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1 Généralités
Exercice 1 :
Quels sont les degrés, les coefficients dominants et les coefficients constants des polynômes suivants :

(X + 1)n − (X − 1)n, (X2 + 1)n + (X2 − 1)n

Exercice 2 :
Trouver un polynôme P tel que P̃ (1) = 3, P̃ ′(1) = 4, P̃ ′′(1) = 5 et ∀n ≥ 3, P̃ (n)(1) = 0.

Exercice 3 ([✓]) :
Soit n ≥ 2. On définit une application sur R[X] par

∀P ∈ R[X], f(P )(X) = P (−X) − P (X)

1. Montrer que f est un endomorphisme de Rn[X].
2. Déterminer Im f , rg f et ker f .
3. Soit Q ∈ Im f . Montrer alors qu’il existe un unique P ∈ Rn[X] tel que

f(P ) = Q et P̃ (1) = 0 , P ′(−X) = P ′(X)

Exercice 4 :
Déterminer tous les polynômes P ∈ R[X] tels que :

1. P (X2) = (X2 + 1)P (X)
2. P (2X) = P ′(X)P ′′(X)
3. X(X + 1)P ′′ + (X + 2)P ′ − P = 0
4. 18P = P ′P ′′

Exercice 5 :
Montrer que pour tout n ∈ N, il existe un unique polynôme Pn ∈ R[X] tel que Pn(X) − P ′

n(X) = Xn. Calculer
Pn.
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1 GÉNÉRALITÉS

Exercice 6 :
Soit (Pn)n∈N la suite de polynômes définie par P0(X) = 1 et

∀n ∈ N, Pn+1(X) = XPn(X) − P ′
n(X).

1. Calculer P1, P2, P3 et P4.
2. Calculer le degré de Pn, pour tout n ∈ N.
3. Montrer que Pn a la même parité que n ∈ N.
4. Déterminer le coefficient dominant de Pn, pour tout n ∈ N.

Exercice 7 :
Soit (Pn)n∈N la suite de polynômes définie par P0(X) = 1, P1(X) = X et

∀n ∈ N, Pn+2(X) = XPn+1(X) − Pn(X).

1. Calculer P2 et P3.
2. Calculer le degré de Pn pour tout n ∈ N.
3. Montrer que pour tout n ∈ N, Pn a la même parité que n.
4. Montre que ∀n ∈ N, P 2

n+1 − PnPn+2 = 1.
5. En déduire que pour tout n ∈ N, les polynômes Pn et Pn+1 sont premiers entre eux.

Exercice 8 :
Cet exercice propose de prouver l’existence de polynômes sous certaines conditions, de façons classique.

1. Soit a ∈ R∗ et A ∈ Rn[X].
(a) Montrer que φ(P ) = P (X + a) + P (X) est une application linéaire.
(b) Montrer que ∀P ∈ ker(φ), ∀p ∈ N, P̃ (pa) = (−1)pP̃ (0).
(c) En déduire ker(φ).
(d) Monter qu’il existe un unique P ∈ Rn[X] tel que

P (X + a) + P (X) = A(X)

2. Soit Q ∈ C3[X]. Montrer qu’il existe un unique polynôme P ∈ C[X] tel que Q = P + P ′ + P ′′. Expliciter
P lorsque Q(X) = 1 + X + X2 + X3.

3. Soit A, B ∈ R[X] et a ∈ R. Trouver tous les polynômes P ∈ R[X] tels que

P (X) + P̃ (a)A(X) = B(X)

Exercice 9 :
Soit n, m ∈ N. En remarquant que (1 + X)n+m = (1 + X)n(1 + X)m, montrer que

∀k ∈ {0, . . . , n + m},

min(k,n)∑
i=0

(
n

i

)(
m

k − i

)
=
(

n + m

k

)

Exercice 10 :
Soit f : x 7→ xex2 .
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2 ARITHMÉTIQUE, DIVISIBILITÉ

1. Montrer que f ∈ C∞(R,R).
2. Montrer que ∀n ∈ N, ∃Pn ∈ R[X] tel que ∀x ∈ R, f (n)(x) = P̃n(x)ex2 . Donner en plus une relation de

récurrence vérifiée par la suite (Pn)n∈N.
3. Déterminer le degré et coefficient dominant de Pn, pour tout n ∈ N.
4. Montrer que pour tout n ∈ N, Pn a la parité contraire de n.

