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Problème 1 (À propos des endomorphismes nilpotents) :

Partie I : Deux Exemples

1. Soit f : (x, y, z) 7→ (y − x, 2x + y + 3z, x− y).
(a) Soit (x, y, z), (x′, y′, z′) ∈ R3 et λ, µ ∈ R. Alors

f(λ(x, y, z) + µ(x′, y′, z′))
=f(λx + µx′, λy + µy′, λz + µz′) def opé R3

=
(
− (λx + µx′) + (λy + µy′), 2(λx + µx′) + (λy + µy′) + 3(λz + µz′), (λx + µx′)− (λy + µy′)

)
def f

=
(
λ(y − x) + µ(y′ − x′), λ(2x + y + 3z) + µ(2x′ + y′ + 3z′), λ(x− y) + µ(x′ − y′)

) distri, comm,
asso dans R

=λ(y − x, 2x + y + 3z, x− y) + µ(y′ − x′, 2x′ + y′ + 3z′, x′ − y′) def opé R3

=λf(x, y, z) + µf(x′, y′, z′) def f

Donc, par définition, f ∈ L(R3).
(b) Soit (x, y, z) ∈ R3. Alors :

(x, y, z) ∈ ker(f) ⇐⇒ f(x, y, z) = 0 def ker(f)
⇐⇒ (y − x, 2x + y + 3z, x− y) = 0 def f

⇐⇒


y − x = 0
2x + y + 3z = 0
x− y = 0

def égalité dans R3

⇐⇒
{

y − x = 0
2x + y + 3z = 0

L3 = −L1

⇐⇒
{

y − x = 0
3x + 3z = 0

L2 ← L2 − L1

⇐⇒ y = x = −z

D’où

ker(f) = {(x, y, z) ∈ R3, f(x, y, z) = 0} def ker(f)
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= {(x, y, z) ∈ R3, y = x = −z}
= {(x, x,−x), x ∈ R}
= Vect((1, 1,−1)).

Or (1, 1,−1) ̸= 0. Donc ((1, 1,−1)) est une famille libre. Donc ((1, 1,−1)) est une base de ker(f).
On a donc dim(ker(f)) = 1. Et donc, par théorème du rang, rg(f) = 3− 1 = 2. Et de plus,

Im(f) = f(R3)
= f(Vect((1, 0, 0), (0, 1, 0), (0, 0, 1))
= Vect(f(1, 0, 0), f(0, 1, 0), f(0, 0, 1))
= Vect((−1, 2, 1), (1, 1,−1), (0, 3, 0))
= Vect((1, 1,−1), (0, 3, 0)) élimination dans un Vect car (−1, 2, 1) = (0, 3, 0)− (1, 1,−1)
= Vect(1, 1,−1), (0, 1, 0)) substitution

Or rg(f) = 2. Donc, par caractérisation des bases en dimension finie, ((1, 1,−1), (0, 1, 0)) est une base de Im(f).
(c) Soit (x, y, z) ∈ R3. Alors

f2(x, y, z) = f(f(x, y, z)) def ◦
= f(y − x, 2x + y + 3z, x− y) def f

= ((2x + y + 3z)− (y − x), 2(y − x) + (2x + y + 3z) + 3(x− y), (y − x)− (2x + y + 3z)) def f

= (3x + 3z, 3x + 3z,−3x− 3z)

On a alors
Im(f2) = {(3x + 3z, 3x + 3z,−3x− 3z), x, z ∈ R} = Vect((1, 1,−1)).

Or (1, 1,−1) ̸= 0, donc ((1, 1,−1)) est une base de Im(f2) et donc rg(f2) = 1.
Par théorème du rang, on en déduit que dim(ker(f2)) = 2. Or on a facilement (1, 0,−1) ∈ ker(f2) et (0, 1, 0) ∈

ker(f2). Mais ((1, 0,−1), (0, 1, 0)) est libre (il suffit d’observer les deux premières coordonnées, par exemple). Et donc,
par caractérisation des bases en dimension finie, ((1, 0,−1), (0, 1, 0)) est une base de ker(f2).

(d) D’après ce qui précède :

ker(f) = Vect((1, 1,−1)) = Vect((1, 0,−1) + (0, 1, 0)) ⊂ Vect((1, 0,−1), (0, 1, 0)) = ker(f2)

et
Im(f2) = Vect((1, 1,−1)) ⊂ Vect((1, 1,−1), (0, 1, 0)) = Im(f).

