
Chapitre 6
Informatique théorique

Simon Dauguet
simon.dauguet@gmail.com

8 janvier 2026

Jusque là, les questions de corrections, d’exactitudes des algorithmes créés ont été largement mis
de côté. Mais rien ne nous garantit que les algorithmes créés pour répondre à un problème répondent
effectivement bien au problème posé. Les algorithmes ont beau avoir été testés sur des exemples, il est
possible que l’algorithme en question ne donne pas dans tous les cas le bon résultat. Une série de tests
n’est pas une preuve mathématiques (donc certaine) du bon fonctionnement de l’algorithme. On aurait pu
jouer de malchance et ne tester que les quelques rares situations où le résultat correspond aux attentes par
erreurs.

Aussi, pour s’assurer du bon fonctionnement d’un algorithme, une étude théorique (en fait, mathématique)
va être nécessaire. Cette étude va s’axer sur 3 grand pôles.

◦ Il faut commencer par montrer que l’algorithme “tourne bien”, c’est-à-dire qu’il démarre correctement
et fini par s’arrêter pour renvoyer un résultat. Clairement, s’il ne s’arrête jamais, il ne renverra rien
et il n’aura aucune utilité.

◦ Il faudra ensuite montre évidemment que ce qui est renvoyé par l’algorithme correspond bien à la
solution du problème posé. Si on demande une couleur à un algorithme et qu’il renvoie une recette
de cuisine, toute délicieuse soit-elle, ça n’a pas d’intérêt.

◦ Il faudra ensuite s’enquérir de problème de limite physique. C’est-à-dire à ce que les deux études
précédentes sont théoriques. Il est possible de faire un algorithme qui s’arrête et donne la bonne

1

1 TERMINAISON ET CORRECTION TABLE DES MATIÈRES

solution, mais dans un temps déraisonnablement long. S’il faut attendre plusieurs centaines d’années
pour obtenir la réponse, l’algorithme est utile en théorie, mais pas en pratique.

Table des matières
1 Terminaison et correction 2

1.1 Jeu de tests d’un algorithme . 2
1.2 Terminaison d’un algorithme . 3
1.3 Correction d’un algorithme . 5

2 Complexité 6
2.1 Principe général . 6
2.2 Complexité et temps de calcul . 7

2.2.1 Détermination du coût d’un algorithme . 7
2.3 Lien entre complexité et temps de calcul . 11
2.4 Autres types de complexités . 12
2.5 Profiling : détermination empirique de la complexité en temps 12

1 Terminaison et correction

Définition 1.1 (Terminaison et correction d’un algorithme) :
L’étude de la terminaison d’un algorithme correspond à la preuve que l’algorithme s’arrêtera (un jour,
à un moment donné).

L’étude de la correction d’un algorithme correspond à la preuve que l’algorithme renverra bien ce
qui est attendu, ce pour quoi il est fait.

La terminaison et la correction d’un algorithme correspondent donc à des études théoriques, mathématiques,
du “bon” déroulement de l’algorithme. La terminaison et la correction forment donc la preuve scientifique
du fait que l’algorithme apporte bien une réponse au problème posé.

1.1 Jeu de tests d’un algorithme

Définition 1.2 (Jeu de tests d’un algorithme) :
Proposer un jeu de tests d’un algorithme correspond à prendre des valeurs particulières des entrées
de l’algorithme et de suivre les valeurs prises successivement par chacune des variables locales de
l’algorithme, pour “voir” ce qu’il se passe et comment fonctionne l’algorithme.

Les jeux de tests d’un algorithme permettent de mieux se rendre du fonctionnement interne de l’algo-
rithme (sorte d’autopsie, on met les tripes de l’algorithme à l’air et on regarde comment elles se comportent).
Ce qui permet en particulier de pouvoir se rendre d’éventuelles difficultés ou problèmes. C’est un moyen de
débogage.

