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Le devoir dure 4h.

La qualité de la rédaction et de la présentation seront prises en compte dans la notation. On prendra bien garde
à la justesse et la précision des justifications.

Si un candidat repère ce qui lui semble être une erreur d’énoncé, il l’identifiera clairement sur la copie et
explicitera les décisions qu’il sera amené à prendre.

La calculatrice n’est pas autorisée.

Le sujet comporte 4 pages.

Problème 1 (À propos des endomorphismes nilpotents) :
Soit E un K-espace vectoriel ou K est soit R, soit C.

Un endomorphisme f de E est dit nilpotent si ∃p ∈ N tel que fp = 0.

Partie I : Deux Exemples

1. Un exemple explicite : On considère f : R3 → R3 définie par

∀(x, y, z) ∈ R3, f(x, y, z) = (−x + y, 2x + y + 3z, x − y).

(a) Montrer que f est linéaire.
(b) Déterminer une base de ker(f). En déduire une base de Im(f).
(c) Calculer f2, puis déterminer une base de Im(f2) et en déduire une base de ker(f2).
(d) Vérifier que ker(f) ⊂ ker(f2) et Im(f2) ⊂ Im(f).
(e) Calculer f3. Que peut-on en conclure sur f ?
(f) Choisir un vecteur x0 ∈ R3 tel que f2(x0) ̸= 0. Vérifier alors que (x0, f(x0), f2(x0)) est une base de

R3.
2. Dans cette question, on suppose dim E = 3. Soit f ∈ L(E) non nulle telle que f2 = 0.

(a) Montrer que 1 ≤ rg(f) < dim(ker(f)) ≤ 3.
(b) En déduire rg(f) = 1.
(c) En déduire ∃a ∈ E \ {0}, ∃u ∈ L(E,K) tels que ∀x ∈ E, f(x) = u(x)a.

Partie II : Étude Générale
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3. Soit f, g deux endomorphismes de E.
(a) Justifier que si f est nilpotente et f et g commutent, alors f ◦ g est nilpotente.
(b) Justifier que si f ◦ g est nilpotente, alors g ◦ f l’est aussi.
(c) On suppose f nilpotente. Montrer que IdE −f est inversible.

4. Soit f un endomorphisme nilpotent de E.
(a) Soit p ∈ N tel que fp = 0. Montre que ∀n ≥ p, fn = 0.
(b) On pose η(f) = min{n ∈ N, fn = 0}. Montrer que η(f) existe. On appelle η(f) l’indice de nilpotence

de f .
5. Soit f ∈ L(E) nilpotent. On pose, pour tout p ∈ N, Np = ker(fp).

(a) Déterminer Nη(f).
(b) Montrer que ∀p ∈ N, Np ⊂ Np+1.
(c) On suppose qu’il existe p ∈ N tel que dim Np = dim Np+1.

i. Montre que Np+1 = Np.
ii. On suppose qu’il existe q ∈ N tel que Np+q = Np. Justifier que Np ⊂ Np+q+1.
iii. Soit x ∈ Np+q+1. Justifier alors que f q(x) ∈ Np.
iv. Montrer que Np = Np+q+1.
v. Conclure.

(d) Montrer alors que η(f) ≤ dim E.

Partie III : Commutant d’un endomorphisme nilpotent

Soit f un endomorphisme nilpotent de E tel que η(f) = dim E. Dans toute cette partie, pour alléger les
notations, on notera n = dim E = η(f).

On note C(f) l’ensemble des endomorphisme de E qui commutent avec f .
6. Montrer que C(f) est un sous-espace vectoriel de L(E).
7. Soit g ∈ C(f).

(a) Justifier qu’il existe x0 ∈ E tel que fn−1(x0) ̸= 0.
(b) Montrer que la famille B = (x0, . . . , fn−1(x0)) est une base de E.
(c) On note a0, . . . , an−1 ∈ K les composantes de g(x0) dans la base B. Pour tout k ∈ {0, . . . , n − 1},

exprimer g(fk(x0)) comme combinaison linéaire des vecteurs de B.
(d) En déduire que g =

∑n−1
k=0 akfk.

8. Conclure que C(f) = Vect(IdE , f, . . . , fn−1).
9. Déterminer la dimension de C(f).

Problème 2 (Endomorphisme unipotents) :
Soit p ∈ N avec p ≥ 2. Dans tous le problème, E est un R-espace vectoriel de dimension 2 muni d’une base
B = (e1, e2).