(e) Soit (x, y, z) ∈ R3. Alors

f3(x, y, z) = f(f2(x, y, z)) asso ◦
= f(3x + 3z, 3x + 3z,−3x− 3z)
= ((3x + 3z)− (3x + 3z), 2(3x + 3z) + (3x + 3z)− 3(3x + 3z), (3x + 3z)− (3x + 3z)) def f

= (0, 0, 0)

Donc f3 = 0. Et donc f est nilpotente d’ordre 3.
(f) On peut choisir n’importe quel vecteur qui n’est pas dans ker(f2). On peut même faire la question en toute

généralité avec un vecteur x0 ∈ R3 qui n’est pas dans le noyau quelconque. Mais faisons comme suggère l’énoncé :
prenons par exemple x0 = (1, 0, 0). Alors f(x0) = (−1, 2, 1) et f2(x0) = (3, 3,−3) ̸= 0.

Soit λ0, λ1, λ2 ∈ R tels que λ0x0 + λ1f(x0) + λ2f2(x0) = 0. Alors :

λ0x0 + λ1f(x0) + λ2f2(x0) = 0
⇐⇒ λ0(1, 0, 0) + λ1(−1, 2, 1) + λ2(3, 3,−3) = 0
⇐⇒ (λ0 − λ1 + 3λ2, 2λ1 + 3λ2, λ2 − 3λ2) = 0 opé R3
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⇐⇒


λ0 − λ1 + 3λ2

2λ1 + 3λ2

λ1 − 3λ2 = 0
def égalité R3

⇐⇒


λ0 = 0
3λ1 = 0
−9λ3 = 0

L1 ← L1 + L3
L2 ← L2 + L3
L3 ← 2L3 − L2

⇐⇒ λ0 = λ1 = λ2 = 0

Donc (x0, f(x0), f2(x0)) est une famille libre de 3 vecteurs dans R3. Donc, par caractérisation des bases en dimension
finie, (x0, f(x0), f2(x0)) est une base de R3.

2. On suppose dim E = 3 et f ∈ L(E) tel que f2 = 0.
(a) On suppose f ̸= 0. f2 = 0. Donc ∀x ∈ E, f2(x) = f(f(x)) = 0. Donc ∀x ∈ E, f(x) ∈ ker(f) par définition.

Or Im(f) = {f(x), x ∈ E}. Donc Im(f) ⊂ ker(f) par définition inclusion. D’où rg(f) = dim(Im(f)) ≤ dim(ker(f)).
f ̸= 0, donc ∃x0 ∈ E, f(x0) ̸= 0. Donc f(x0) ∈ Im(f). Donc Im(f) ̸= 0. Donc rg(f) ≥ 1. Et ker(f) sous-espace

vectoriel de E, donc dim(ker(f)) ≤ dim(E) = 3.
D’où 1 ≤ rg(f) ≤ dim(ker(f)) ≤ 3.

Par théorème du rang, rg(f) + dim(ker(f)) = dim(E) = 3. Si rg(f) = dim(ker(f)), alors 3 = 2 rg(f). A. Donc
rg(f) ̸= dim(ker(f)). Et donc 1 ≤ rg(f) < dim(ker(f)) ≤ 3.

(b) D’après 2a, rg(f) ∈ {1, 2}. Supposons rg(f) = 2. Alors dim(ker(f)) = 3 d’après 2a. Mais rg(f)+dim(ker(f)) =
3 par théorème du rang. Donc rg(f) = 0. Donc A.

Donc rg(f) = 1.
(c) rg(f) = 1. Donc ∃a ∈ E tel que Im(f) = Vect(a). rg(f) = 1 =⇒ a ̸= 0. Alors ∀x ∋ E, f(x) ∈ Im(f) =

Vect(a). Donc ∀x ∈ E, ∃u(x) ∈ K tel que f(x) = u(x)a.
Montrons u ∈ L(E,K). Soit x, y ∈ E et λ, µ ∈ K. Alors f(λx+µy) = u(λx+µy)a par définition u. Mais f ∈ L(E),

donc f(λx + µy) = λf(x) + µf(y) = λu(x)a + µu(y)a = (λu(x) + µu(y))a. Donc u(λx + µy)a = (λu(x) + µu(y))a.
Or a ̸= 0, donc u(λx + µy) = λu(x) + µu(y) (on a (u(λx + µy)− λu(x)− µu(y))a = 0 et il n’y a pas de diviseurs de
0 dans E et a ̸= 0).