2

1 TERMINAISON ET CORRECTION 1.2 Terminaison d’un algorithme

Exemple 1.1 :
On propose le code suivant :

1 def SyraLike (n:int) -> int :
2 u = 6
3 for k in range(n) :
4 u = 2*u-5
5 return (u)

Un jeu de test avec n = 3 est alors :

ligne u k Sortie

Exercice 1 :
On reprend la suite de l’exemple précédent (u0 = 6 et ∀n ∈ N, un+1 = 2un −5). Il est facile de montrer que
cette suite tend vers +∞. Écrire un algorithme SeuilU(A:float) -> int qui renvoie le premier indice
n ∈ N tel que un > A. Proposer un jeu de tests de cet algorithme pour A = 30.

1.2 Terminaison d’un algorithme

Définition 1.3 (Variant de boucle) :
Un variant de boucle est une variable de la boucle strictement décroissante à chaque itération de la
boucle. Les itérations s’arrêtant quand le variant de boucle devient négatif.

Exemple 1.2 :
Dans une boucle for, le variant de boucle est la distance entre la variable d’incrémentation et la valeur
finale de la boucle. Plus précisément, dans un boucle for k in range(a,b), le variant de boucle est la
valeur b − 1 − k.

3

1 TERMINAISON ET CORRECTION 1.2 Terminaison d’un algorithme

Remarque :
Dans le cadre d’une boucle for, le variant de boucle n’est pas très mystérieux et la terminaison de l’algo-
rithme est automatique. C’est moins clair avec une boucle while (c’est le problème des boucles infinies).

L’algorithme s’arrête donc, dès qu’un variant de boucle atteint 0. Cet argument repose sur le résultat
mathématique suivant :

Proposition 1.1 :
Toute suite d’entiers naturels strictement décroissante ne peut prendre qu’un nombre fini de
valeurs.

Autrement dit, avec un variant de boucle, il finira toujours par devenir négatif. Et donc l’algorithme
s’arrêtera.

Exercice 2 :
Étudier les terminaisons des deux algorithmes suivant :

1 c=1
2 p=a
3 while c <= b :
4 p = p+a

1 c=1
2 p=a
3 while c <= b :
4 p=p+a
5 c=c+1

Exercice 3 :
On considère l’algorithme suivant :

1 a=A
2 b=B
3 while a != b :
4 if a>b :
5 a = a-b
6 else :
7 b = b-a
8 print(a)

1. Proposer un jeu de tests pour a = 15 et b = 6.
2. Que semble faire cet algorithme ?
3. Faire une preuve de la terminaison de cet algorithme.

Remarque :
Tout algorithme ne se termine pas forcément. Même sans problème de boucle infinie. Par exemple, la
conjecture de Syracuse est toujours un problème ouvert aujourd’hui. Autrement dit, en terme informatique,
l’algorithme qui démarre à u0 ∈ N et qui calcule les termes de la suite de Syracuse successif (un+1 = un/2
si un pair et un+1 = 3un + 1 sinon) et s’arrêtant quand on tombe sur la valeur 1, est un algorithme dont

4

1 TERMINAISON ET CORRECTION 1.3 Correction d’un algorithme

la preuve de la terminaison n’est pas connue aujourd’hui. Tous les jeux de tests se sont terminés, jusque
là. Mais on a pas la preuve que c’est toujours le cas.

La preuve de cette terminaison rapporterait 1 million de dollars à son auteur.

1.3 Correction d’un algorithme

Faire la preuve de la correction correspond à montrer qu’une propriété reste valable tout au long de
l’algorithme. Cette propriété devant être en lien avec ce que l’on cherche. De sorte que, si l’algorithme se
termine bien, on aura à la fin, la même propriété qu’au début. Et si la propriété du début est celle que l’on
veut, on aura aussi ce que l’on veut à la fin.

Ceci se fait au moyen d’un invariant de boucle.

