Seulement, comme P ∈ R[X], on a souvent
déjà calculer les racines réelles et le but est donc d’étudier les racines “qui manque”, donc les racines
non réelles. Etc.

Bref, les deux sont intéressants. Ça dépend un peu du contexte. Comme il est usuel de changer
de corps régulièrement (ce que nous sommes en train d’amorcer), selon le corps dans lequel on se
place, on considère l’une ou l’autre définition. Si on garde P ∈ R[X] et qu’on le traite en tant que
tel, on peut chercher ses racines non réelles (on fait une petite incartade timide dans le monde des
complexes). Mais on peut aussi décider de faire les chose un peu brutalement et voir P dans C[X]
pour pouvoir utiliser les outils dont on dispose dans C[X]. Auquel cas, les racines complexes de P
feraient plutôt référence à toutes les racines de P , réelles ou non réelles.

Exemple 4.8 :
On a X2 + X + 1 ∈ R[X] et j est une racine complexe de ce polynôme.

Proposition 4.10 (Nombres de racines complexes [✓]) :
Soit P ∈ R[X] de degré n ∈ N

P possède exactement n racines complexes comptées avec multiplicité.

Démonstration :
Si P ∈ R[X], alors P ∈ C[X] et on a 4.7. □

La force des polynômes réels (donc leurs intérêts et donc leurs embêtements) est que l’on peut les
voir comme des polynômes complexes et leur appliquer la batterie de résultats sympathiques qu’on a
dans le cas complexes. Il faut juste ne pas oublier de repasser dans R donc de transposer ces résultats
dans R. C’est à cette étape qu’il faut prendre des gants.

Proposition 4.11 (Racines non réelles d’un polynôme réel [✓]) :
Les racines complexes non réelles d’un polynôme réel sont deux à deux conjuguées et deux
racines complexes conjuguées ont même multiplicité.

Démonstration :
Soit P ∈ R[X]. Si a ∈ C \ R est une racine de P de multiplicité m, alors a est une racine de
multiplicité m du polynôme P = P . □
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Exemple 4.9 :
Soit P ∈ R[X] unitaire de degré 3 tel que P̃ (2i) = 0 et P̃ (0) = 1. Déterminer P .

4.3.2 Décomposition en facteurs irréductibles dans R[X]

Lemme 4.12 (Relations de divisibilité sur R vu dans C) :
Soit A, B ∈ R[X]. Alors

A
∣∣B dans R[X] ⇐⇒ A

∣∣B dans C[X]

Démonstration :
⇒ Donc il existe P ∈ R[X] tel que B = AP . Mais A, B, P ∈ C[X] aussi, donc on a A

∣∣B dans
C[X].

⇐ On suppose que ∃P ∈ C[X] tel que B = AP . Par décomposition en facteurs irréductibles
dans C[X], on sait que ∃n ∈ N, ∃x1, . . . , xn ∈ C, ∃m1, . . . , mn ∈ N∗ et a ∈ C∗ tel que P (X) =
a
∏n

k=1(X−xk)mk . Donc B(X) = aA(X)
∏n

k=1(X−xk)mk . Donc les xk sont des racines de B. Mais
étant réels, ses racines complexes (non réelles) sont deux à deux conjuguées et de même multiplicité.
Donc ∀k ∈ {1, . . . , n}, soit xk ∈ R, soit ∃j ∈ {1, . . . , n} \ {k} tel que xj = xk et mj = mk. Et dans
ce cas ∏n

k=1(X − xk)mk ∈ R[X]. Enfin, comme A, B,
∏n

k=1(X − xk)mk ∈ R[X], on en déduit que
a ∈ R∗ également sinon on aboutirait à A (observer le coefficients dominant de B par exemple).
Donc P (X) = a

∏n
k=1(X − xk)mk ∈ R[X] et donc la relation de divisibilité est valable dans R[X]

donc A
∣∣B dans R[X]. □

Remarque :
On rappel que la notion de divisibilité est intrinsèquement lié au corps de base. Pour que ce soit
plus clair, on aurait pu (dû ?) noté la relation de divisibilité dans K[X] par

∣∣
K (ou mieux

∣∣
K[X])

pour insister sur le fait que cette relation n’est valable que dans K[X]. Mais cela aurait alourdi les
notations. Et cette notation n’est pas canonique, alors ....

Cependant, vous pouvez parfaitement la définir en début de problème et l’utiliser comme bon
vous semble si ça peut vous aider à garder l’esprit clair.