Donc u linéaire. Donc u ∈ L(E,K).

Partie II : Étude Générale

3. Soit f, g ∈ L(E).
(a) On suppose ∃p ∈ N tel que fp = 0 et f ◦g = g ◦f . Montrons que ∀k ∈ N, fk ◦g = g ◦fk et (f ◦g)k = fk ◦gk.
Pour k = 0 et k = 1 déjà vraie. Supposons ∃k ∈ N, fk ◦ g = g ◦ gk et (f ◦ g)k = fk ◦ gk. Alors

fk+1 ◦ g = f ◦ (fk ◦ g) associativité ◦
= f ◦ (g ◦ fk) hyp rec
= (f ◦ g) ◦ fk associativité ◦
= (g ◦ f) ◦ fk commutativité f et g

= g ◦ fk+1

et

(f ◦ g)k+1 = (f ◦ g) ◦ (f ◦ g)k associativité ◦
= (f ◦ g) ◦ (fk ◦ gk) hyp rec
= f ◦ (g ◦ fk) ◦ gk associativité ◦
= f ◦ (fk ◦ g) ◦ gk hyp rec
= fk+1 ◦ gk+1 associativité ◦

3



Donc, par principe de récurrence, ∀k ∈ N, fk ◦ g = g ◦ fk et (f ◦ g)k = fk ◦ gk.
En particulier, (f ◦ g)p = fp ◦ gp = 0L(E) ◦ gp = 0. Donc f ◦ g nilpotente.
(b) Supposons f ◦ g nilpotente. Donc ∃p ∈ N tel que (f ◦ g)p = 0. Alors (g ◦f)p = (f ◦ g)p = 0 par commutativité.

Donc (g ◦ f) nilpotente.
(c) Supposons ∃p ∈ N, fp = 0. Alors

IdE = Idp
E −fp car f et IdE commutent

= (IdE −f) ◦
p−1∑
k=0

fk Idp−k−1
E

= (IdE −f) ◦
p−1∑
k=0

fk

Donc IdE −f inversible à droite. Donc, par théorème d’isomorphisme, IdE −f ∈ GL(E) et en plus (IdE −f)−1 =∑p−1
k=0 fk.

4. Soit f ∈ L(E) nilpotente.
(a) Soit p ∈ N tel que fp = 0. Soit n ≥ p. Alors

fn = fp+(n−p) avec n− p ∈ N
= fp ◦ fn−p associativité ◦
= 0 ◦ fn−p def f

= 0L(E)

(b) On pose A = {n ∈ N, fn = 0}. On a A ̸= ∅ car p ∈ A par définition. Donc A sous-ensemble de N non vide,
donc min A existe. Donc η(f) = min A existe.

5. Soit f ∈ L(E) nilpotente. On pose ∀n ∈ N, Nn = ker(fn).
(a) Par définition η(f), fη(f) = 0. Donc ∀x ∈ E, fη(f)(x) = 0. Donc E ⊂ ker(fη(f)). Or ker(fη(f)) ⊂ E car

fη(f) ∈ L(E). Donc ker(fη(f)) = E. Donc Nη(f) = E.
(b) Soit p ∈ N. Soit x ∈ Np. Donc fp(x) = 0 par définition. Alors fp+1(x) = f(fp(x)) = f(0) = 0 car f ∈ L(E)

et par associativité de ◦. Donc x ∈ ker(fp+1). Donc Np ⊂ Np+1. Donc ∀p ∈ N, Np ⊂ Np+1.
(c) Supposons ∃p ∈ N tel que dim Np = dim Np+1.
i. Or Np ⊂ Np+1 cf 5b. Donc Np = Np+1.
ii. On suppose q ∈ N tel que Np = Np+q. Par 5b et récurrence facile, on a Np ⊂ Np+1 ⊂ · · · ⊂ Np+q ⊂ Np+q+1.
iii. Soit x ∈ Np+q+1. Donc fp+q+1(x) = 0 par définition Np+q+1. Donc fp+1(f q(x)) = 0. Donc f q(x) ∈ Np+1 par

définition Np+1. Or Np = Np+1. Donc f q(x) ∈ Np.
iv. On a donc Np+q+1 ⊂ Np par définition inclusion et par question précédente. Or Np ⊂ Np+q+1 par 5(c)ii. Donc

