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Probléeme 1 (A propos des endomorphismes nilpotents) :

Partie | : Deux Exemples

1. Soit f: (z,y,2) = (y — z,2x + y + 3z, — y).
(a) Soit (z,y,2), (z',y,2') € R3 et A\, u € R. Alors

F\(@,y,2) + p(a',y', 2))
=f(x + pa', My + py', Az + p2')

=( — Az + pz’) + Ay 4+ '), 200 4 pa’) + Ny + py') + 3(Az + p2'), e 4 pa’) — Ay + uy’))

:()\(y —x)+ply — ), N2z +y+32) + u22’ + oy +32), Mz —y) + p(z’ — y’))

=Ny —x,2x+y+3z,2—y)+uly — 2,20 +y +32,2" —9)
=\ (z,y,2) + pf (@9, 7))
Donc, par définition, f € L(R3).
(b) Soit (x,y,z) € R3. Alors :

(,y,2) € ker(f) <= [f(z,y,2) =0
— (y—z,2x4+y+3z,2—y)=0

y—x =0

<~ (2z+y+3z2=0
r—y=0

e =0
2 +y+32=0

y—x =0
<~
3z+32=0

y:{L‘:—Z

!

D'ou

ker(f) = {(z,y,2) € R®, f(z,y,z) =0}

def ker(f)
def f

def égalité dans R3

Ls=—1L,
L2 < LQ — L1
def ker(f)

def opé R?
def f

distri, comm,

asso dans R
def opé R3
def f



= {(m,y,z) S RS’ y=x= 72}
={(z,z,—x), z € R}
= Vect((1,1,-1)).

Or (1,1,—1) # 0. Donc ((1,1,—1)) est une famille libre. Donc ((1,1,—1)) est une base de ker(f).
On a donc dim(ker(f)) = 1. Et donc, par théoréme du rang, rg(f) =3 — 1 = 2. Et de plus,

Im(f) = f(R?)
= f(Vect((1,0,0), (0,1,0), (0,0,1))
= Vect(f(1,0,0), £(0,1,0), £(0,0,1))

= Vect((-1,2,1),(1,1,-1),(0, 3,0))
= Vect((1,1,-1),(0,3,0)) élimination dans un Vect car (—1,2,1) = (0,3,0) — (1,1,—1)
= Vect(1,1,-1),(0,1,0)) substitution

Or rg(f) = 2. Donc, par caractérisation des bases en dimension finie, ((1,1,—1),(0,1,0)) est une base de Im(f).
(c) Soit (z,y,z) € R3. Alors

Py, 2) = f(f(2,y,2)) def o
=fly—=z,2x+y+3z,z—vy) def f
=(2z+y+32)—(y—2),2(y—2)+ Qe +y+32)+3(x—y),y—z) — 2x+y+32)) def f
= (3z 4+ 32,32 + 3z, -3z — 32)

On a alors
Im(f?) = {(3z + 32,3z + 32, =3z — 32), z,2 € R} = Vect((1,1,-1)).
Or (1,1,—1) # 0, donc ((1,1,—1)) est une base de Im(f2) et donc rg(f?) = 1.
Par théoréme du rang, on en déduit que dim(ker(f?)) = 2. Or on a facilement (1,0, —1) € ker(f?) et (0,1,0) €

ker(f2). Mais ((1,0,—1),(0,1,0)) est libre (il suffit d’observer les deux premieres coordonnées, par exemple). Et donc,
par caractérisation des bases en dimension finie, ((1,0,—1), (0,1,0)) est une base de ker(f?).

(d) D’aprés ce qui précede :
ker(f) = Vect((1,1, —1)) = Vect((1,0, —1) + (0,1,0)) C Vect((1,0,—1),(0,1,0)) = ker(f?)

et
Im(f?) = Vect((1,1,—1)) C Vect((1,1,—1),(0,1,0)) = Im(f).

(e) Soit (z,y,z) € R3. Alors

f3(l‘,y,2):f(f2($,y,2)) asso o
= f(3x 4+ 32,3z + 3z, —3x — 32)
= ((3x+32) — 3z +32),2(3z + 32) + (3x + 3z) — 3(3z + 32), (3 + 32) — (3x + 32)) def f
= (0,0,0)

Donc f3 = 0. Et donc f est nilpotente d’ordre 3.

(f) On peut choisir n'importe quel vecteur qui n'est pas dans ker(f2). On peut méme faire la question en toute
généralité avec un vecteur zyp € R3 qui n'est pas dans le noyau quelconque. Mais faisons comme suggére I'énoncé :
prenons par exemple 2o = (1,0,0). Alors f(x¢) = (—1,2,1) et f?(x) = (3,3, -3) # 0.