2 Arithmétique, Divisibilité
Exercice 11 :

1. Soit P (X) = X5 − X3 + 5X − 2. Faire la division euclidienne de P par X + 2, (X + 1)2, X2 − 4X + 2.
2. Soit Q(X) = X6 − 4X3 + 2X2 − 1. Effectuer la division euclidienne de Q par X2 + 4 et 4X3 + X2 par

X + 1 + i.

Exercice 12 (*) :
Soit A, B ∈ Z[X] avec B unitaire. Montrer que le quotient et le reste de la division euclidienne de A par B sont

à coefficients dans Z.

Exercice 13 ([✓]) :
Soit n ∈ N∗ et P ∈ K[X] avec deg P = n. On pose E = {A ∈ K[X], P |A}. Montrer alors que

K[X] = E ⊕ Kn−1[X]

Exercice 14 ([✓]) :
Soit A ∈ K[X] dont les restes dans les divisions euclidienne par X − 1, X − 2, X − 3 sont 3, 7, 13.

Déterminer le reste de la division de A par B(X) = (X − 1)(X − 2)(X − 3).

Exercice 15 :
Déterminer a ∈ R pour que A(X) = X4 − X + a et B(X) = X2 − aX + 1 aient au moins une racine commune.

Exercice 16 ([✓]) :
Déterminer an et bn pour que An(X) = anXn+1 + bnXn + 1 soit divisible par B(X) = (X − 1)2. Former alors

le quotient Qn de la division de An par B.

Exercice 17 ([✓]) :
Montrer que (X − 1)3|An avec An(X) = (1 + X)(Xn − 1) + 2nXn(1 − X) + n2Xn−1(X − 1)2, pour tout

n ≥ 1.

Exercice 18 :
Déterminer un polynôme A unitaire de degré 3 divisible par X − 1 et ayant le même reste dans les divisions par

X − 2, X − 3 et X − 4.
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3 RACINES

Exercice 19 :
Trouver un polynôme A de degré 5 sachant que le reste dans la division euclidienne par (X + 1)3 est −5 et que

le reste dans la division euclidienne par (X − 1)3 est 11.

Exercice 20 (PGCD et Bézout) :
Pour chacun des couples de polynômes (A, B) suivant, déterminer un PGCD et une relation de Bézout.

1. A(X) = X5 + 3X4 + X3 + X2 + 3X + 1, B(X) = X4 + 2X3 + X + 2
2. A(X) = X5 + X3 − X2 − 1, B(X) = X4 − 2X3 − X + 2

Exercice 21 (Unicité de la relation de Bézout pour des polynômes premiers entre eux) :
Soit A, B ∈ K[X] non constants et premiers entre eux.

Montrer ∃!(U, V ) ∈ K[X] tel que AU + BV = 1 et deg(U) < deg(B) et deg(V ) < deg(A).

Exercice 22 :
Soit A, B ∈ K[X] non nuls. Montrer

A ∧ B = 1 ⇐⇒ (A + B) ∧ (AB) = 1

Exercice 23 :
Soit A, B ∈ K[X] tel que A2|B2.

Montrer que A|B.

3 Racines
Exercice 24 ([✓]) :
Trouver λ pour que P (X) = X3 − 3X + λ ait une racine double. Factoriser P (X).

Exercice 25 :
Soit α ∈ R \ πZ et n ∈ N∗.

Factoriser le polynôme P (X) = (X + 1)n − e2iα(X − 1)n dans C.

Exercice 26 ([✓]) :
Montrer que Pn(X) = 1 + X + X2

2! + · · · + Xn

n! n’a que des racines simples dans C, pour tout n ∈ N∗.