Np = Np+q+1.
v. On a montré Np = Np+1 et si ∃q ∈ N tel que Np+q = Np, alors Np+q+1 = Np. Donc, par principe de récurrence,

∀q ∈ N, Np = Np+q.
(d) On a fη(f) = fη(f)+1 par 4a. Donc Nη(f) = Nη(f)+1. Donc ∀q ∈ N, Nη(f) = Nη(f)+q par 5(c)v. Donc ∀q ∈ N,

dim(Nη(f)) = dim(Nη(f)+q). Donc (dim(Np)p∈N est stationnaire à partir du rang η(f).
Si ∃p ∈ {0, . . . , η(f)− 1} tel que Np = Np+1, alors Np = Nη(f) = E par 5(c)v. Donc fp = 0 avec p < η(f). Donc

A par définition η(f). Donc ∀p ∈ {0, . . . , η(f)− 1}, Np ⊊ Np+1. Donc (dim(Np))0≤η(f) strictement croissante. Donc
∀p ∈ {0, . . . , η(f)−1}, dim(Np)+1 ≤ dim(Np+1) car ce sont des entiers. Donc dim(Nη(f) ≥ dim(N0)+η(f) = η(f)
car f0 = IdE injective.

Or Nη(f) = E car fη(f) = E. Donc η(f) ≤ dim(Nη(f)) = dim(E).

Partie III : Commutant d’un endomorphisme nilpotent

Soit f ∈ L(E) nilpotente tel que η(f) = dim(E) = n. On note C(f) = {g ∈ L(E), g ◦ f = f ◦ g}.
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6. On a C(f) ⊂ L(E). Soit g, h ∈ C(f) et λ, µ ∈ K. Alors λg+µh ∈ L(E) car L(E) est un K-ev. Et f ◦(λg+µh) =
λf ◦ g + µf ◦ h = λg ◦ f + µh ◦ f = (λg + µh) ◦ f . Donc λg + µh ∈ C(f). Donc C(f) sev L(E) par caractérisation
des sev.

7. Soit g ∈ C(f).
(a) Par définition, n = η(f) = min{p ∈ N, fp = 0}. Donc fn−1 ∈ {p ∈ N, fp = 0} et donc η(f) ≤ n − 1 par

définition du minimum. Donc ∃x0 ∈ E tel que fn−1(x0) ̸= 0.
(b) On pose B = (x0, . . . , fn−1(x0)). Soit λ0, . . . , λn−1 ∈ K tel que ∑n−1

k=0 λkfk(x0) = 0. Alors

n−1∑
k=0

λkfk(x0) = 0 =⇒ fn−1
(

n−1∑
k=0

λkfk(x0)
)

= 0

⇐⇒
n−1∑
k=0

λkfn−1+k(x0) = 0 car fn−1 ∈ L(E)

⇐⇒ λ0fn−1(x0) = 0 cf 4a

⇐⇒ λ0 = 0 car fn−1(x0) ̸= 0

=⇒
n−1∑
k=1

λkfk(x0) = 0

=⇒ fn−2
(

n−1∑
k=1

λkfk(x0)
)

= 0

⇐⇒
n−1∑
k=1

λkfn−2+k(x0) = 0 linéarité

⇐⇒ λ1fn−1(x0) = 0 cf 4a

⇐⇒ λ1 = 0 carfn−1(x0) ̸= 0

=⇒
n−1∑
k=2

λkfk(x0) = 0

Par n itérations du processus, on a λ0 = · · · = λn−1 = 0.
Donc B libre dans E avec dim E = n donc B base de E par caractérisation des bases en dimension finie.
(c) Soit a0, . . . , an−1 ∈ K tel que g(x0) =

∑n−1
k=0 akfk(x0). Soit k ∈ {0, . . . , n− 1}. Alors

g(fk(x0)) = g ◦ fk(x0)
= fk ◦ g(x0) cf raisonnement 3a

= fk(g(x0))

= fk

n−1∑
j=0

ajf j(x0)


=

n−1∑
j=0

ajfk+j(x0) linéarité

(d) Soit x ∈ E. Alors ∃x0, . . . , xn−1 ∈ K tel que x =
∑n−1

k=0 xkfk(x0) car B base de E. Alors

g(x) = g

(
n−1∑
k=0

xkfk(x0)
)