Soit Ao, A1, A2 € R tels que Aoz + A1.f(w0) + A2 f2(z0) = 0. Alors :

Xozo + A1 f(zo) + Ao f?(z0) =0
= X(1,0,0) + A (—1,2,1) + X2(3,3,-3) =0
= (Ao — AL+ 322,201 + 32, A2 —3X2) =0 opé R?



Ao — A1+ 3\

< {20 +3) def égalité R?
)\1 — 3)\2 =0
Ao =10 L1+ L+ Ls

= {3\ =0 Lo < Lo+ L
—9\3=0 Ly« 2L3— Lo

<:>)\0=)\1=A2:0

Donc (o, f(z0), f?(z0)) est une famille libre de 3 vecteurs dans R®. Donc, par caractérisation des bases en dimension
finie, (zo, f(z0), f?(x0)) est une base de R3.

2. On suppose dim E = 3 et f € L(E) tel que f2 =0.

(a) On suppose f # 0. f2 =0. Donc Vz € E, f?(z) = f(f(z)) = 0. Donc Vx € E, f(z) € ker(f) par définition.
Or Im(f) = {f(x),x € E}. Donc Im(f) C ker(f) par définition inclusion. D'ou rg(f) = dim(Im(f)) < dim(ker(f)).

f#0, donc Jxg € E, f(xg) # 0. Donc f(xg) € Im(f). Donc Im(f) # 0. Donc rg(f) > 1. Et ker(f) sous-espace
vectoriel de E, donc dim(ker(f)) < dim(£) = 3.

D'ou 1 <rg(f) < dim(ker(f)) < 3.

Par théoréme du rang, rg(f) + dim(ker(f)) = dim(E) = 3. Si rg(f) = dim(ker(f)), alors 3 = 2rg(f). 2. Donc
rg(f) # dim(ker(f)). Et donc 1 <rg(f) < dim(ker(f)) < 3.

(b) D'aprésPal rg(f) € {1,2}. Supposons rg(f) = 2. Alors dim(ker(f)) = 3 d’aprés[2a] Mais rg(f)+dim(ker(f)) =
3 par théoreme du rang. Donc rg(f) = 0. Donc &,

Donc rg(f) = 1.

(c) rg(f) = 1. Donc Ja € E tel que Im(f) = Vect(a). rg(f) =1 = a # 0. Alors Vz 5 E, f(z) € Im(f) =
Vect(a). Donc Vx € E, Ju(z) € K tel que f(x) = u(x)a.

Montrons u € L(E,K). Soit x,y € E et A, u € K. Alors f(Az+py) = u(Az+py)a par définition . Mais f € L(E),
donc f(Az + py) = Af(z) + pf(y) = Au(z)a+ pu(y)a = (Au(z) + pu(y))a. Donc u(Az + py)a = (Au(z) + pu(y))a.
Or a # 0, donc u(Azx + py) = Au(x) + pu(y) (on a (u(Ax + py) — Au(x) — pu(y))a = 0 et il n'y a pas de diviseurs de
0 dans E et a # 0).

Donc w linéaire. Donc u € L(E,K).
Partie Il : Etude Générale

3. Soit f,g € L(E).
(a) On suppose Ip € N tel que fP =0 et fog = go f. Montrons que Yk € N, ffog=gofFet (fog)* = fFogh.
Pour k = 0 et k = 1 déja vraie. Supposons 3k € N, ffog=gogFet (fog)k = fFog* Alors

ka og=fo (fk °g) associativité o
Zfo(gofk) hyp rec
=(fog)o F* associativité o
=(gof)of* commutativité f et g
=go [

et
(fog)*' =(fog)o(fog)” associativité o
:(fog)o(fkogk) hyp rec
=fol(goff)og" associativité o
:fo(fkog)ogk hyp rec
= ka o ng associativité o



Donc, par principe de récurrence, Vk € N, ffog=go fFet (fog)k = fFo g~

En particulier, (f o g)? = fP o g? = 0. o g” = 0. Donc f o g nilpotente.

(b) Supposons f o g nilpotente. Donc Jp € N tel que (fog)? = 0. Alors (go f)? = (fog)? = 0 par commutativité.
Donc (g o f) nilpotente.

c) Supposons dp € N, fP = 0. Alors
(c) Supp p

Idp = 1dh, — f? car f et Idg commutent

IdE f ka dpk 1

=(ldg—f)o ka

Donc Idg —f inversible & droite. Donc, par théoréme d'isomorphisme, Idg —f € GL(E) et en plus (Idg —f)~! =
Shoo f*.