Définition 1.4 (Invariant de boucle) :
Un invariant est une propriété initialement vraie à l’entrée de la boucle et qui reste vraie à chaque
itération de la boucle.

Exemple 1.3 :
Considérons l’algorithme

1 c=0
2 p=0
3 while c < b :
4 p = p+a
5 c = c+1
6 print(p)

Posons p0 la valeur initiale de la variable p (donc p0 = 0). Soit n ∈ N le nombre d’itération de la boucle
while. On pose ∀k ∈ {0, . . . , n}, pk la valeur de la variable p à la fin de la k-ème itération de la boucle
while.

Montrons la propriété ∀k ∈ {0, . . . , n}, pk = ka (c’est notre invariant de boucle). Autrement dit, à
chaque itération dans la boucle, la propriété “∀k ∈ {0, . . . , n}, pk = ka” est vraie.

Pour k = 0, on a p0 = 0 = 0 × a. Donc la propriété est initialement vraie.
Soit k ∈ {0, . . . , n − 1}. Supposons que pk = ka. Donc à la fin de la k-ème itération, la variable p

contient la valeur ka. Alors, à la fin de la (k + 1)-ème itération, on aura pk+1 = pk + a = (k + 1)a.
Donc, par principe de récurrence, ∀k ∈ {0, . . . , n}, pk = ka.
Donc la propriété “pk = ka” est bien un invariant de boucle. Or l’algorithme se termine après la b-ème

itération. Donc l’algorithme renverra ba.

Remarque :
Les preuves de correction se font souvent avec des raisonnements par récurrence (récurrence simple, double,
voir forte, en fonction de la complexification de l’algorithme, du nombres de boucles imbriquées, etc...).

5

2 COMPLEXITÉ

Exercice 4 :
On reprend l’algorithme

1 a=A
2 b=B
3 while a != b :
4 if a>b :
5 a = a-b
6 else :
7 b = b-a
8 print(a)

On pose a0 la valeur initiale de a (donc a0 = A) et b0 la valeur initiale de b (donc b0 = B). On note N le
nombre d’itérations de la boucle while. On note ∀k ∈ {0, . . . , N}, ak et bk les valeurs des variables a et
b à la fin de la k-ème itération respectivement.

Montrer que la propriété : “ak ∧ bk = a ∧ b” est in invariant de boucle. En déduire ce que fait cet
algorithme.

2 Complexité
La complexité est une forme de réponse à la dernière question relative au bon fonctionnement d’un

algorithme : le temps.
Aucune réponse idéal ne peut être donné car le temps pris par un algorithme pour compiler dépend de

beaucoup trop de paramètres hors de contrôle. Par exemple, si l’ordinateur fait des tâches en fond (des
mises à jours, par exemple), une partie de ses ressources sont alors détournées vers ces tâches de fond et
vont donc ralentir de facto la vitesse d’exécution de l’algorithme.

Mais la notion de vitesse de calcul est en plus directement liée à la puissance brute de la machine, et
donc pas à l’algorithme qu’on exécute. Les smartphones de nos jours sont beaucoup plus puissants que les
super-calculateurs de la taille d’un hangar des années 1970. Pourtant, certains algorithmes sont les mêmes
aujourd’hui qu’à l’époque. Il s’exécute donc beaucoup plus vite aujourd’hui qu’en 1970.

Or on voudrait une information relative à l’algorithme en lui même, indépendant des caractéristiques
techniques de la machine sur lequel on le lance. Pour se faire, on va donner des ordres de grandeur du
temps pris par l’algorithme en fonction de ses paramètres. Ces ordres de grandeurs donnent alors une idée
de la vitesse relative d’exécution de ces algorithmes, vitesse à moduler en fonction des caractéristiques au
moment de l’exécution.

