Chapitre 6

Informatique théorique

Simon Dauguet
simon.dauguet@gmail.com

8 janvier 2026

BRUTE-FORCE DYNAMIC .
SOL-UTTON: PROGRAMMING SELUNG ON EBRAY:
ALGORITHMS: O(1)

o(nt) O (n*2")
STILL WORKING
ON YOUR ROUTE?

Mo A
- ,
SHUT THE
HEW VP

Jusque 13, les questions de corrections, d'exactitudes des algorithmes créés ont été largement mis
de c6té. Mais rien ne nous garantit que les algorithmes créés pour répondre a un probleme répondent
effectivement bien au probléme posé. Les algorithmes ont beau avoir été testés sur des exemples, il est
possible que I'algorithme en question ne donne pas dans tous les cas le bon résultat. Une série de tests
n'est pas une preuve mathématiques (donc certaine) du bon fonctionnement de |'algorithme. On aurait pu
jouer de malchance et ne tester que les quelques rares situations ou le résultat correspond aux attentes par
erreurs.

Aussi, pour s'assurer du bon fonctionnement d'un algorithme, une étude théorique (en fait, mathématique)
va étre nécessaire. Cette étude va s'axer sur 3 grand poles.

o |l faut commencer par montrer que |'algorithme “tourne bien”, c'est-a-dire qu'il démarre correctement
et fini par s'arréter pour renvoyer un résultat. Clairement, s'il ne s'arréte jamais, il ne renverra rien
et il n'aura aucune utilité.

o |l faudra ensuite montre évidemment que ce qui est renvoyé par |'algorithme correspond bien a la
solution du probléme posé. Si on demande une couleur a un algorithme et qu'il renvoie une recette
de cuisine, toute délicieuse soit-elle, ¢a n'a pas d'intérét.

o |l faudra ensuite s'enquérir de probléeme de limite physique. C'est-a-dire a ce que les deux études
précédentes sont théoriques. Il est possible de faire un algorithme qui s'arréte et donne la bonne

1 TERMINAISON ET CORRECTION TABLE DES MATIERES

solution, mais dans un temps déraisonnablement long. S'il faut attendre plusieurs centaines d'années
pour obtenir la réponse, |'algorithme est utile en théorie, mais pas en pratique.

Table des matieres

L Terminaison et correction 2
[1.1 Jeu de tests d'un algorithme] 2
[1.2 Terminaison d'un algorithme| 3
(1.3 Correction d'un algorithme| e 5

27 Complexité 6
2.1 Principe général|l 6
2.2 Complexité et tempsde calcul| 7

[2.2.1 Détermination du coiit d'un algorithme| 0L 7
[2.3 Lien entre complexité et temps de calcull 0oL 11
[2.4 Autres types de complexités|. L 12
[2.5 Profiling : détermination empirique de la complexité en temps| 12

1 Terminaison et correction

Définition 1.1 (Terminaison et correction d'un algorithme) :
L'étude de la terminaison d'un algorithme correspond a la preuve que I'algorithme s'arrétera (un jour,
a un moment donné).

L'étude de la correction d'un algorithme correspond a la preuve que I'algorithme renverra bien ce
qui est attendu, ce pour quoi il est fait.

La terminaison et la correction d'un algorithme correspondent donc a des études théoriques, mathématiques,
du “bon” déroulement de I'algorithme. La terminaison et la correction forment donc la preuve scientifique
du fait que I'algorithme apporte bien une réponse au probléme posé.

1.1 Jeu de tests d’un algorithme

Définition 1.2 (Jeu de tests d'un algorithme) :

Proposer un jeu de tests d'un algorithme correspond a prendre des valeurs particulieres des entrées
de I'algorithme et de suivre les valeurs prises successivement par chacune des variables locales de
I"algorithme, pour “voir” ce qu'il se passe et comment fonctionne I'algorithme.

Les jeux de tests d'un algorithme permettent de mieux se rendre du fonctionnement interne de |'algo-
rithme (sorte d’autopsie, on met les tripes de |'algorithme a I'air et on regarde comment elles se comportent).
Ce qui permet en particulier de pouvoir se rendre d'éventuelles difficultés ou problemes. C'est un moyen de
débogage.