4. Soit f € L(E) nilpotente.

(a) Soit p € N tel que fP = 0. Soit n > p. Alors

fr= e avecn —p €N
= fPo f"7P associativité o
=00 f"7P def f
= Oz(m)

(b) On pose A={n €N, f*=0}. Ona A # () car p € A par définition. Donc A sous-ensemble de N non vide,
donc min A existe. Donc 7(f) = min A existe.

5. Soit f € L(E) nilpotente. On pose Vn € N, N,, = ker(f").

(a) Par définition n(f), f7Y) = 0. Donc Vz € E, f"Y)(x) = 0. Donc E C ker(f"/)). Or ker(f")) c E car
1) € L£(E). Donc ker(f74)) = E. Donc Ny = E.

(b) Soit p € N. Soit x € N,,. Donc fP(z) = 0 par définition. Alors fP™1(z) = f(fP(z)) = f(0) =0 car f € L(E)
et par associativité de o. Donc z € ker(fP*1). Donc N, C Npi1. Donc Vp € N, N, C Np1.

(c) Supposons dp € N tel que dim IV, = dim Np41.

i. Or N, C Npy1 cf[5bl Donc N, = Npy1.

ii. On suppose ¢ € N tel que N, = N,1. Par et récurrence facile, on a N, C Npy1 C -+ C Npjg C Npyg1.

iii. Soit « € Ny g41. Donc fPT4T1(x) = 0 par définition N1 q41. Donc fPT1(f9(x)) = 0. Donc f9(x) € Npy1 par
définition Np41. Or N, = Np41. Donc f9(x) € N,,.

iv. On a donc Npi441 C N, par définition inclusion et par question précédente. Or N, C Npi441 par p(c)iil Donc
Np = Nptg+1-

v. On a montré N, = N, 11 et si 3¢ € N tel que N4, = Np, alors N, 441 = N,. Donc, par principe de récurrence,
Vq S N, Np = Np+q-

(d) Ona 1) = D+ par . Donc N5y = Ny(py41- Donc Vg € N, Ny gy = Ny (514 par 5(c)v} Donc Vg € N,
dim(Ny(5y) = dim(Ny(f)44)- Donc (dim(Np),en est stationnaire a partir du rang n(f).

Sidp e {0,...,n(f) —1} tel que N, = Npy1, alors N, = Nypy = E par. Donc f? = 0 avec p < n(f). Donc
&, par définition n(f). Donc Vp € {0,...,n(f) =1}, Ny & Npy1. Donc (dim(N))o<y(s) strictement croissante. Donc
Vp e {0,...,n(f)—1}, dim(N,)+1 < dlm( Npy1) car ce sont des entiers. Donc dim(N,y) > dim(No) +n(f) = n(f)
car f¥ = Idg injective.

Or Ny(p) = E car 1Y) = E. Donc n(f) < dim(N,(5)) = dim(E).
Partie 11l : Commutant d’un endomorphisme nilpotent

Soit f € L(E) nilpotente tel que n(f) = dim(E) =n. On note C(f) ={g € L(E), go f = fog}.



6. OnaC(f) C L(E).Soitg,h € C(f) et A\, u € K. Alors \g+puh € L(E) car L(E) est un K-ev. Et fo(Ag+uh) =
AMfog+pufoh=Agof+puhof=(Ag+ ph)o f. Donc A\g+ ph € C(f). Donc C(f) sev L(E) par caractérisation
des sev.

7. Soit g € C(f).

(a) Par définition, n = n(f) = min{p € N, f? = 0}. Donc f*"~! € {p € N, fP =0} et donc n(f) < n —1 par
définition du minimum. Donc Jz¢ € E tel que f"(zg) # 0.

(b) On pose B = (zq, ..., f" (x0)). Soit Ao, ..., A\n_1 € K tel que ZZ;& e f¥(20) = 0. Alors

ni )\kfk<l‘0) =0 = fn_l (712_: )\kfk(xo)> =0

k=0 k=0
n—1
= Y ST (@g) =0 car f"1 € L(E)
k=0
= Aof" Hzg) =0 cf dl
= N =0 car " M) #0

n—1
= > Meff(z0) =0

k=1
n—1
= (Z )\kfk(ﬂfo)> =0
k=1
n—1
= Z Nef R (20) =0 linéarité
k=1
<= )\1fn71(x0) =0 cf dd
<~ A\ =0 carf"_l(xo) #0
n—1
= > MfF(z0) =0
k=2
Par n itérations du processus, on a \g = --- = A\,—1 = 0.