2.1 Principe général

Prenons un exemple pour présenter la complexité. On va essayer de déterminer la liste des diviseurs
d’un entier naturel. On considère l’algorithme

1 def DiviseursNaif (n) :
2 for i in range (1,n+1) :
3 if n%i==0 :
4 print(i)

6

2 COMPLEXITÉ 2.2 Complexité et temps de calcul

Comptons le nombre de calculs faits. Pour chaque tour dans la boucle for, l’ordinateur effectue une division
euclidienne, une comparaison et éventuellement un affichage. Comme il y a n passages pour la boucle for,
l’algorithme fait donc, environ, 3n tâches.

Considérons maintenant l’algorithme suivant

1 import numpy as np
2 def DiviseursRapide (n) :
3 for i in range (1, int(np.sqrt(n)+1)) :
4 if n%i==0 :
5 print(i)
6 if n//i!=i : # rappel : n//i quotient de la division euclidienne
7 print(n//i)

Cet algorithme fait donc ⌊
√

n⌋ boucles et dans chacune, une division euclidienne et une comparaison suivie
d’au plus un affichage, une division euclidienne, une comparaison et éventuellement encore un affichage.
On a donc au pire, 6 ⌊

√
n⌋ calculs lors de l’exécution de cet algorithme.

En prenant n = 100000, on a donc 300000 calculs pour le premier algorithme et 1896 calculs seulement
pour le second. Ce qui sera beaucoup plus rapide.
Remarque :
En général, un algorithme avec une bonne complexité (donc faible) est souvent beaucoup plus difficile à
coder. Ça marche en sens inverse. Puisqu’il faut faire attention aux nombres de calculs que l’on fait et
essayer d’en faire le moins possible pour avoir une bonne complexité, il faut donc faire plus attention et
c’est donc plus difficile à coder.

On mesure la complexité d’un algorithme par rapport à la taille de l’entrée, i.e. par rapport au nombre
de chiffres qui le composent.

2.2 Complexité et temps de calcul

La complexité mesure de combien l’algorithme est compliqué en terme de nombre d’opérations. Et bien
sûr, le nombre d’opérations à faire est lié au temps de calcul. La complexité est donc, en quelque sorte,
une mesure du temps de calculs de l’ordinateur pour un algorithme donné.

2.2.1 Détermination du coût d’un algorithme

Définition 2.1 (Complexité d’un algorithme) :
La complexité d’un algorithme correspond à l’ordre de grandeur du nombre maximum de calculs fait
dans l’algorithme. On ne considère donc que le pire des cas de l’algorithme, en terme de nombre de
calculs. C’est un ordre de grandeur et est donc invariant par multiplication par une constante. On utilise
la notation de Landau O.

7

2 COMPLEXITÉ 2.2 Complexité et temps de calcul

Définition 2.2 (Suite dominée) :
Si (un) et (vn) sont deux suites et si ∃n0 ∈ N tel que ∀n ≥ n0, vn ̸= 0, on dit que (un) est dominée

par (vn) si
∃M ≥ 0, ∀n ≥ n0,

∣∣∣∣un

vn

∣∣∣∣ ≤ M.

On notera alors un =
n→∞

O(vn) et se liera “(un) est un grand O de (vn)”.
(Pour plus de détails, voir le chapitre sur les suites en Maths)

Exemple 2.1 :
Montrer que 7n2 − 25n3 + 3n + 100 =

n→+∞
O(n3).

Remarque (Problème de définition d’une tâche élémentaire) :
La notion fondamentale ici est donc la définition d’une opération élémentaire informatique. Cette définition
n’est pas très claire et dépend un peu de la précision avec laquelle on veut donner une complexité. Plus
précisément, Python cache un peu la façon dont il est codé. Par exemple, faire x4 peut prendre un nombre
distinct d’opération, selon comment on regarde cette opération.

De plus, selon comment le langage a été créé, il pourrait faire des sauvegarde momentané de calculs
effectué pour pouvoir les réutiliser plus tard et donc réduire le nombre de calculs à faire, donc gagner du
temps.