1 TERMINAISON ET CORRECTION

1.2 Terminaison d'un algorithme

Exemple 1.1 :
On propose le code suivant :

def Syralike(m:int) -> int

u =6
for k in range(n)
u = 2xu-5

return (u)

Un jeu de test avec n = 3 est alors :

ligne L

u

L

k

l Sortie

Exercice 1 :

On reprend la suite de I'exemple précédent (ug = 6 et Vn € N, w, 1 = 2u, —5). |l est facile de montrer que
cette suite tend vers 4+o00. Ecrire un algorithme SeuilU(A:float) =-> int qui renvoie le premier indice
n € N tel que u, > A. Proposer un jeu de tests de cet algorithme pour A = 30.

1.2 Terminaison d’un algorithme

Définition 1.3 (Variant de boucle) :

Un variant de boucle est une variable de la boucle strictement décroissante a chaque itération de la
boucle. Les itérations s'arrétant quand le variant de boucle devient négatif.

Exemple 1.2 :

Dans une boucle for, le variant de boucle est la distance entre la variable d'incrémentation et la valeur
finale de la boucle. Plus précisément, dans un boucle for k in range(a,b), le variant de boucle est la

valeur b—1 — k.

1 TERMINAISON ET CORRECTION 1.2 Terminaison d'un algorithme

Remarque :
Dans le cadre d'une boucle for, le variant de boucle n'est pas tres mystérieux et la terminaison de |'algo-
rithme est automatique. C'est moins clair avec une boucle while (c'est le probléme des boucles infinies).

L'algorithme s'arréte donc, dés qu'un variant de boucle atteint 0. Cet argument repose sur le résultat
mathématique suivant :

Proposition 1.1 :
Toute suite d’entiers naturels strictement décroissante ne peut prendre qu'un nombre fini de
valeurs.

Autrement dit, avec un variant de boucle, il finira toujours par devenir négatif. Et donc I'algorithme
s'arrétera.

Exercice 2 :
Etudier les terminaisons des deux algorithmes suivant :

c=1
=1
c_a pa
Ehile c <= b : while ¢ <= Db
p=pta
= p+
d i c=c+1
Exercice 3 :

On consideére I'algorithme suivant :

a=A
b=B
while a !=
if a>b
a = a-b
else
b = b-a
print (a)

1. Proposer un jeu de tests pour a = 15 et b = 6.
2. Que semble faire cet algorithme?

3. Faire une preuve de la terminaison de cet algorithme.

Remarque :

Tout algorithme ne se termine pas forcément. Méme sans probléeme de boucle infinie. Par exemple, la
conjecture de Syracuse est toujours un probléme ouvert aujourd'hui. Autrement dit, en terme informatique,
I'algorithme qui démarre a ug € N et qui calcule les termes de |a suite de Syracuse successif (u,+1 = Uy /2
Si uy, pair et u,4+1 = 3u, + 1 sinon) et s'arrétant quand on tombe sur la valeur 1, est un algorithme dont

1 TERMINAISON ET CORRECTION 1.3 Correction d'un algorithme

la preuve de la terminaison n’est pas connue aujourd'hui. Tous les jeux de tests se sont terminés, jusque
[a. Mais on a pas la preuve que c'est toujours le cas.
La preuve de cette terminaison rapporterait 1 million de dollars a son auteur.

1.3 Correction d’un algorithme

Faire la preuve de la correction correspond a montrer qu'une propriété reste valable tout au long de
I'algorithme. Cette propriété devant étre en lien avec ce que I'on cherche. De sorte que, si I'algorithme se
termine bien, on aura a la fin, la méme propriété qu'au début. Et si la propriété du début est celle que I'on
veut, on aura aussi ce que I'on veut a la fin.

Ceci se fait au moyen d'un invariant de boucle.

Définition 1.4 (Invariant de boucle) :
Un invariant est une propriété initialement vraie a I'entrée de la boucle et qui reste vraie a chaque
itération de la boucle.

Exemple 1.3 :
Considérons |'algorithme

c=0

p=0

while ¢ < b
P = pta
c = c+1

print (p)

Posons pg la valeur initiale de la variable p (donc py = 0). Soit n € N le nombre d'itération de la boucle

while. On pose Vk € {0,...,n}, py la valeur de la variable p a la fin de la k-éme itération de la boucle
while.

Montrons la propriété Vk € {0,...,n}, py = ka (c'est notre invariant de boucle). Autrement dit, a
chaque itération dans la boucle, la propriété “Vk € {0,...,n}, pr = ka" est vraie.

Pour £k =0, on a pg =0 =0 x a. Donc la propriété est initialement vraie.