Donc B libre dans E avec dim F = n donc B base de E par caractérisation des bases en dimension finie.
(c) Soit ag, . ..,an—1 € K tel que g(x0) = S0, arf*(xo). Soit k € {0,...,n — 1}. Alors

g(f*(x0)) = g o fF(x0)

=f*o g(zo) cf raisonnement [Bdl
= f*(g(x0))
n—1
= f* (Z ajfj(ﬂ?o))
j=0
n—1
= Z ajfkﬂ (wo) linéarité
§=0

(d) Soit x € E. Alors Jxg, ..., z,—1 € K tel que 2 = 3775 2 f*(20) car B base de E. Alors

n—1
o) =g (z mkmxo))
k=0

n—1

= zeg(f*(20)) linarité g
k=0
n—1 n—1 )

= Z T Z ajf”k(a:o) question précédente
k=0 j=0



n—1ln—1

= Z Z aj$kfj+k(xo)

k=0 j=0
n—1ln—1

— Z Z a;a® fITF ()
§=0 k=0
n—1 n—1 )

=Y q (Z ﬂﬁkf](fk(wo)))
j=0 k=0
n—1 n—1

=> a;f! <Z xkfk($0)> car f7 € L(E)
j=0 k=0
n—1

_ Z ajfj(ﬂc) def z
j=0

n—1
= (Z ajfj> (x) def opé L(FE)

J=0

Donc g = ?;& ajfl.
8. D'apres[7| C(f)  Vect(Idg, f,..., f*1).
Soit g € Vect(Idg, f,..., f*!). Donc Jag,...,a,_1 € K tel que g = Zz;é aif*. Alors

n—1
90f=<zakfk>0f
k=0

n—1
=Y apffof linéarité & gauche o
k=0
n—1
k _ rk+l _ ck
= > apfoft car fo ff =t =fhoy
k=0
n—1
=fo (Z akf’“) linéarité a droite o
k=0
=fog

Donc g € C(f). Donc Vect(Idg, f,..., f*~ 1) c C(f).

Donc C(f) = Vect(Idg, f,..., f*1).

9. Soit Ag,..., A1 € K tel que ZZ;& Mo fF = Oz (k). Alors Zz;(l) Mef¥(xg) = 0p. Or, d'apres , B =
(7o, ..., f" Y(zg)) est une base de E. Donc B libre. Donc \g = --- = A\,_1 = 0. Donc (Idg, f, ..., f*~1) libre.

Donc (Idg, ..., f*!) base de C(f) = Vect(Idg, f, ..., f*~1). Donc dim(C(f)) = n = dim(E).

Probléeme 2 (Endomorphismes unipotents) :
Soit p > 2. On note
M(p) ={f € L(E), f*=1dg}

Partie | : Préliminaires



1. Soit g € L(E). Supposons ker(g) = {0}. Soit z,y € E tels que g(z) = ¢(y). alors g(x) — g(y) = 0 et par
linéarité, g(z —y) = 0. Donc x — y € ker(g) par définition de ker(g) et donc = = y. Donc g est injective.

Réciproquement, supposons que g est injective. Soit = € ker(g). On a donc g(z) = 0 = ¢(0) puisque g est linéaire.
Et l'injectivité de g nous donne alors x = 0, c’est-a-dire ker(g) = {0}.

2. Soit f € L(E).

(a) Comme f est un endomorphisme de E, on a f(ey1), f(e2) € E = Vect(ey, e2). Donc Ja,b,c¢,d € R tels que
f(e1) = aey + bey et f(e2) = cep + des.

(b) On pose g vérifiant g(e1) = de; — beg et g(ea) = —ceq + aea. Comme (e1, e2) est une base de E, on définit
donc ainsi une application linéaire sur E (cf argument question 4). On a alors

fogler) = f(der — bes)
= df (e1) — bf(e2)
= d(aey + beg) — b(cey + des)
= (ad — bc)eq

et
fog(e) = f(—cey + aez)
= af(e2) —cf(er)

= a(ce1 + dez) — c(aey + bes)
= (ad — bc)eg

par linéarité de f.
On construit donc ainsi un endomorphisme de E (on la connait sur une base de E) et f o g = (ad — bc) Idg.

