
Chapitre 6

Informatique théorique
Exercices

Simon Dauguet
simon.dauguet@gmail.com

8 janvier 2026

Exercice 1 :
Étudier la terminaison, arrêt et complexité des algorithmes suivants. De plus, expliciter ce que font les deux
algorithmes mystères.

1 def moyenne (L:list) -> float :
2 n = len(L)
3 S = 0
4 for k in range(n) :
5 S = S+L[k]
6 return (S/n)

1 def seuil(a:float , eps:float) -> int :
2 u = 1
3 n = 0
4 while abs(u**2-a)>eps :
5 u = 1/2*(u+a/u)
6 n += 1
7 return (n)

1 def mystere (L:list) -> list :
2 tab = []
3 for k in range(len(L)) :
4 S = 0
5 n = 0
6 while n<len(L[k]) :
7 S = S+L[k][n]
8 n += 1
9 tab = tab + [S]

10 return (tab)

1 def mystere2 (n:int) -> bool :
2 p = 2
3 while p**2<n :
4 if n%p==0 :
5 return (False)
6 else :
7 p = p+1
8 return (True)

Exercice 2 :
On considère l’algorithme de recherche d’un élément dans un tableau non trié suivant :

1 def recherche (x:" object ", L:list) -> int :
2 i = 0
3 while i != len(L) :
4 if L[i] != x :
5 i += 1
6 else :
7 return (i)
8 return (-1)

Étudier la complexité de cet algorithme, sa terminaison et sa correction.

1

Exercice 3 :
On va étudier la somme des éléments d’une liste.

1. Écrire une fonction sommeListe(L:list) -> float qui calcule la somme des éléments d’une liste.
2. Expliciter un variant de boucle et montrer la terminaison de cet algorithme.
3. Expliciter un invariant de boucle et montrer que cet algorithme est correct.
4. Déterminer la complexité de cette fonction.

Exercice 4 (Extrait sujet 0 CCINP MP) :

1. Écrire une fonction factorielle(n:int) -> int qui prend en argument un entier naturel et qui renvoie
n!. On ne fera pas d’algorithme récursif.

2. Écrire une fonction seuil_facto(M:int) -> int qui prend en argument un entier M et renvoie le plus
entier n tel que n! > M .

3. Écrire une fonction divisible(n:int) -> bool qui prend en argument un entier n et qui renvoie True
si n + 1 divise n!, et False dans le cas contraire.

4. On considère la fonction suivante :

1 def code_mystere (n:int) -> int :
2 s=0
3 for k in range (1,n+1) :
4 s=s+ factorielle (k)
5 return (s)

(a) Sans tester la fonction, prévoir ce que renvoie, ce que fait cette fonction. Quelle valeur devra renvoyer
code_mystere(4) ? Vérifier en tester ce code.

(b) Déterminer la complexité de cette fonction. On se contentera d’une complexité näıve (donc fausse).
(c) Proposer une amélioration du code de la fonction code_mystere pour que sa complexité soit linéaire.

Exercice 5 (Crible d’Ératosthène) :
Le crible d’Ératosthène est un procédé permettant de trouver la liste des nombres premiers inférieurs ou égaux à
une donnée N . Le code fonctionne de la manière suivante :

• On écrit la liste L de tous les entiers entre 2 et N (on rappelle que 1 n’est jamais un nombre premier).
• Pour k compris entre 2 et

⌊√
N

⌋
, on fait :

• Pour p entre 2 et ⌊N/k⌋, on fait :
• Remplacer dans la liste les multiples de k par “*” (c’est-à-dire remplacer kp par une étoile).

• Renvoyer la liste L (éventuellement après épuration des “*”).
1. À l’aide de la description ci-dessus, coder la fonction crible(n:int) -> list reprenant l’algorithme

d’Ératosthène et qui renvoie la liste de tous les nombres premiers inférieurs ou égaux à n.
2. Faire une nouvelle fonction cribleNb(n:int) -> int basé sur le précédent qui doit compter et afficher

le nombre d’itérations dans les boucles for.
3. Estimer la complexité de l’algorithme d’Ératosthène (fonction crible).
4. Ce code n’est pas très efficace (trop näıf). En effet, une fois les multiples de 2 enlevés, il va par la suite essayer

d’enlever les multiple de 4, 6 etc. Quelle instructions conditionnelles pourrait-on rajouter pour optimiser
un peu cet algorithme ? Vous incorporerez un compteur qui comptera le nouveau nombre d’itérations des
boucles for.

2

Exercice 6 :
On considère une liste L de n éléments triée dans l’ordre croissant. On cherche à construire un algorithme
permettant de savoir à quel endroit de la liste se trouve une valeur donnée v.

1. Écrire une fonction recherche(L:list, v:float) -> int qui réponde au problème.
2. Étudier la complexité de cet algorithme.
3. On considère le code suivant :

1 def rechercheDicho (L:list , v:float) -> int :
2 f = len(L)-1
3 d = 0
4 trouve = False
5 while not trouve :
6 i = int ((d+f)/2)
7 if L[i] == v :
8 trouve = True
9 else :

10 if L[i] < v :
11 d = i+1
12 else :
13 f = i-1
14 print(i,d,f, trouve)
15 return (i)

(a) Faire un jeu de tests de ce programme pour v = 19 et L=[1,2,3,5,7,11,13,17,19,23].
(b) Étudier la terminaison et la correction de cette fonction.
(c) Calculer sa complexité.

Exercice 7 (Extrait sujet 0 banque PT) :

1. Écrire une fonction chiffre(n:int) -> list qui prend en argument un entier n et qui renvoie la liste
des chiffres qui le compose. Donc chiffre(1234) devra renvoyer [1,2,3,4] (ou [4,3,2,1]).

2. Écrire une fonction somcube(n:int) -> int qui renvoie la somme des cubes des chiffres qui compose n.
3. Évaluer la complexité de la fonction somcube.
4. Trouver tous les entiers inférieurs ou égaux à 1000 qui sont égaux à la somme des cubes de leurs chiffres.
5. Proposer un autre algorithme renvoyant la liste des chiffres qui compose un entier n (donc avec une autre

méthode).

Exercice 8 (Médiane) :
Le but de cet exercice est d’étudier un algorithme donnant la médiane d’un tableau de nombres.

1. Dans un tableau, si on supprime le minimum et le maximum de ce tableau successivement jusqu’à obtenir
un tableau de longueur ≤ 2, on peut en déduire facilement la médiane.

Écrire la fonction mediane(tab:list) -> float qui corresponde à cette description.
2. Étudier la terminaison et la correction de cet algorithme.
3. Étudier sa complexité.

Exercice 9 (Zéros de fonction) :
On reprend le principe de la recherche de zéro d’une fonction par dichotomie.

3

1. On considère une fonction f : [a, b] → R continue. On suppose que cette fonction ne s’annule qu’une seule
fois sur [a, b]. Écrire une fonction zeros(f:"function", a:float, b:float, epsilon:float) -> float
qui permet de chercher une valeur approchée d’un zéros de f sur [a, b] à ϵ près par la méthode dichotomique.

2. Faire un jeu de test pour f : x 7→ x3 − 2 sur l’intervalle [0, 2] avec ϵ = 1/10.
3. Prouver la terminaison et la correction de cet algorithme.
4. Étudier la complexité de cet algorithme.

4