Soit k € {0,...,n — 1}. Supposons que px = ka. Donc a la fin de la k-éme itération, la variable p
contient la valeur ka. Alors, a la fin de la (k + 1)-éme itération, on aura py4+1 = pr +a = (k+ 1)a.

Donc, par principe de récurrence, Yk € {0,...,n}, pr = ka.

Donc la propriété “pr = ka" est bien un invariant de boucle. Or I'algorithme se termine aprés la b-éme
itération. Donc I'algorithme renverra ba.

Remarque :
Les preuves de correction se font souvent avec des raisonnements par récurrence (récurrence simple, double,
voir forte, en fonction de la complexification de I'algorithme, du nombres de boucles imbriquées, etc...).

2 COMPLEXITE

Exercice 4 :
On reprend I'algorithme

a=A
b=B
while a != b
if a>b
a = a-b
else
b = b-a
print (a)

On pose ag la valeur initiale de a (donc ag = A) et by la valeur initiale de b (donc by = B). On note N le
nombre d'itérations de la boucle while. On note Vk € {0,..., N}, aj et by les valeurs des variables a et
b a la fin de la k-&me itération respectivement.

Montrer que la propriété : “ar A by = a A b" est in invariant de boucle. En déduire ce que fait cet
algorithme.

2 Complexité

La complexité est une forme de réponse a la derniére question relative au bon fonctionnement d'un
algorithme : le temps.

Aucune réponse idéal ne peut étre donné car le temps pris par un algorithme pour compiler dépend de
beaucoup trop de paramétres hors de contréle. Par exemple, si I'ordinateur fait des taches en fond (des
mises a jours, par exemple), une partie de ses ressources sont alors détournées vers ces taches de fond et
vont donc ralentir de facto la vitesse d'exécution de I'algorithme.

Mais la notion de vitesse de calcul est en plus directement liée a la puissance brute de la machine, et
donc pas a |'algorithme qu’on exécute. Les smartphones de nos jours sont beaucoup plus puissants que les
super-calculateurs de la taille d'un hangar des années 1970. Pourtant, certains algorithmes sont les mémes
aujourd'hui qu'a I'époque. Il s'exécute donc beaucoup plus vite aujourd'hui qu’en 1970.

Or on voudrait une information relative a |'algorithme en lui méme, indépendant des caractéristiques
techniques de la machine sur lequel on le lance. Pour se faire, on va donner des ordres de grandeur du
temps pris par |I'algorithme en fonction de ses parameétres. Ces ordres de grandeurs donnent alors une idée
de la vitesse relative d'exécution de ces algorithmes, vitesse 3 moduler en fonction des caractéristiques au
moment de I'exécution.

2.1 Principe général

Prenons un exemple pour présenter la complexité. On va essayer de déterminer la liste des diviseurs
d'un entier naturel. On considére I'algorithme

def DiviseursNaif (n)
for i in range(1l,n+1)
if nji==
print (i)

2 COMPLEXITE 2.2 Complexité et temps de calcul

Comptons le nombre de calculs faits. Pour chaque tour dans la boucle for, I'ordinateur effectue une division
euclidienne, une comparaison et éventuellement un affichage. Comme il y a n passages pour la boucle for,

I"algorithme fait donc, environ, 3n taches.
Considérons maintenant I'algorithme suivant

import numpy as np
def DiviseursRapide(n)
for i in range(1l,int(np.sqrt(n)+1))
if nji==
print (i)
if n//it=1i : # rappel : n//i quotient de la division euclidienne
print(n//i)

Cet algorithme fait donc | /n| boucles et dans chacune, une division euclidienne et une comparaison suivie
d’'au plus un affichage, une division euclidienne, une comparaison et éventuellement encore un affichage.
On a donc au pire, 6 |/n| calculs lors de I'exécution de cet algorithme.

En prenant n = 100000, on a donc 300000 calculs pour le premier algorithme et 1896 calculs seulement
pour le second. Ce qui sera beaucoup plus rapide.
Remarque :
En général, un algorithme avec une bonne complexité (donc faible) est souvent beaucoup plus difficile a
coder. Ca marche en sens inverse. Puisqu'il faut faire attention aux nombres de calculs que I'on fait et
essayer d'en faire le moins possible pour avoir une bonne complexité, il faut donc faire plus attention et
c'est donc plus difficile a coder.

On mesure la complexité d’un algorithme par rapport a la taille de I'entrée, i.e. par rapport au nombre
de chiffres qui le composent.