(c) Siad—bc#0, on alors fo (ﬁg) = Idg et donc f est inversible avec f~! = adl—bcg'

Réciproquement, supposons f inversible. On a donc d # 0 ou b # 0. Car sinon, on aurait f(e1) = aey et f(e2) = ceq
donc Im f = Vect(e1) # FE et f ne serait pas surjective donc pas bijective. Ce qui est absurde.

Donc (b,d) # (0,0). Et par suite dey — bea # 0 puisque (e, e2) est libre. On en déduit donc f(de; — bes) # 0 car
ker f = {0} car f injective. La linéarité de f nous donne alors f(de; —bes) = df (e1) — bf(e2) = d(ae1 + beg) — b(cey +
des) = (ad — be)ey # 0 ce qui implique ad — be # 0 puisque e1 # 0.

Partie Il : Cas p =2

3. Soit u € M(2) telle que u # Idg et u # — Idg.

(a) Soitz € ker(u—Idg)Nker(u+Idg). Alors u(x)—x = 0 ce qui nous donne u(x) = x et on a également u(z)+x =
0 ce qui nous donne u(x) = —z. On a donc = u(x) = —x et donc z = 0. Donc ker(u — Idg) Nker(u + Idg) = {0}.

On a aussi Vo € E, z = 3(u(z) + ) — 3(u(z) — ). Et il reste juste 3 montrer que u(z) — = € ker(u + Idg) et
u(z) +x € ker(u —Idg). Mais (u+Idg)(u(r) — ) = u?(z) —x = 0 et (u—Idg)(u(z) + ) = u?(x) — x = 0 puisque
u € M(2). Donc 1

1
x = Q(u(x) +z)— i(u(x) — )

€ker(u—Idg) cker(u+Idg)

(b) On sait que u + Idg # 0. Donc rg(u + Idg) # 0 donc rg(u + Idg) € {1,2}. Et par théoréme du rang,
dim(ker(u+1dg)) € {0,1}. Mais par ailleurs, dim(ker(u + Idg)) 4+ dim(ker(u — Idg)) = dim E = 2 nous donne donc
dim(ker(u + Idg)) = dim(ker(u — Idg)) = 1 (et donc rg(u — Idg) = rg(u + Idg) = 1).

(c) On sait que ker(u — Idg) et ker(u + Idg) sont des droites vectorielles. Soit €1 € ker(u — Idg) avec €1 # 0 et
soit e9 € ker(u + Idg) avec g9 # 0. Alors ker(u — Idg) = Vect(e1) et ker(u + Idg) = Vect(e2).

En particulier, on a donc u(e1) —e1 = 0, ce qui revient a u(e;) = 1. Et de méme, u(e2) = —ea.

Par ailleurs, (£1¢2) est la concaténation d'une base de ker(u — Idg) et d'une base de ker(u + Idg). C'est donc une
base adaptée a la somme directe et donc (€1,£2) est une base de ker(u — Idg) @ ker(u + Idg) = E.



4. On considére |'application

f:

R? — R?
([E, y) = (21: - Y, 3r — 2y)

(a) Soit A\, ;1 € R et (z,y), (2,t) € R2. Alors

F(M@,9) + (2, )) = FOz + pz, Ay + pit)

(2(>\:1: + pz) — Ay + pt), 3(Az + pz) — 2(A\y + ut)) def f

= (A22 — ) + p(2z — 1), A3z — 2y) + p(32 — 2t))
= A2z —y,3x — 2y) + pu(2z — t,3z — 2t)
— Af(@,y) + uf(2,1) def f

et donc f est linéaire.
(b) soit (z,y) € R2. Alors

Fx,y) = f(2z —y, 3z — 2y)
= (2(2z —y) — 3z — 2y),3(2z — y) — 2(3z — 2y))
= (z,y)

Donc f2 = Idg2 et donc f € M(2). Donc f est une symétrie vectorielle, par caractérisation des symétries.

(c) On a f? = Idg2, donc f est bijective et f~! = f par théoréme d'isomorphisme. On a donc ker(f) = {0} et
rg(f) = dim(R?) = 2 par surjectivité ou par théoréme du rang.

(d) Soit z,y € R. On cherche a résoudre f(z,y) = (z,y), c'est-a-dire (z — y,3z — 3y) = (0,0). Une solution
évidente non nulle est (1,1). On pose donc u = (1,1).

On veut résoudre maintenant (f + Idg)(x,y) = 0 qui est équivalent a (3z — y,3z — y) = (0,0) dont une solution
évidente non nulle est (1,3). On pose alors v = (1, 3).