Exemple 4.10 :
Montrer que (X2 + 1)

∣∣(X3 − X2 + X − 1) dans R[X].
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Théorème 4.13 (Polynômes irréductibles de R[X] [✓]) :
Les polynômes irréductibles de R[X] sont :

(i) Les polynômes de degré 1
(ii) Les polynômes de degré 2 de discriminant < 0.

Ce théorème est fondamental. C’est de lui que viennent les ennuis et donc toute la suite de cette
partie. C’est plus particulièrement les polynômes irréductibles du second types qui causent toutes les
perturbations.

Démonstration :
Montrons d’abord que ce sont des polynômes irréductibles. Soit P ∈ R[X]. Si deg P = 1, alors P
est irréductible dans C[X] donc il l’est forcément dans R[X]. En effet, s’il ne l’était pas dans R[X]
il aurait un diviseur non trivial dans R[X] mais qui serait également un élément de C[X] (puisque
R[X] ⊂ C[X]) et ne serait donc pas irréductibles dans C[X] ce qui aboutit à A avec un corollaire
de d’Alembert-Gauss.

Supposons maintenant que deg P = 2 et qu’il est de discriminant < 0. Il n’a donc pas de racines
réelles et ses deux racines complexes sont conjuguées. Considérons D ∈ R[X] un diviseur de P . Donc
nécessairement, deg D ≤ 2. Si deg D = 2 ou 0 c’est un diviseur trivial de P . Mais si deg D = 1,
alors D a nécessairement une racine dans R qui sera donc aussi une racine réelle de P . Et là, A.
Donc deg D ̸= 1 et donc c’est un diviseur trivial. Donc P est irréductible.

Réciproquement, montrons que tout polynôme irréductible est de cette forme. Soit donc P ∈
R[X] irréductible. Donc deg P ≥ 1 car P est non constant. Donc en tant que polynôme de C[X],
on peut lui appliquer le théorème de d’Alembert-Gauss et donc il admet au moins une racine α dans
C. Donc (X − α)

∣∣P (X) dans C[X]. Si α ∈ R, alors (X − α)|P (X) dans R[X]. Mais comme P est
irréductible, X − α doit être un diviseurs trivial de P et donc P est de degré 1. Si α /∈ R, alors α
est également racines de P . Donc (X − α)(X − α)

∣∣P (X). Mais (X − α)(X − α) est un polynôme
à coefficient réel. Donc c’est un diviseurs de P (X) dans R[X]. Mais comme P est irréductible dans
R[X], le polynôme (X − α)(X − α) est un diviseurs trivial de P et donc P est de degré 2 sans
racines réelles, i.e. il est de degré 2 de discriminant < 0. □

Exemple 4.11 :
Donner des exemples de polynômes irréductibles dans R[X]. Quand est-il de X2 − 3X + 2 ?
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Théorème 4.14 (Théorème fondamental de l’algèbre dans R[X] [✓]) :
Soit P ∈ R[X] non constant. Alors ∃λ ∈ R∗, ∃n1, n2 ∈ N, ∃a1, . . . , an1 ∈ R deux à deux
distincts, ∃(p1, q1), . . . , (pn2 , qn2) ∈ R2 deux à deux distincts tels que ∀j ∈ {1, . . . , n2},
∆j = p2

j − 4qj < 0 et ∃α1, . . . , αn1 , β1, . . . , βn2 ∈ N∗ tels que

P (X) = λ
n1∏

k=1
(X − ak)αk

n2∏
j=1

(X2 + pjX + qj)βj

et cette décomposition est unique à l’ordre des facteurs près.

Démonstration :
Si P (X) ∈ R[X] de degré ≥ 1, c’est en particulier un polynôme non constant de C[X]. Donc on
peut lui appliquer la décomposition en facteurs irréductibles dans C[X]. Puis on regroupe les facteurs
de degré 1 avec des racines complexes conjuguées (dès qu’il y a une racines complexes non réelles,
son conjuguée apparâıt nécessairement avec la même multiplicité puisque P est à coefficient réel) ce
qui nous donne la forme voulue. □

Remarque :
Avec cette décomposition on a également

deg P =
n1∑

k=1
αk +

n2∑
j=1

2βj

donc le degré de P et la somme des multiplicités de ses facteurs irréductibles de degré 1 et du doubles
des multiplicités de ses facteurs irréductibles de degré 2.

Remarque :
On rappelle qu’il y a toujours une légère ambigüıté lors du calcul du nombre de racine d’un polynôme.
Soit on sous-entend qu’on s’intéresse aux racines distinctes, ou alors on prend en compte toute les
racines et il faut alors les comptés avec leur multiplicité (une racine double compte 2 fois, une racine
triple compte 3 fois etc).