2.2 Complexité et temps de calcul

La complexité mesure de combien |'algorithme est compliqué en terme de nombre d'opérations. Et bien
siir, le nombre d'opérations a faire est lié au temps de calcul. La complexité est donc, en quelque sorte,
une mesure du temps de calculs de I'ordinateur pour un algorithme donné.

2.2.1 Détermination du coiit d’un algorithme

Définition 2.1 (Complexité d'un algorithme) :

La complexité d'un algorithme correspond a I'ordre de grandeur du nombre maximum de calculs fait
dans I'algorithme. On ne considére donc que le pire des cas de |'algorithme, en terme de nombre de
calculs. C'est un ordre de grandeur et est donc invariant par multiplication par une constante. On utilise
la notation de Landau O.

2 COMPLEXITE 2.2 Complexité et temps de calcul

Définition 2.2 (Suite dominée) :
Si (up) et (vy,) sont deux suites et si dng € N tel que Yn > ng, v, # 0, on dit que (u,) est dominée
par (vy,) si

Un

dM >0, Vn > ng, < M.

Un

On notera alors u,, = O(vy,) et se liera “(u,) est un grand O de (vy,)".
n— oo

(Pour plus de détails, voir le chapitre sur les suites en Maths)

Exemple 2.1 :
Montrer que 7n? — 2513 +3n +100 = O(n?).

Remarque (Probléme de définition d’une tache élémentaire) :

La notion fondamentale ici est donc la définition d'une opération élémentaire informatique. Cette définition
n'est pas tres claire et dépend un peu de la précision avec laquelle on veut donner une complexité. Plus
précisément, Python cache un peu la facon dont il est codé. Par exemple, faire z* peut prendre un nombre
distinct d'opération, selon comment on regarde cette opération.

De plus, selon comment le langage a été créé, il pourrait faire des sauvegarde momentané de calculs
effectué pour pouvoir les réutiliser plus tard et donc réduire le nombre de calculs a faire, donc gagner du
temps.

Toutes ces manipulations |a sont invisibles. Par conséquent, pour calculer la complexité d'un algorithme,
on a besoin de connaitre un ordre de grandeur du nombre de taches effectués, que I'on ne peut pas connaitre
avec exactitude.

L'une des conséquences est que la méthode utilisé pour compter le nombre de tiches peut différer un
peu d'un informaticien a un autre, ou d'un livre 3 un autre, selon la précision et |'exactitude cherchée par
I"auteur.

Comme nous ne sommes dans le cadre d'étude poussée en informatique, on gardera un point de vue
un peu vague pour se simplifier la vie. Le systéeme de décompte des taches effectuées par un algorithme
présenté ici et tout a fait discutable et soumis a critiques. Il me semble (c’est une analyse personnelle) qu'il
suffit pour les besoins demandés.

2 COMPLEXITE 2.2 Complexité et temps de calcul

Proposition 2.1 (Régles de calcul de la complexité) :
La mesure de la complexité est régie par les regles suivantes :

= Unité de mesure de base : comparaisons, affectations, évaluations, affichage, sélection
d'un élément (dans un itérable, un n-uplet, une liste, une chaine ...), lecture, écriture
(par caractére). Toute tache qui ne peut étre redécoupée en sous-tiche sera considérée
comme une tache élémentaire.

» Structure if : le coiit d’une structure if est inférieur ou égal a la somme des coiits de
la condition et du maximum des colits des deux instructions, i.e. pour le code
if b

P
else

q

la complexité est inférieure ou égale a la somme de la complexité de b et du maximum
de la complexité de p et de q, i.e. la complexité est C'(b) + max(C(p),C(q)), en notant
C la complexité d'une instruction.

= Boucle for : Le colit total d'une boucle for est la somme des colits des itérations
du corps de la boucle. Dans le cas ol le coiit du corps ne dépend pas du numéro de
I'itération, le colit de la boucle est simplement le coiit du corps de la boucle multiplié
par le nombre d'itérations, i.e.

for i in range(n,m)
p

le colit de cette boucle est en général m —n — 1 fois le colit de p. Sinon, si le colit dep
dépend de i, c'est la somme des colits de p, i.e. la complexité est (m —n+ 1)C(p) (ou
il faut étudier ce qu'est C'(p), qui peut étre une structure if/else).