(e) On a montré que f est une symétrie vectorielle. Donc, par caractérisation des symétries, f est la symétrie par
rapport a ker(f —Idg) parallelement a ker(f +1dg) et E = ker(f —Idg) @ ker(f +1dg). Or u € ker(f —Idg) et v €
ker(f+Idg) d'aprés la question précédente. Donc dim(ker(f+1Idg)) > 1 et dim(ker(f—Idg)) > 1. Or, par Grassmann
(ou par caractérisation des supplémentaires en dimension finie), dim(ker(f —Idg))+dim(ker(f+1Idg)) = dim(E) = 2.
Donc dim(ker(f —Idg)) <1 et dim(ker(f + Idg)) < 1. Donc dim(ker(f —Idg)) = dim(ker(f + Idg)) = 1.

Or Vect(u) C ker(f —Idg) et u # 0 donc Vect(u) est une droite vectorielle. Donc ker(f —Idg) = Vect(u). De
méme, v € ker(f +1Idg), v # 0 et dim(ker(f + Idg)), donc ker(f + Idg) = Vect(v).

Finalement, E = ker(f —Idg) ®ker(f +1dg) = Vect(u) ® Vect(v). Donc (u,v) est la concaténation de deux bases
de deux supplémentaires de F, donc (u,v) est une base de E adaptée a la somme directe Vect(u) @ Vect(v).

Partie Il : Cas p =3

Soit f € M(3). On considére F' = ker(f — Idg) et G = ker(f? + f + Idg).
5. Si dim(F) =2, on a alors F' = E car dim E = 2. Et donc f — Idg = 0 ce qui nous améne a f = Idg.

6. (a) Soit z € FNG. Donc x € ker(f — Idg) ce qui conduit a f(z) = x. Par ailleurs, on a aussi z € G =
ker(f? + f +1dg). On a donc f2(z) + f(x) + = = 0. Mais comme f(x) =, on a aussi f?(z) = f(f(z)) = f(z) = z.
On a donc finalement 3z = 0 ce qui nous donne x = 0 et donc F'N G = {0}.

(b) Soit z € E.
(f = de)(2(@) + f(@) +2) = F(@) + 2(@) + f(@) - f2(2) — f(z) —a par linéarité
=r—x car f3 =1dg
=0



Donc f2(x) + f(z) + 2 € F. Mais comme F est un sev de E (puisque c'est le noyau d’'une application linéaire), on en
déduit £ (f%(z) + f(z) + ) € F.
De méme, on calcul

(f* + f+1dp)(22 - f(2) - f*(x))
=2(x) = f3(x) = f1() + 2f(2) — (@) = @) + 22 = f(@) = () Linéarité
=~ [(FP@) +I(@) — o+ 2 car [* =1ds
=0

donc 2z — f(z) — f*(z) € G et par stabilité par combinaison linéaire, on a donc (22 — f(z) — f*(z)) € G.
(c) Siz e E, ona

v = 2ot @)+ P0) + (20— [@)— )

Donc z € ker(f — Idg) + ker(f2 + f + Idg). On a donc ker(f — Idg) @ ker(f2 + f + Idg) = E par définition des
supplémentaires en utilisant la question [6al et [6b]

(d) On pose p=1(f*+ f+1dg) et ¢ = 1(2Idp —f — f?). Alors

P’ = %(fQ + f +1dp)? ¢ = $(2IdE —f = 1??
- %(f4+2f3+3f2+2f+1d];) - %(4IdE—4f—3f2 Loft g Y
zé(f+21dE+3f2+2f+IdE) :$(4IdE—4f—3f2+21dE+f) car f3 =1dg
= S+ S +1dp) = 2(@Up—f - )
=p =q

Donc, par caractérisation des projecteurs, p et g sont des projecteurs.

De plus, p est le projecteur sur Im(p) = ker(p — Idg) parallélement a ker(p) avec E' = ker(p) @ Im(p). Or, d'aprés
la définition de p, Im(p) C F et ker(p) = G. Donc, par théoréme du rang, rg(p) = dim(FE) — dim(G) = dim(F"). Donc
Im(p) = F. Donc p est le projecteur sur F' parallelement a G.

De plus, p + ¢ = Idg, donc g est le projecteur sur Im(q) = ker(¢ — Idg) = ker(p) = G parallélement a ker(q) =
ker(Idg —p) = Im(p) = F.