Toutes ces manipulations là sont invisibles. Par conséquent, pour calculer la complexité d’un algorithme,
on a besoin de connâıtre un ordre de grandeur du nombre de tâches effectués, que l’on ne peut pas connâıtre
avec exactitude.

L’une des conséquences est que la méthode utilisé pour compter le nombre de tâches peut différer un
peu d’un informaticien à un autre, ou d’un livre à un autre, selon la précision et l’exactitude cherchée par
l’auteur.

Comme nous ne sommes dans le cadre d’étude poussée en informatique, on gardera un point de vue
un peu vague pour se simplifier la vie. Le système de décompte des tâches effectuées par un algorithme
présenté ici et tout à fait discutable et soumis à critiques. Il me semble (c’est une analyse personnelle) qu’il
suffit pour les besoins demandés.

8

2 COMPLEXITÉ 2.2 Complexité et temps de calcul

Proposition 2.1 (Règles de calcul de la complexité) :
La mesure de la complexité est régie par les règles suivantes :

• Unité de mesure de base : comparaisons, affectations, évaluations, affichage, sélection
d’un élément (dans un itérable, un n-uplet, une liste, une châıne ...), lecture, écriture
(par caractère). Toute tâche qui ne peut être redécoupée en sous-tâche sera considérée
comme une tâche élémentaire.

• Structure if : le coût d’une structure if est inférieur ou égal à la somme des coûts de
la condition et du maximum des coûts des deux instructions, i.e. pour le code

1 if b :
2 p
3 else :
4 q

la complexité est inférieure ou égale à la somme de la complexité de b et du maximum
de la complexité de p et de q, i.e. la complexité est C(b) + max(C(p), C(q)), en notant
C la complexité d’une instruction.

• Boucle for : Le coût total d’une boucle for est la somme des coûts des itérations
du corps de la boucle. Dans le cas où le coût du corps ne dépend pas du numéro de
l’itération, le coût de la boucle est simplement le coût du corps de la boucle multiplié
par le nombre d’itérations, i.e.

1 for i in range(n,m) :
2 p

le coût de cette boucle est en général m − n − 1 fois le coût de p. Sinon, si le coût dep
dépend de i, c’est la somme des coûts de p, i.e. la complexité est (m − n + 1)C(p) (où
il faut étudier ce qu’est C(p), qui peut être une structure if/else).

• Boucle while : Le coût d’une boucle while est la somme du coût de la condition et
du coût du corps de la boucle, le tout multiplié par le nombre de fois où la boucle a été
répétée. La difficulté ici est donc de trouver le nombre de fois où la boucle est parcourue.
Mais on peut se contenter d’un majorant du nombre d’itérations. Attention à ne pas
oublier la vérification de la condition lors de la sorte de la boucle while. Autrement dit,
pour une instruction de la forme

1 while b :
2 p

la complexité sera de N(C(b) + C(p)) + C(b), où N est le nombre de fois où l’on va
parcourir la boucle.

Exemple 2.2 :
Pour l’algorithme suivant de calcul de factorielle,

9

2 COMPLEXITÉ 2.2 Complexité et temps de calcul

1 def factorielle (n) :
2 fact =1
3 i=1
4 while i<=n :
5 fact=fact*i
6 i=i+1
7 return (fact)

le coût total est de 5n + 4, et donc la complexité est en O(n).

Remarque (Notations de Landau) :
En utilisant la notation de Landau, on perd beaucoup d’informations. Avec cette notation, un algorithme
mettant n × 108 calculs est considéré aussi rapide qu’un algorithme mettant n × 10−8 calculs. Bien sûr,
ce n’est pas le cas, si on est parfaitement rigoureux. Mais la différence de temps de calcul entre les
deux algorithmes pour de grandes valeurs de n est négligeable devant la différence de temps que met un
algorithme en O(n2) par exemple.