Les théorèmes donnent des informations sur le nombre de racines comptés avec multiplicité. Mais
avant de déterminer les multiplicités, il faut déjà trouver toutes les racines distinctes.

Corollaire 4.15 :
Tout polynôme réel de degré impair a au moins une racine réelle.

Démonstration :
On le montre par contraposée : si P n’a pas de racines réelles, alors, dans sa décomposition en
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facteurs irréductibles dans R, on a n1 = 0 et donc deg P =
∑n2

j=1 2βj donc P est de degré pair. □

Exemple 4.12 :
Factoriser dans R[X] le polynôme X5 − 1.

Proposition 4.16 (Polynôme premiers entre eux) :
Soit A, B ∈ R[X].

Si A ∧ B = 1, alors A et B n’ont pas de racines communes.

Démonstration :
C’est le sens facile avec Bézout. □

"
!!! ATTENTION !!!

La réciproque est fausse dans R. Il faut imposer d’avoir A ou B scindé pour que ça fonctionne.

Contre-exemple :
Prendre A(X) = (X2 + 1)(X2 + 3) et B(X) = (X2 + 1)(X2 + 2). Alors A ∧ B = X2 + 1 et
pourtant A et B n’ont pas de racines réelles communes.

4.4 Relations Racines / Coefficients

On retourne ici dans K[X] avec K = R ou C.
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Proposition 4.17 (Relations coefficients/racines [✓]) :
Soit P (X) =

∑n
k=0 akXk ∈ K[X] scindé dans K[X] et de degré n ∈ N∗. Soit x1, . . . , xn ∈ K

ses racines comptées avec multiplicités. Alors
n∑

k=1
xk = −an−1

an
et

n∏
k=1

xk = (−1)n a0
an

Démonstration :
On a P (X) = an

∏n
k=1(X −xk) car P est scindé sur K. Le coefficient constant de P est alors donné

par

a0 = P̃ (0) = an

n∏
k=1

(0 − xk) = (−1)n
n∏

k=1
xk

d’où la formule annoncée.
Le coefficient an−1 est obtenu par le développement de la forme factorisée de P en ne sélectionnant

qu’une seule parenthèse parmi les n disponible de laquelle on extrait la racine et les autres parenthèse
donnant l’indéterminée X. La formule est alors obtenue en faisant varier la parenthèse fournissant
la racine parmi toutes les parenthèse disponible.

an−1 = an

n∑
k=1

−xk = −an

n∑
k=1

xk

□

Proposition 4.18 (Cas des polynômes de degré 2) :
Soit P (X) = aX2 + bX + c ∈ K[X] scindé dans K[X] de racines x1 et x2. Alors

b

a
= −x1 − x2 et c

a
= x1x2

Proposition 4.19 :
Soit α, β ∈ K. Les solutions du systèmes{

x + y = α

xy = β

sont exactement les racines du polynômes X2 − αX + β.

Démonstration :
Si le système des solutions x et y dans K, on considère le polynôme P (X) = (X − x)(X − y). Alors
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P (X) = X2 − (x + y)X + xy = X2 − αX + β. Donc les solutions du systèmes sont bien les racines
de ce polynômes.

Réciproquement, on considère le polynôme P (X) = X2 − αX + β. Si ce polynôme à une racine
de K, il en a nécessairement un deuxième et donc il est scindé dans K. On note a et b ses racines.
Donc on P (X) = (X − a)(X − b) car P est unitaire. Et les relations racines/coefficients nous donne
alors a + b = α et ab = β. Donc a et b sont bien des solutions du système. Et si P n’a pas de racines
dans K, le système n’a pas de solutions non plus par contraposée du premier paragraphe. □

Exemple 4.13 :
Résoudre les systèmes {

x + y = 5
xy = −1

et {
x − y = 2
x2 + y2 = −2

En fait, on peut définir des fonctions permettant d’éxprimer tous les coefficients en fonctions des
racines pour un polynômes scindés. C’est ce qu’on appelle les fonctions symétriques élémentaires :

Définition (HP) 4.3 (Fonctions symétriques élémentaires)

Pour n ∈ N∗ et x1, . . . , xn ∈ K, on appelle fonctions symétriques élémentaires en les x1, . . . , xn

les fonctions
σ1 =

n∑
k=1

xk, σ2 =
∑

1≤i<j≤n

xixj , σ3 =
∑

1≤i<j<k≤n

xixjxk,

et plus généralement,

∀p ∈ {1, . . . , n}, σp =
∑

1≤i1<···<ip≤n

xi1xi2 . . . xip

et en particulier

σn =
n∏

k=1
xk

Remarque :
σk contient

(n
k

)
termes dans la somme.
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Avec ces notations, on a