7. On suppose dim F' = 1.

(a) On a E = F & G. Donc la formule de Grassmann nous donne dim(G) = dim F — dim F' = 1. Donc F' et G
sont des droites vectorielles de E. Par ailleurs, la concaténation de deux bases de F' et G donne une base de E. On
choisit donc une base de F' et une base de (7, c'est a dire un vecteur u; # 0 de F' et un vecteur us # 0 de G, puisque
ce sont des droites vectorielles et donc une base est composé d'un seul vecteur non nul.

Alors la concaténation de ces deux bases est alors (u1,us2) et est donc une base de E.

(b) Ona f(ug) € E = F®G. Donc Ja, b € R tels que f(u2) = auy +buy puisque F' = Vect(u1) et G = Vect(uz).

Mais uz € G = ker(f?+ f+Idg). Donc f?(ug)+f(uz)+ug = 0. Mais f2(uz) = f(aui+buz) = aui+b(au;+bug) =
(a+ ab)uj + b?usz. Donc f2(ug) + f(ug) +us = (2a+ab)us + (b* + b+ 1)ug = 0. La liberté de la famille entraine alors
en particulier b2 + b4 1 = 0 qui est de discriminant 1 —4 = —3 < 0. Il n’y a donc pas de solution réelle. Or b € R.
Donc Z..

L'hypothése supplémentaire faite est donc fausse, autrement dit dim F' # 1.

8. On suppose dim F' = 0.

(a) Supposons que (e1, f(e1)) n'est pas libre. Elle est donc liée. On a forcément f(e;) # 0, sinon e; € F et donc
F # {0}. Ce qui est absurde par hypotheése. Donc 3\ € R tel que f(e1) = Aey.

Mais d'autre part, comme F' et GG sont supplémentaires, le formule de Grassmann nous donne dimG = 2 = dim F
et donc G = E. Donc e; = G = ker(f2 + f + Idg). On en déduit donc f2(e1) + f(e1) +e1 = (A2 + A+ 1)e; = 0.
Mais e; # 0 entraine donc A% + X\ + 1 = 0 ce qui est impossible dans R.

Donc (ey, f(e1)) ne peut pas ne pas étre libre, elle est donc libre.



C'est alors une famille de cardinal 2 en dimension 2, c’est donc une base de F, par caractérisation des bases en
dimension finie.

(b) On a f(e1) € E = Vect(ey, ea). Donc Ja,b € R tels que f(e1) = ae; + bea. Mais on vient de montrer que
(e1, f(e1)) est une base de E, c'est donc une famille libre, ce qui impose e; et f(e1) a ne pas étre colinéaire. Donc on
ne peut pas avoir f(e;) = ae; autrement dit, b # 0.

(c) Onaes=1(f(e1) —aer). Donc f(e2) = £ f%(e1) — % f(e1) par linéarité.

(d) D’autre part, on a toujours G = E. Donc e; € G = ker(f? + f + Idg), ce qui veut donc dire que f2(e1) =
—f(e1) —eq.

(e) On en déduit

fle2) = 5 f(er) = 5 f(en)

1
= g(—f(eﬂ - 61) - %f(el)
+1 1
= " fle) - ze
+1 1
:fab (a61+b62)*561
_d+a+l

5 e1 — (a+1)eg

Partie V : Etude générale

9. L'endomorphisme nul n'est pas dans M(p). Ce n’est donc pas un espace vectoriel.

10. Soit f € M(p). On a donc fP = Idg. Donc fo fP~! = Idg et p— 1 > 1. donc P~ € L(E). Donc, par
théoréme d’isomorphisme ou caractérisation de la bijectivité, f est bijective, donc f € GL(E) et f~! = fP~1,

Par ailleurs, comme on a f? = Idg, en composant a droite par f~!, on obtient fP~! = f=1 puis fP=2 = (f~1)2
et aprés p itérations, Idg = (f~1)P. Donc f~! € M(p).

Cependant, M(p) n'est pas un sous-groupe de GL(E). |l manque la stabilité par la composition. Mais pas exemple,
en prenant |'application f : (x,y) — (22 —y,3x — 2y) de la partie 2 et g : (z,y) — (y, ), on a déja vu que f € M(2).
Clairement, g € M(2) également. En revanche,

Vaz,y €R, go f(z,y) = (32 — 2y,2x — y)
et

Vr,y €R, (go f)*(z,y) = (3(3z — 2y) — 2(2z — y),2(3z — 2y) — (22 — y))
= (bx — 4y, 4z — 3y)

7# (2, y).
Donc (g o f)? ¢ M(2). A fortiori, tous les M(2p) ne sont pas stables pas la composition. Donc, en général, M(p)
n'est pas un sous-groupe de GL(FE).