Il faut se rappeler que l’intérêt de la complexité est de donner un ordre de grandeur du temps mis pour
de grandes valeurs des paramètres. Il n’est pas nécessaire d’avoir un temps précis.

Exercice 5 :
Déterminer les complexités des algorithmes suivants :

1 def table1 (n) :
2 for i in range (11) :
3 print(i*n)
4
5 def table2 (n) :
6 for i in range(n) :
7 print(i*n)
8
9 def table3 (n) :

10 for i in range(n) :
11 for j in range(n) :
12 print(i*j)

Remarque (Problèmes avec Python) :
Pour connâıtre la complexité d’un algorithme, il faut connâıtre le coût temporel de chaque opération. Ici,
on se fixe un coût arbitrairement de 1 pour les opérations de bases listées ci-dessus. Mais cette convention
est erronée. En réalité, faire un multiplication ne nécessite pas les mêmes ressources que faire une simple
addition. Et une multiplication diffère beaucoup aussi de la sélectionner d’un élément dans une liste. C’est
un des problèmes de Python. Si nous voulions être tout à fait rigoureux, il faudrait étudier comment
chacune des opérations de bases ont été codées pour comparer leur complexités réelles. Mais ce serait trop
compliqué. On va donc se contenter de cette approximation, consistant à niveler toutes les opérations et

10

2 COMPLEXITÉ 2.3 Lien entre complexité et temps de calcul

les mettre au même niveau de complexité (ce qui ferait bondir certaines informaticiens théoricien un peu
méticuleux).

Toutefois, une approche de ce problème est proposé en exercice en étudiant un peu plus profondément
l’opération puissance. On voit alors qu’elle ne correspond pas tout à fait à des multiplications successives.
Elle a été codé pour améliorer sa complexité. Idem pour la multiplication par rapport à l’addition.

2.3 Lien entre complexité et temps de calcul

A titre indicatif, on peut donner un tableau donnant le temps de calculs à un ordinateur pour réaliser
un algorithme de différents ordres de grandeur. On va considérer un ordinateur faisant une opération toutes
les 10 ns.

Temps Type de com-
plexité n = 10 n = 103 n = 104 n = 106 Exemple de

problème
O(1) Constant 10ns 10ns 10ns 10ns Accès tableaux

O(ln(n)) Logarithmique 10ns 30ns 40ns 60ns Recherche dicho-
tomique

O(n) Linéaire 32ns 10µs 100µs 10ms Parcours de liste

O(n2) Quadratique 1µs 10ms 1s 2.8h Parcours d’une
liste de listes

O(n3) Cubique 10µs 10s 2.7h 316ans
Multiplication
matricielle non
optimisée

O(2ln(n)) Sous-
exponentielle 100ns 10s 3.2ans 1020ans

Décomposition
en facteur pre-
mier

Le but étant donc de faire des algorithmes raisonnables en terme de temps de calculs. Il est clair qu’un
algorithme nécessitant 316 ans de temps de calcul n’est pas un algorithme raisonnable...

Bien sûr, ces temps de calculs ne sont qu’à titre indicatif. Ils dépendent très fortement de la puissance de
calcul de l’ordinateur. Plus la technologie se développe, plus les ordinateurs calculent vite et plus ces temps
sont amenés à réduire. Mais on voit bien que si un algorithme met 1020 ans à être calculé, la puissance de
l’ordinateur aura du mal à le rendre raisonnable.
Remarque (Difficulté d’améliorer la complexité) :
Un bon algorithme est donc un algorithme avec une faible complexité. Pour qu’il soit efficace et aille vite.
Mais il y aura une sorte d’équilibre. On pourra soit faire un algorithme simple, näıf et facile coder mais
une très mauvaise complexité ; soit améliorer la complexité mais l’algorithme sera beaucoup plus difficile à
coder.