=
n−1∑
k=0

xkg(fk(x0)) linéarité g

=
n−1∑
k=0

xk

n−1∑
j=0

ajf j+k(x0)

 question précédente
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=
n−1∑
k=0

n−1∑
j=0

ajxkf j+k(x0)

=
n−1∑
j=0

n−1∑
k=0

ajxkf j+k(x0)

=
n−1∑
j=0

aj

(
n−1∑
k=0

xkf j(fk(x0))
)

=
n−1∑
j=0

ajf j

(
n−1∑
k=0

xkfk(x0)
)

car f j ∈ L(E)

=
n−1∑
j=0

ajf j(x) def x

=

n−1∑
j=0

ajf j

 (x) def opé L(E)

Donc g =
∑n−1

j=0 ajf j .
8. D’après 7, C(f) ⊂ Vect(IdE , f, . . . , fn−1).
Soit g ∈ Vect(IdE , f, . . . , fn−1). Donc ∃a0, . . . , an−1 ∈ K tel que g =

∑n−1
k=0 akfk. Alors

g ◦ f =
(

n−1∑
k=0

akfk

)
◦ f

=
n−1∑
k=0

akfk ◦ f linéarité à gauche ◦

=
n−1∑
k=0

akf ◦ fk car f ◦ fk = fk+1 = fk ◦ f

= f ◦
(

n−1∑
k=0

akfk

)
linéarité à droite ◦

= f ◦ g

Donc g ∈ C(f). Donc Vect(IdE , f, . . . , fn−1) ⊂ C(f).
Donc C(f) = Vect(IdE , f, . . . , fn−1).
9. Soit λ0, . . . , λn−1 ∈ K tel que ∑n−1

k=0 λkfk = 0L(E). Alors ∑n−1
k=0 λkfk(x0) = 0E . Or, d’après 7b, B =

(x0, . . . , fn−1(x0)) est une base de E. Donc B libre. Donc λ0 = · · · = λn−1 = 0. Donc (IdE , f, . . . , fn−1) libre.
Donc (IdE , . . . , fn−1) base de C(f) = Vect(IdE , f, . . . , fn−1). Donc dim(C(f)) = n = dim(E).

Problème 2 (Endomorphismes unipotents) :
Soit p ≥ 2. On note

M(p) = {f ∈ L(E), fp = IdE}

Partie I : Préliminaires
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1. Soit g ∈ L(E). Supposons ker(g) = {0}. Soit x, y ∈ E tels que g(x) = g(y). alors g(x) − g(y) = 0 et par
linéarité, g(x− y) = 0. Donc x− y ∈ ker(g) par définition de ker(g) et donc x = y. Donc g est injective.

Réciproquement, supposons que g est injective. Soit x ∈ ker(g). On a donc g(x) = 0 = g(0) puisque g est linéaire.
Et l’injectivité de g nous donne alors x = 0, c’est-à-dire ker(g) = {0}.

2. Soit f ∈ L(E).
(a) Comme f est un endomorphisme de E, on a f(e1), f(e2) ∈ E = Vect(e1, e2). Donc ∃a, b, c, d ∈ R tels que

f(e1) = ae1 + be2 et f(e2) = ce1 + de2.
(b) On pose g vérifiant g(e1) = de1 − be2 et g(e2) = −ce1 + ae2. Comme (e1, e2) est une base de E, on définit

donc ainsi une application linéaire sur E (cf argument question 4). On a alors

f ◦ g(e1) = f(de1 − be2)
= df(e1)− bf(e2)
= d(ae1 + be2)− b(ce1 + de2)
= (ad− bc)e1

et

f ◦ g(e2) = f(−ce1 + ae2)
= af(e2)− cf(e1)
= a(ce1 + de2)− c(ae1 + be2)
= (ad− bc)e2

par linéarité de f .
On construit donc ainsi un endomorphisme de E (on la connâıt sur une base de E) et f ◦ g = (ad− bc) IdE .
(c) Si ad− bc ̸= 0, on alors f ◦

(
1

ad−bcg
)

= IdE et donc f est inversible avec f−1 = 1
ad−bcg.

Réciproquement, supposons f inversible. On a donc d ̸= 0 ou b ̸= 0. Car sinon, on aurait f(e1) = ae1 et f(e2) = ce1
donc Im f = Vect(e1) ̸= E et f ne serait pas surjective donc pas bijective. Ce qui est absurde.