Propriété (HP) 4.20 (Relations coefficients/racines complètes)

Soit P (X) =
∑n

k=0 akXk ∈ K[X] scindé de degré n ∈ N∗ et de racines x1, . . . , xn ∈ K comptés
avec multiplicité. Alors

∀k ∈ {0, . . . , n}, σk = (−1)k an−k

an

En particulier, un polynôme unitaire de degré 2 avec deux racines et donné par X2 − σ1X + σ2.
Un polynôme scindé unitaire de degré 3 est donné par X3 − σ1X2 + σ2X − σ3. Etc. On peut donc
écrire

P (X) = a3X3 + a2X2 + a1X + a0 = a3(X − x1)(X − x2)(X − x3)

dont on déduit en développant

−a3x1x2x3 = −a3σ3 = a0, a3(x1x2 + x1x3 + x2x3) = a3σ2 = a1,

−a3(x1 + x2 + x3) = −a3σ1 = a2.

Exemple 4.14 :
Résoudre le système 

x + y + z = 2
xy + xz + yz = −5
xyz = −6

Remarque :
En fait, on peut montrer que tout polynôme en x1, . . . , xn symétrique en x1, . . . , xn peut s’exprimer
comme un polynôme en les σ1, . . . , σn.

Par exemple, S1 =
∑n

k=1 xk = σ1 ; S2 =
∑n

k=1 x2
k = σ2

1 −2σ2 ; S3 =
∑n

k=1 x3
k = σ3

1 −σ1σ2−3σ3.
Etc.

4.5 Interpolation de Lagrange

L’interpolation est le principe de trouver une courbe passant par des points fixés du plan. En
l’occurrence, on peut montrer qu’on peut toujours interpoler n’importe quel nuage de point deux à
deux non alignés verticalement par un polynôme.
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Définition 4.4 (Polynômes interpolateurs de Lagrange) :
Soit n ∈ N∗ et soit x0, . . . , xn ∈ K deux à deux distincts.

On appelle le k-ème polynôme interpolateur de Lagrange en (x0, . . . , xn) le polynôme

Lk(X) =

∏n
i=0
i ̸=k

(X − xi)∏n
i=0
i̸=k

(xk − xi)

Proposition 4.21 (Polynômes interpolateurs de Lagrange) :
Soit ninN∗ et x0, . . . , xn ∈ K deux à deux distincts. On note (L0, . . . , Ln) les polynômes
interpolateurs de Lagrange en (x0, . . . , xn). Alors :

(i) ∀i ∈ {0, . . . , n}, deg(Li) = n.
(ii) ∀i, j ∈ {0, . . . , n}, L̃i(xj) = δi,j .
(iii) (L0, . . . , Ln) est une base de Kn[X].

Démonstration :
Il suffit de faire les calculs : Pour tout i ∈ {0, . . . , n}, deg(Li) =

∑n
k=0
k ̸=i

1 = n.
Le calcule montre aussi

L̃i(xj) =

∏n
k=0
k ̸=i

(xj − xk)∏n
k=0
k ̸=i

(xi − xk) =
{

0 si i ̸= j

1si i = j

Finalement, si λ0, . . . , λnK tels que ∑n
k=0 λkLk = 0, alors en évaluant en les xi, on a λi = 0.

Et donc la famille est libre. Or Kn[X] est de dimension n + 1, donc par caractérisation des bases en
dimension finie, (L0, . . . , Ln) est une base de Kn[X]. □

Proposition 4.22 (Interpolation de Lagrange) :
Soit n ∈ N∗ est x0, . . . , xn, y0, . . . , yn ∈ K avec x0, . . . , xn deux à deux distincts.

Alors ∃!P ∈ Kn[X] tel que ∀i ∈ {0, . . . , n}, P̃ (xi) = yi et c’est le polynôme

P (X) =
n∑

k=0
ykLk(X).

Démonstration :
On pose le polynôme P comme au dessus. Le calcul montre facilement P̃ (xi) = yi. L’unicité est
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apporté par la liberté de la famille (L0, . . . , Ln). Sinon, on peut la voir autrement : Si P et Q ont
les mêmes propriétés, alors P − Q est un polynômes de degré ≤ n et ayant n + 1 racines distinctes.
Donc P − Q = 0. □

Exemple 4.15 :
Soit a1, . . . , an ∈ R+. Montrer qu’il existe un polynôme P tel que ∀i ∈ {1, . . . , n}, P̃ (ai) = √

ai.
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