—ycée
—oges

Chapitre 6

Informatique théorique
Exercices

Simon Dauguet
simon.dauguet@gmail.com

8 janvier 2026

Exercice 1 :
Etudier la terminaison, arrét et complexité des algorithmes suivants. De plus, expliciter ce que font les deux
algorithmes mysteéres.

def il :float, :float -> int
def moyenne(L:1list) -> float of seuil(a o °ps oat) H

n = len(L) vt
s = o0 n =20
. while abs(u**2-a)>eps
for k in range(n) w = 1/2%(u+a/u)
S = S+L[k]

n += 1

return(S/n) return (n)

def mystere(L:1list) -> list

tab = [] def mystere2(m:int) -> bool
for k in range(len(L)) : p = 2
S =0 while p#**2<n
n =0 if nlp==
while n<len(L[k]) : return(False)
S = S+L[k][nl] else
n += 1 p = ptl
tab = tab + [S] return (True)

return (tab)

Exercice 2 :
On consideére I'algorithme de recherche d'un élément dans un tableau non trié suivant :

def recherche(x:"object", L:1list) -> int

i=20
while i !'= len(L)
if L[i] !'= x
i += 1
else

return (i)
return(-1)

Etudier la complexité de cet algorithme, sa terminaison et sa correction.

Exercice 3 :
On va étudier la somme des éléments d'une liste.

1. Ecrire une fonction sommeListe(L:1ist) -> float qui calcule la somme des éléments d'une liste.
2. Expliciter un variant de boucle et montrer la terminaison de cet algorithme.

3.
4

. Déterminer la complexité de cette fonction.

Expliciter un invariant de boucle et montrer que cet algorithme est correct.

Exercice 4 (Extrait sujet 0 CCINP MP) :

Ecrire une fonction factorielle(n:int) -> int qui prend en argument un entier naturel et qui renvoie
nl. On ne fera pas d'algorithme récursif.

Ecrire une fonction seuil_facto(M:int) -> int qui prend en argument un entier M et renvoie le plus
entier n tel que n! > M.

Ecrire une fonction divisible(n:int) -> bool qui prend en argument un entier n et qui renvoie True
si n + 1 divise n!, et False dans le cas contraire.

. On considére la fonction suivante :

def code_mystere(n:int) -> int
s=0
for k in range(l,n+1)
s=s+factorielle (k)
return(s)

(a) Sans tester la fonction, prévoir ce que renvoie, ce que fait cette fonction. Quelle valeur devra renvoyer
code_mystere(4) 7 Vérifier en tester ce code.

(b) Déterminer la complexité de cette fonction. On se contentera d'une complexité naive (donc fausse).
(c) Proposer une amélioration du code de la fonction code_mystere pour que sa complexité soit linéaire.

Exercice 5 (Crible d’Eratosthéne) :
Le crible d’Eratosthéne est un procédé permettant de trouver la liste des nombres premiers inférieurs ou égaux a
une donnée N. Le code fonctionne de la maniére suivante :

On écrit la liste L de tous les entiers entre 2 et N (on rappelle que 1 n’est jamais un nombre premier).
Pour k compris entre 2 et {\/NJ on fait :
= Pour p entre 2 et | N/k], on fait :
= Remplacer dans la liste les multiples de k par “*" (c'est-a-dire remplacer kp par une étoile).

Renvoyer la liste L (éventuellement aprés épuration des “*").

A T'aide de la description ci-dessus, coder la fonction crible(n:int) -> list reprenant l'algorithme
d'Eratosthéne et qui renvoie la liste de tous les nombres premiers inférieurs ou égaux a n.

. Faire une nouvelle fonction cribleNb(n:int) -> int basé sur le précédent qui doit compter et afficher

le nombre d'itérations dans les boucles for.

3. Estimer la complexité de I'algorithme d’Eratosthéne (fonction crible).

4. Ce code n'est pas trés efficace (trop naif). En effet, une fois les multiples de 2 enlevés, il va par la suite essayer

d’enlever les multiple de 4, 6 etc. Quelle instructions conditionnelles pourrait-on rajouter pour optimiser
un peu cet algorithme ? Vous incorporerez un compteur qui comptera le nouveau nombre d'itérations des
boucles for.

Exercice 6 :

On considére une liste L de n éléments triée dans I'ordre croissant. On cherche a construire un algorithme
permettant de savoir a quel endroit de la liste se trouve une valeur donnée v.

1. Ecrire une fonction recherche(L:1list, v:float) -> int qui réponde au probleme.

2. Etudier la complexité de cet algorithme.
3. On considére le code suivant :

def rechercheDicho(L:1list, v:float) -> int
f = len(L)-1
d =0
trouve = False
while not trouve
i = int ((d+£)/2)

if L[i] == v
trouve = True
else
if L[i] < v
d = i+1
else
f = i-1

print (i,d,f,trouve)
return (i)

(a) Faire un jeu de tests de ce programme pour v = 19 et L=[1,2,3,5,7,11,13,17,19,23].
(b) Etudier la terminaison et la correction de cette fonction.
(c) Calculer sa complexité.

Exercice 7 (Extrait sujet 0 banque PT) :

1. Ecrire une fonction chiffre(n:int) -> list qui prend en argument un entier n et qui renvoie la liste
des chiffres qui le compose. Donc chiffre(1234) devra renvoyer [1,2,3,4] (ou [4,3,2,1]).

Ecrire une fonction somcube(n:int) -> int qui renvoie la somme des cubes des chiffres qui compose n.

Evaluer la complexité de la fonction somcube.

Trouver tous les entiers inférieurs ou égaux a 1000 qui sont égaux a la somme des cubes de leurs chiffres.

o > b

Proposer un autre algorithme renvoyant la liste des chiffres qui compose un entier n (donc avec une autre
méthode).

Exercice 8 (Médiane) :
Le but de cet exercice est d'étudier un algorithme donnant la médiane d'un tableau de nombres.

1. Dans un tableau, si on supprime le minimum et le maximum de ce tableau successivement jusqu’'a obtenir
un tableau de longueur < 2, on peut en déduire facilement la médiane.

Ecrire la fonction mediane (tab:1ist) -> float qui corresponde a cette description.
2. Etudier la terminaison et la correction de cet algorithme.

3. Etudier sa complexité.

Exercice 9 (Zéros de fonction) :
On reprend le principe de la recherche de zéro d'une fonction par dichotomie.

. On considére une fonction f : [a,b] — R continue. On suppose que cette fonction ne s'annule qu'une seule
fois sur [a, b]. Ecrire une fonction zeros (f: "function", a:float, b:float, epsilon:float) -> float
qui permet de chercher une valeur approchée d'un zéros de f sur [a, b] a € prés par la méthode dichotomique.

. Faire un jeu de test pour f : x + x3 — 2 sur l'intervalle [0, 2] avec € = 1/10.

3. Prouver la terminaison et la correction de cet algorithme.

4. Etudier la complexité de cet algorithme.