» Boucle while : Le colit d'une boucle while est la somme du coiit de la condition et
du cofit du corps de la boucle, le tout multiplié par le nombre de fois ol la boucle a été
répétée. La difficulté ici est donc de trouver le nombre de fois ou la boucle est parcourue.
Mais on peut se contenter d'un majorant du nombre d’itérations. Attention a ne pas
oublier la vérification de la condition lors de la sorte de la boucle while. Autrement dit,
pour une instruction de la forme

while b
p

la complexité sera de N(C(b) + C(p)) + C(b), ou N est le nombre de fois ot I'on va
parcourir la boucle.

Exemple 2.2 :
Pour I'algorithme suivant de calcul de factorielle,

2 COMPLEXITE 2.2 Complexité et temps de calcul

def factorielle(n)
fact=1
i=1
while i<=n
fact=fact*i
i=i+1
return (fact)

le colit total est de 5n + 4, et donc la complexité est en O(n).

Remarque (Notations de Landau) :
En utilisant la notation de Landau, on perd beaucoup d'informations. Avec cette notation, un algorithme
mettant n x 10® calculs est considéré aussi rapide qu'un algorithme mettant n x 10~8 calculs. Bien siir,
ce n'est pas le cas, si on est parfaitement rigoureux. Mais la différence de temps de calcul entre les
deux algorithmes pour de grandes valeurs de n est négligeable devant la différence de temps que met un
algorithme en O(n?) par exemple.

Il faut se rappeler que I'intérét de la complexité est de donner un ordre de grandeur du temps mis pour
de grandes valeurs des parametres. Il n'est pas nécessaire d'avoir un temps précis.

Exercice 5 :
Déterminer les complexités des algorithmes suivants :

def tablel(n)
for i in range (11)
print (i*n)

def table2(n)
for i in range(n)
print (i*n)

def table3(mn)
for i in range(n)
for j in range(n)
print (i*j)

Remarque (Problémes avec Python) :

Pour connaitre la complexité d'un algorithme, il faut connaitre le colit temporel de chaque opération. Ici,
on se fixe un codit arbitrairement de 1 pour les opérations de bases listées ci-dessus. Mais cette convention
est erronée. En réalité, faire un multiplication ne nécessite pas les mémes ressources que faire une simple
addition. Et une multiplication differe beaucoup aussi de la sélectionner d'un élément dans une liste. C'est
un des probléemes de Python. Si nous voulions étre tout a fait rigoureux, il faudrait étudier comment
chacune des opérations de bases ont été codées pour comparer leur complexités réelles. Mais ce serait trop
compliqué. On va donc se contenter de cette approximation, consistant a niveler toutes les opérations et

10

2 COMPLEXITE 2.3 Lien entre complexité et temps de calcul

les mettre au méme niveau de complexité (ce qui ferait bondir certaines informaticiens théoricien un peu
méticuleux).

Toutefois, une approche de ce probleme est proposé en exercice en étudiant un peu plus profondément
I'opération puissance. On voit alors qu’elle ne correspond pas tout a fait a des multiplications successives.
Elle a été codé pour améliorer sa complexité. ldem pour la multiplication par rapport a I'addition.

2.3 Lien entre complexité et temps de calcul

A titre indicatif, on peut donner un tableau donnant le temps de calculs a un ordinateur pour réaliser
un algorithme de différents ordres de grandeur. On va considérer un ordinateur faisant une opération toutes
les 10 ns.

Temps | 1YPe de om0 | =108 | n=10t | n=100 | X€TPIe de
plexité probléeme
O(1) Constant 10ns 10ns 10ns 10ns Acces tableaux

O(In(n)) | Logarithmique | 10ns 30ns 40ns 60ns Recherche dicho-
tomique

O(n) Linéaire 32ns 10us 100ps 10ms Parcours de liste

Parcours d'une
2 .

O(n®) Quadratique lus 10ms 1s 2.8h liste de listes
Multiplication
O(n?) Cubique 10us 10s 2.7h 316ans | matricielle non
optimisée

Sous. Décomposition

O(2(m) _ 100ns | 10s 3.2ans | 102%ans | en facteur pre-
exponentielle mier

Le but étant donc de faire des algorithmes raisonnables en terme de temps de calculs. Il est clair qu'un
algorithme nécessitant 316 ans de temps de calcul n'est pas un algorithme raisonnable...

Bien siir, ces temps de calculs ne sont qu’'a titre indicatif. lls dépendent tres fortement de la puissance de
calcul de 'ordinateur. Plus la technologie se développe, plus les ordinateurs calculent vite et plus ces temps
sont amenés 3 réduire. Mais on voit bien que si un algorithme met 1020 ans 3 &tre calculé, la puissance de
I'ordinateur aura du mal a le rendre raisonnable.