Pour améliorer la complexité d’un algorithme, il faut être conscient de toutes les tâches que l’on demande
à l’ordinateur et étudier la nécessité de chacune de ces tâches pour éliminer les superflues. Il faut essayer

11

2 COMPLEXITÉ 2.4 Autres types de complexités

aussi d’être malin pour imbriquer le moins possibles de boucles. Améliorer la complexité va donc nécessité
une étude plus approfondie de ce que l’on demande à l’ordinateur. Ce sera donc très coûteux en terme
énergétique pour nous.

Le but étant surtout de trouver une sorte d’équilibre entre un algorithme näıf facile à coder mais qui
ne tourne pas en des temps raisonnable et un algorithme difficile à coder nécessitant de longues heures
d’études, redoutablement efficace. Il faudra, dorénavant, avoir un peu de recul sur ce qui est codé pour
essayer de garder une complexité acceptable, autrement dit d’améliorer légèrement les algorithmes trop
näıfs.

2.4 Autres types de complexités

Il existe d’autres types de complexité. Nous avons utilisé la complexité temporelle dans le pire des cas,
en prenant en compte toujours le pire des scénarios en terme de nombre de tâches effectués. On a donc, en
fait, un ordre de grandeur majorant le nombre de tâches faites. Mais il peut arriver que le pire des scénarios
ne soient pas facile à déterminer. Il peut être alors plus facile de déterminer le nombre minimum de tâches.
On obtiendrait alors un ordre de grandeur minorant le nombre de tâches de l’aglrithme.

Il existe aussi des complexités en mémoire (on en espace). Chaque algorithme utilise des variables
locales. Ces variables prennent de l’espace de stockage. On peut imaginer une situation où l’alglorithem
est relativement simple, avec peu de tâche directe à faire. Mais la taille des données sur lesquelles on
va appliquer l’algorithme serait énorme (c’est le cas pour les calculs de trajectoires d’un voyage dans
l’espace). La problématique alors qui se pose n’est plus le nombre de tâche à faire, mais la taille des
données à manipuler. Le temps pris ne repose plus tellement sur le nombre de tâches à faire, mais plutôt
sur l’accession aux données, voir la place prises par ces données dans un espace de stockage qui serait
limité. On parle alors de complexité en mémoire. Le principe est le même, mais au lieu de compter une
tâche élémentaire, on compte le nombre de “place élémentaire” prise par chaque variable.

2.5 Profiling : détermination empirique de la complexité en temps

Il existe différents moyens intégrés à Python pour connâıtre le temps de calcul d’un algorithme. Le
plus simple est la fonction time() du module time. C’est un outil rudimentaire mais efficace. La fonction
time() permet d’avoir l’heure de l’horloge interne du processeur de l’ordinateur en secondes. Pour mesurer
le temps mis pour effectuer un algorithme, il faut donc faire la différence entre le temps au début de
l’algorithme et à la fin.

12

2 COMPLEXITÉ 2.5 Profiling : détermination empirique de la complexité en temps

1 import math as mt
2 from time import time
3 def Premier (n) :
4 t1=time () # Heure de l’horloge interne de l’ordinateur au début de l’algo
5 prem=True
6 for i in range (2, int(mt.qrt(n)+1)) :
7 if n%i==0 :
8 prem=False
9 t2=time () # Heure de l’ordinateur à la fin de l’algorithme

10 print("Temps de calcul : ", t2 -t1)
11 return (prem)
12 t2=time () # Heure à la fin de l’algorithme
13 print("Temps de calul : ", t2 -t1)
14 return (prem)

13

	Terminaison et correction
	Jeu de tests d'un algorithme
	Terminaison d'un algorithme
	Correction d'un algorithme

	Complexité
	Principe général
	Complexité et temps de calcul
	Détermination du coût d'un algorithme

	Lien entre complexité et temps de calcul
	Autres types de complexités
	Profiling : détermination empirique de la complexité en temps