Exercice 27 ([✓]) :
Factoriser les polynômes

A(X) = X4 + X2 + 1 et B(X) = X8 + X4 + 1

et
Pn(X) = 1 + 1

1!X + 1
2!X(X + 1) + · · · + 1

n!X(X + 1)(X + 2) . . . (X + n − 1)

Indic : Récurrence
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4 RELATIONS COEFFICIENTS/RACINES

Exercice 28 (**) :
Soit a ∈ C et P, Q ∈ C[X] premiers entre eux et tels que P 2 + Q2 admette a pour racine double. Montrer que

a est racine de P ′2 + Q′2.
Indic : Penser à la factorisation de a2 + b2 dans C

Exercice 29 :
Développer

P (X) =
n−1∏
k=0

(1 − ωkX)

où les ωk sont les racines n-ème de l’unité.

Exercice 30 ([✓]) :
Soit a, b, c ∈ K deux à deux distincts et non nuls. On pose

A(X) = X(X − b)(X − c)
a(a − b)(a − c) + X(X − c)(X − a)

b(b − c)(b − a) + X(X − a)(X − b)
c(c − a)(c − b)

et
B(X) = 1 + 1

abc
(X − a)(X − b)(X − c)

Montrer que A = B sans développer ni factoriser quoi que ce soit.

Exercice 31 (***) :
Soit z1, z2 ∈ C deux complexes distincts et P, Q ∈ C[X] non constants tels que P̃ −1({z1}) = Q̃−1({z1}) et

P̃ −1({z2}) = Q̃−1({z2}).
Montrer que P = Q.

Exercice 32 :
Soit P ∈ K[X] tel que deg(P ) = 2026 et ∀k ∈ {0, . . . , 2026}, P̃ (k) = k

k+1 .
Calculer P̃ (2027).

4 Relations coefficients/Racines
Exercice 33 :
On considère deux cercles tels que la somme de leurs périmètres est 22π et la somme de leur aires est 65π.

Déterminer les rayons des deux cercles.

Exercice 34 ([✓]) :
Résoudre le système 

x + y + z = 1
xy + xz + yz = 1
xyz = 1
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4 RELATIONS COEFFICIENTS/RACINES

Exercice 35 :
Résoudre le système 

x + y + z = 1
x2 + y2 + z2 = 9
1
x + 1

y + 1
z = 1

Exercice 36 ([✓]) :
Soit a, b, c ∈ C distincts.

1. En utilisant le polynôme P (X) = X3 − (x + yX + zX2), résoudre le système
x + ay + a2z = a3

x + by + b2z = b3

x + cy + c2z = c3

2. Faire de même avec 
x + ay + a2z = a4

x + by + b2z = b4

x + cy + c2z = c4

Exercice 37 :
Soit z1, z2, z3 ∈ C les racines complexes de P (X) = X3 + X + 1.

Calculer z4
1 + z4

2 + z4
3 .

Exercice 38 (**) :
Calculer

∑(
α+2
2α+5

)2
où α décrit l’ensemble des racines de X3 + 2X2 − X + 1.

Exercice 39 (*) :
Le but de cet exercice est de fournir une preuve au problème 6 des Olympiades Mathématiques Internationales

de 1988 :
Si a, b ∈ N∗ tels que ab + 1|a2 + b2, montrer que a2+b2

ab+1 est un carré.
Soit a, b ∈ N∗ tel que ab + 1|a2 + b2. Sans perte de généralité, on peut suppose que a ≤ b. On pose

c = a2+b2

ab+1 ∈ N. On pose P (X) = X2 − caX − c + a2.
1. Montrer que P admet deux racines réelles. On appelle x ∈ R la racine non triviale.
2. Montrer que a2+x2

ax+1 = a2+b2

ab+1 .
3. Montrer que x ≤ a.
4. Justifier qu’on peut supposer alors que a est minimum.
5. Montrer que x < a.
6. Montrer que x ∈ Z.
7. En déduire que x ≤ 0.
8. Justifier que (b + 1)(x + 1) ≥ 1.
9. En déduire que x > −1.

10. Conclure.
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5 EXERCICES COMPLETS

5 Exercices complets
Exercice 40 (Polynôme de Laguerre (extrait CAPES 2011) [✓][✓]) :

1. Soit n ∈ N. On définit la fonction hn sur R par

hn(x) = xne−x

Justifier que ∀n ∈ N, hn ∈ C∞(R,R) et calculer sa dérivée n-ème.