Remarque (Difficulté d’améliorer la complexité) :
Un bon algorithme est donc un algorithme avec une faible complexité. Pour qu'il soit efficace et aille vite.
Mais il y aura une sorte d'équilibre. On pourra soit faire un algorithme simple, naif et facile coder mais
une trés mauvaise complexité ; soit améliorer la complexité mais I'algorithme sera beaucoup plus difficile a
coder.

Pour améliorer la complexité d'un algorithme, il faut étre conscient de toutes les taches que I'on demande
a l'ordinateur et étudier la nécessité de chacune de ces taches pour éliminer les superflues. Il faut essayer

11

2 COMPLEXITE 2.4 Autres types de complexités

aussi d'étre malin pour imbriquer le moins possibles de boucles. Améliorer la complexité va donc nécessité
une étude plus approfondie de ce que I'on demande a l'ordinateur. Ce sera donc trés coliteux en terme
énergétique pour nous.

Le but étant surtout de trouver une sorte d'équilibre entre un algorithme naif facile a coder mais qui
ne tourne pas en des temps raisonnable et un algorithme difficile a coder nécessitant de longues heures
d'études, redoutablement efficace. Il faudra, dorénavant, avoir un peu de recul sur ce qui est codé pour
essayer de garder une complexité acceptable, autrement dit d’améliorer légérement les algorithmes trop
naifs.

2.4 Autres types de complexités

Il existe d'autres types de complexité. Nous avons utilisé la complexité temporelle dans le pire des cas,
en prenant en compte toujours le pire des scénarios en terme de nombre de taches effectués. On a donc, en
fait, un ordre de grandeur majorant le nombre de taches faites. Mais il peut arriver que le pire des scénarios
ne soient pas facile a déterminer. Il peut étre alors plus facile de déterminer le nombre minimum de taches.
On obtiendrait alors un ordre de grandeur minorant le nombre de tiches de I'aglrithme.

[l existe aussi des complexités en mémoire (on en espace). Chaque algorithme utilise des variables
locales. Ces variables prennent de I'espace de stockage. On peut imaginer une situation ou I'alglorithem
est relativement simple, avec peu de tiche directe 3 faire. Mais la taille des données sur lesquelles on
va appliquer I'algorithme serait énorme (c'est le cas pour les calculs de trajectoires d'un voyage dans
I'espace). La problématique alors qui se pose n'est plus le nombre de tiche a faire, mais la taille des
données a manipuler. Le temps pris ne repose plus tellement sur le nombre de taches a faire, mais plutot
sur l'accession aux données, voir la place prises par ces données dans un espace de stockage qui serait
limité. On parle alors de complexité en mémoire. Le principe est le méme, mais au lieu de compter une
tache élémentaire, on compte le nombre de “place élémentaire” prise par chaque variable.

2.5 Profiling : détermination empirique de la complexité en temps

Il existe différents moyens intégrés a Python pour connaitre le temps de calcul d'un algorithme. Le
plus simple est la fonction time () du module time. C'est un outil rudimentaire mais efficace. La fonction
time () permet d'avoir I'heure de I'horloge interne du processeur de I'ordinateur en secondes. Pour mesurer
le temps mis pour effectuer un algorithme, il faut donc faire la différence entre le temps au début de
I"algorithme et a la fin.

12

2 COMPLEXITE

2.5 Profiling : détermination empirique de la complexité en temps

import math as mt
from time import time

def Premier (n)

ti=time () # Heure de 1’horloge interne de l’ordinateur au début de 1’algo
prem=True
for i in range(2,int(mt.qrt(n)+1))

if n%i==
prem=False
t2=time () # Heure de 1’ordinateur & la fin de 1l’algorithme
print ("Temps de calcul : ", t2-t1)

return (prem)
t2=time () # Heure & la fin de 1’algorithme
print ("Temps de calul : ", t2-t1)
return (prem)

13

	Terminaison et correction
	Jeu de tests d'un algorithme
	Terminaison d'un algorithme
	Correction d'un algorithme

	Complexité
	Principe général
	Complexité et temps de calcul
	Détermination du coût d'un algorithme

	Lien entre complexité et temps de calcul
	Autres types de complexités
	Profiling : détermination empirique de la complexité en temps

