
Chapitre 6

Informatique théorique
TP

Simon Dauguet
simon.dauguet@gmail.com

8 janvier 2026

On va comparer ici le temps d’exécution de trois algorithmes permettant de calculer (n!)n.

1 from time import time
2 def Complexite1 (n:int) -> float :
3 t=time ()
4 P=1
5 for i in range (1,n+1):
6 for j in range (1,n+1):
7 P=P*j
8 return (time ()-t)
9

10 def Complexite2 (n:int) -> float :
11 t=time ()
12 P=1
13 for i in range (1,n+1):
14 P=P*i**n
15 return (time ()-t)
16
17 def Complexite3 (n:int) -> float :
18 t=time ()
19 P=1
20 for i in range (1,n+1):
21 P=P*i
22 P=P**n
23 return (time ()-t)

1. Estimer la complexité, a priori, de chacun de ces algorithmes. On ne prendra pas en compte l’appel de
la fonction time(). On supposera, dans un premier temps näıvement, que l’élévation à la puissance n
correspond à n multiplications.

2. Quel est le rôle de la fonction time() ?
3. Tester les trois algorithmes. Commenter.
4. Faire une fonction Gompa() -> None qui fait apparâıtre sur un même graphe les trois temps d’exécutions

des trois algorithmes précédents pour tous les entiers entre 1 et 150.
En fait, la fonction x 7→ xn est codée de manière à minimiser le nombre de calculs (ce qui augmente

considérablement son efficacité par rapport aux n multiplications näıve). Son code utilise le principe de
l’exponentiation rapide et c’est son efficacité qui explique la différence notable entre les algorithmes. Il
s’agit d’une fonction récursive, ce qui veut dire qu’elle s’appelle elle-même (la récursivité sera étudié dans
le prochain chapitre).

1

