—ycée
—oges

Chapitre 6

Informatique théorique
TP

Simon Dauguet
simon.dauguet@gmail.com

8 janvier 2026

On va comparer ici le temps d'exécution de trois algorithmes permettant de calculer (n!)™.

from time import time
def Complexitel(n:int) -> float
t=time ()
P=1
for i in range(1l,n+1):
for j in range(1l,n+1):
P=P*j
return (time () -t)

def Complexite2(m:int) -> float
t=time ()
P=1
for i in range(1l,n+1):
P=Px*i**n
return(time () -t)

def Complexite3(n:int) -> float
t=time ()
P=1
for i in range(1l,n+1):
P=Px*i
P=Px*x*n
return(time () -t)

1. Estimer la complexité, a priori, de chacun de ces algorithmes. On ne prendra pas en compte I'appel de
la fonction time (). On supposera, dans un premier temps naivement, que |'élévation a la puissance n
correspond a n multiplications.

2. Quel est le role de la fonction time () ?

3. Tester les trois algorithmes. Commenter.

4. Faire une fonction Gompa() -> None qui fait apparaitre sur un méme graphe les trois temps d’exécutions
des trois algorithmes précédents pour tous les entiers entre 1 et 150.

En fait, la fonction = — z™ est codée de maniére a minimiser le nombre de calculs (ce qui augmente
considérablement son efficacité par rapport aux n multiplications naive). Son code utilise le principe de
I'exponentiation rapide et c’est son efficacité qui explique la différence notable entre les algorithmes. I
s'agit d'une fonction récursive, ce qui veut dire qu’elle s'appelle elle-méme (la récursivité sera étudié dans
le prochain chapitre).