Le but de ce problème est d’étudier l’ensemble

M(p) = {f ∈ L(E), fp = IdE}

Partie I : Préliminaires
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1. Soit g ∈ L(E). Montrer que ker(g) = {0} ⇐⇒ g injective.
2. Soit f ∈ L(E).

(a) Justifier qu’il existe a, b, c, d ∈ R tels que f(e1) = ae1 + be2 et f(e2) = ce1 + de2.
(b) On pose g vérifiant g(e1) = de1 − be2 et g(e2) = −ce1 + ae2. Montrer qu’on définit bien ainsi un

endomorphisme de E et calculer alors f ◦ g.
(c) En déduire que f est inversible si et seulement si ad − bc ̸= 0 et déterminer f−1 dans ce cas (on

pourra considérer le vecteur de1 − be2 par exemple pour le sens indirecte).

Partie II : Cas p = 2

3. Soit u ∈ M(2) telle que u ̸= IdE et u ̸= − IdE .
(a) Démontrer que ker(u − IdE) ⊕ ker(u + IdE) = E.
(b) Donner la dimension de ker(u − IdE) et ker(u + IdE).
(c) En déduire alors qu’il existe une base (ε1, ε2) de E telle que u(ε1) = ε1 et u(ε2) = −ε2.

4. Exemple : on considère dans cette question le cas particulier E = R2 et l’application

f : R2 → R2

(x, y) 7→ (2x − y, 3x − 2y)

(a) Vérifier que f ∈ L(R2).
(b) Vérifier que f ∈ M(2). Que peut-on en déduire sur f ?
(c) Déterminer ker(f) et rg(f).
(d) Trouver un vecteur u ∈ R2 non nul tel que f(u) = u et un vecteur v ∈ R2 non nul tel que f(v) = −v.
(e) Montrer que (u, v) est une base de R2.

Partie III : Cas p = 3

Soit f ∈ M(3). On considère F = ker(f − IdE) et G = ker(f2 + f + IdE).
5. Que peut-on dire sur f si dim F = 2 ?
6. (a) Montrer que F ∩ G = {0}.

(b) Soit x ∈ E. Montrer que 1
3(f2(x) + f(x) + x) ∈ F et 1

3(2x − f(x) − f2(x)) ∈ G.
(c) En déduire E = F ⊕ G.
(d) Montrer que p = 1

3(f2 + f + IdE) et q = 1
3(2 IdE −f − f2) sont des projecteurs dont on déterminera

les éléments caractéristiques.
7. Le but de cette question est d’établir, par un raisonnement par l’absurde, qu’on a forcément dim F ̸= 1.

On suppose ici que dim F = 1.
(a) Montrer qu’il existe une base G = (u1, u2) de E telle que F soit la droite vectorielle engendré par u1

et G la droite vectorielle engendré par u2.
(b) Montrer alors que f(u2) ∈ G.
(c) Grâce à la définition de G et au fait que E = F ⊕ G, en déduire une contradiction.

8. On suppose dans cette question que dim F = 0
(a) Montrer alors que (e1, f(e1)) est une base de E.
(b) Justifier qu’il existe a ∈ R et b ∈ R∗ tels que f(e1) = ae1 + be2.
(c) Exprimer alors f(e2) en fonction de f(e1) et f2(e1).
(d) Exprimer f2(e1) en fonction de e1 et f(e1).
(e) En déduire l’expression de f(e2) dans la base B.
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Partie V : Étude générale

9. M(p) est-il est un espace vectoriel ?
10. Soit f ∈ M(p). Montrer que f ∈ GL(E) et que f−1 ∈ M(p). M(p) est-il un sous-groupe de GL(E) ?
11. On définit f1 et f2 par fi(ej) = δi,jei pour tout i, j ∈ {1, 2}, où δi,j est le symbole de Kronecker, c’est-à-dire

f1(e1) = e1 ; f1(e2) = 0
f2(e1) = 0 ; f2(e2) = e2

Montrer qu’on définit ainsi bien deux applications linéaire sur E.
12. On considère alors H = Vect(f1, f2). Montrer M(p) ∩ H est un ensemble fini dont on donnera la liste des

éléments selon les valeurs de p.
13. On pose maintenant f3 et f4 telles que

f3(e1) = e2 ; f3(e2) = 0
f4(e1) = 0 ; f4(e2) = e1

Justifier que (f1, f2, f3, f4) est une base de L(E).
14. Déterminer ensuite M(2p) ∩ Vect(f3, f4) en fonction de la parité de p et M(2p + 1) ∩ Vect(f3, f4).
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