11. On définit fi et fo par fi(ej) = d;e; pour tout i,5 € {1,2}. Donc on connait I'image d'une base de E par
f1 et fa. Or toute application linéaire est entierement déterminé par I'iimage d'une base. On peut donc étendre cette

.....

Va,y € R, fi(xrer 4+ yej) = xd;1€1 + ydi €2

c'est-a-dire fi(xe; + yes) = xey et fa(xer + yes) = yea.
On pose ‘H = Vect(f1, fa2).

10



12. Soit f € M(p) NH. Donc Ja,b € R tels que f = afy + bfs puisque f € H.

Montrer alors par récurrence que Vn € N, f(e;) = 0;1a"e1 + 0;20"ea, i.e. f(e1) = a"ey et f(ez) = bes.

On a dabord f0 = Idg et a® = b° = 1, donc la relation est vérifiée. Supposons que ce soit encore le cas pour un
certain n > 0. Alors dans ce cas

P er) = f(f"(er))

= f(a"e1) par Hyp Rec
=a"f(e1) par linéarité
= a"(afi(e1) + bfz(e1)) par def f
=a"e par def f1, fo

On peut effectuer exactement le méme calul pour ey et on trouve alors f"1(eg) = f(b"e2) = b" x beg = b"Fley.

On vient donc de prouver par récurrence que Yn € N, f"(e;) = a"e; et f™(e2) = b"ea. En particulier, on a
fP(e1) = aPe; = e1 et fP(eg) = bPey = ey car fP = Idg. Mais comme B = (e, e2) est une base de E, cette famille
est en particulier libre, donc e; # 0 et es # 0. Donc on doit avoir forcément a? =1 et O = 1.

Comme nous sommes dans R, il n'y a que deux possibilitées :

= Soit p est pair. Et dans ce cas @ = £1 et b = £1. Et donc f = & f; & fo9, autrement dit,

M@)NH ={fi+ fo, i = fo, =1 + fo, =1 — fa}

qui contient donc 4 éléments.
= Soit p est impair et auquel cas, a = b = 1. Et donc

M(p)NH ={fi + f2}

qui ne contient qu'un seul élément.
Au passage, on peut noter aussi que f1 + fo = Idg.
13. Soit f3, f4 € L(F) telle que
faler) = ez f3(e2) =0
fa(er) =0 fa(e2) =€
Une application linéaire étant entiérement déterminée par I'image d'une base, f3 et f; sont bien des endomorphismes
de F.
Soit A1, A2, A3, A4 € R tels que Zi:l Akfr = 0. Alors, en particulier

i1 Mefi(er) =0 — Arer +Azea =0
Sho1 Akfr(e2) =0 Aoeg + Agep =0

car (e1,e2) libre

AM=A3=0
A=XM=0

Donc (f1, fa2, f3, f1) est une famille libre de £(E). Or dim(E) = 2, donc L(E) est de dimension finie et ~ (L(E)) =
dim(E)? = 4. Donc, par caractérisation des bases en dimension finie, (f1, f2, f3, f4) est une base de L(FE).

14. Commengons par une remarque générale. Soit f € Vect(fs, f1). Donc A3, \s € R tels que f = A3f3 + Aafs.
Alors f(e1) = Agea. Et donc f2(e1) = AsAseq. Puis, par une récurrence trés facile, Vn € N, f2"(e1) = (A3A4)"eq et
2 (er) = N3 AZey. De méme f2%(eg) = (A3ha)e et f2"H1(eg) = ABNT ey La symétrie des deux situations nous
permet de nous focaliser que sur e par exemple.

En particulier, si f € M(2p + 1), on a f?P*l(e;) = e;. Donc /\§+1)\Zeg = e1. Or (e1,eq) est libre. Donc e ¢
Vect(ez). Donc 2. Donc

M(2p + 1) N Vect(fs3, f1) = 0.

Si f S ./\/l(4p), alors f4p(61) = e et donc ()\3)\4)2p€1 =e1. Donc ()\3/\4)2;0 =1. Or /\3)\4 € R, donc /\3)\4 = +1.
Et donc . ,
Map) O Vect(fa, £0) = {Mfs+ 3 fus A= 301 A e R
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Si f € M(4p +2), alors f4%2(e1) = ey et donc (A3A\g)?PTle; = e1. Donc (A3A4)?PH! =1 et donc A3A\y = 1 car
A3\ € R. Donc

./\/l(4p + 2) N Vect(fg, fa) = {/\fg + %le, pYS R*} .
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