2. Montre que ∀n ∈ N, x 7→ ex

n! h
(n)
n (x) est une fonction polynômiale. Donner le polynôme Ln qui correspond.

3. Calculer L0, L1, L2.
4. Pour tout n ∈ N, déterminer le degré de Ln.
5. Soit n ∈ N.

(a) Calculer h
(n)
n et h

(n+1)
n en fonction de Ln et L′

n.
(b) Donner une relation simple entre hn et hn+1.
(c) En déduire que (n + 1)Ln+1 = XL′

n + (n + 1 − X)Ln.

6. En remarquant que (h′
n+1)(n+1) = (h(n+1)

n+1 )′, montrer que

∀n ∈ N, L′
n+1 = L′

n − Ln

7. À l’aide de tout ce qui précède, montrer que

∀n ∈ N, XL′′
n + (1 − X)L′

n + nLn = 0

et que
∀n ≥ 1, (n + 1)Ln+1 + (X − 2n − 1)Ln + nLn−1 = 0

Remarque :
On pourrait faire plein de choses sur les polynômes de Laguerre. Ils vérifient une autre équation fonctionnelle qui
mèle équation différentielle et relation de récurrence :

L′
n+1 − (n + 1)L′

n + (n + 1)Ln = 0

On peut également les exprimer à l’aide d’intégrale :

L̃n(x) = 1
2iπ

˛
e− xz

1−z

(1 − z)zn+1 dz

où le contour se fait sur le cercle trigonométrique parcouru dans le sens directe une seule fois, i.e. z = eiθ avec
θ ∈ [0, 2π[. Il y a encore beaucoup de choses à faire avec les polynômes de Laguerre, mais on se contentera de
ça pour le moment.

Exercice 41 (Théorème de D’Alembert-Gauss (***)) :
Le but de cet exercice est de démontrer le théorème de D’Alembert-Gauss.

Soit P ∈ C[X], n = deg(P ) ≥ 1. On pose a0, . . . , an ∈ C tels que P (X) =
∑n

k=0 akXk.
1. Montrer que |P̃ (z)| −−−−−→

|z|→+∞
+∞.

2. En déduire ∃R > 0, ∀z ∈ C, |z| > R =⇒ |P̃ (z)| > 1 + |P̃ (0)|.
3. Justifier que infz∈D(0,R) |P̃ (z)| existe. On note α = infz∈D(0,R) |P̃ (z)|.
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5 EXERCICES COMPLETS

4. Montrer ∃(zn)n∈N ∈ D(0, R)N tel que |P̃ (zn)| −−−−−→
n→+∞

α.

5. Montrer que α est un minimum de P̃ sur D(0, R) atteint en un certain ζ ∈ D(0, R).
6. En déduire que α est un minimum de |P̃ | sur C.
7. Supposons α ̸= 0. Soit Q(X) = P (ζ + X) ∈ C[X]. Soit b0, . . . , bn ∈ C les coefficients de Q (i.e.

Q(X) =
∑n

k=0 bkXk).
(a) Justifier que |b0| = α.
(b) Justifier que k = min{j ∈ {1, . . . , n}, bj ̸= 0} existe.
(c) Soit ω ∈ C tel que ωk = −b0bk. Soit f : t 7→ |Q̃(tω)|. Montrer que

∃ck+1, . . . , cn ∈ C, ∀t ∈ R, f(t) =

∣∣∣∣∣∣b0 − |bk|2b0tk +
n∑

j=k+1
cjtj

∣∣∣∣∣∣ .
(d) Montrer que ∃η > 0 tel que

∀t ∈] − η, η[, 0 ≤ f(t) ≤ α(1 − |bk|2|t|k) + |t|k+1

∣∣∣∣∣∣
n∑

j=k+1
cjtn−k−1

∣∣∣∣∣∣ .
(e) En déduire que

∃M ≥ 0, ∀t ∈] − η, η[, f(t) ≤ α(1 − |bk|2|t|k) + |t|k+1M.

(f) En déduire que

∃µ > 0, ∀t ∈] − µ, µ[, f(t) ≤ α

(
1 − |bk|2

2 |t|k
)

.

(g) Montrer qu’on aboutit à une contradiction et conclure.
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