Donc (b, d) ̸= (0, 0). Et par suite de1 − be2 ̸= 0 puisque (e1, e2) est libre. On en déduit donc f(de1 − be2) ̸= 0 car
ker f = {0} car f injective. La linéarité de f nous donne alors f(de1− be2) = df(e1)− bf(e2) = d(ae1 + be2)− b(ce1 +
de2) = (ad− bc)e1 ̸= 0 ce qui implique ad− bc ̸= 0 puisque e1 ̸= 0.

Partie II : Cas p = 2

3. Soit u ∈M(2) telle que u ̸= IdE et u ̸= − IdE .
(a) Soit x ∈ ker(u−IdE)∩ker(u+IdE). Alors u(x)−x = 0 ce qui nous donne u(x) = x et on a également u(x)+x =

0 ce qui nous donne u(x) = −x. On a donc x = u(x) = −x et donc x = 0. Donc ker(u− IdE)∩ ker(u + IdE) = {0}.
On a aussi ∀x ∈ E, x = 1

2(u(x) + x) − 1
2(u(x) − x). Et il reste juste à montrer que u(x) − x ∈ ker(u + IdE) et

u(x) + x ∈ ker(u− IdE). Mais (u + IdE)(u(x)− x) = u2(x)− x = 0 et (u− IdE)(u(x) + x) = u2(x)− x = 0 puisque
u ∈M(2). Donc

x = 1
2(u(x) + x)︸ ︷︷ ︸
∈ker(u−IdE)

− 1
2(u(x)− x)︸ ︷︷ ︸
∈ker(u+IdE)

(b) On sait que u ± IdE ̸= 0. Donc rg(u ± IdE) ̸= 0 donc rg(u ± IdE) ∈ {1, 2}. Et par théorème du rang,
dim(ker(u± IdE)) ∈ {0, 1}. Mais par ailleurs, dim(ker(u + IdE)) + dim(ker(u− IdE)) = dim E = 2 nous donne donc
dim(ker(u + IdE)) = dim(ker(u− IdE)) = 1 (et donc rg(u− IdE) = rg(u + IdE) = 1).

(c) On sait que ker(u− IdE) et ker(u + IdE) sont des droites vectorielles. Soit ε1 ∈ ker(u− IdE) avec ε1 ̸= 0 et
soit ε2 ∈ ker(u + IdE) avec ε2 ̸= 0. Alors ker(u− IdE) = Vect(ε1) et ker(u + IdE) = Vect(ε2).

En particulier, on a donc u(ε1)− ε1 = 0, ce qui revient à u(ε1) = ε1. Et de même, u(ε2) = −ε2.
Par ailleurs, (ε1ε2) est la concaténation d’une base de ker(u− IdE) et d’une base de ker(u + IdE). C’est donc une

base adaptée à la somme directe et donc (ε1, ε2) est une base de ker(u− IdE)⊕ ker(u + IdE) = E.
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4. On considère l’application
f : R2 → R2

(x, y) 7→ (2x− y, 3x− 2y)

(a) Soit λ, µ ∈ R et (x, y), (z, t) ∈ R2. Alors

f
(
λ(x, y) + µ(z, t)

)
= f(λx + µz, λy + µt)

=
(
2(λx + µz)− (λy + µt), 3(λx + µz)− 2(λy + µt)

)
def f

=
(
λ(2x− y) + µ(2z − t), λ(3x− 2y) + µ(3z − 2t)

)
= λ(2x− y, 3x− 2y) + µ(2z − t, 3z − 2t)
= λf(x, y) + µf(z, t) def f

et donc f est linéaire.
(b) soit (x, y) ∈ R2. Alors

f2(x, y) = f(2x− y, 3x− 2y)
= (2(2x− y)− (3x− 2y), 3(2x− y)− 2(3x− 2y))
= (x, y)

Donc f2 = IdR2 et donc f ∈M(2). Donc f est une symétrie vectorielle, par caractérisation des symétries.
(c) On a f2 = IdR2 , donc f est bijective et f−1 = f par théorème d’isomorphisme. On a donc ker(f) = {0} et

rg(f) = dim(R2) = 2 par surjectivité ou par théorème du rang.
(d) Soit x, y ∈ R. On cherche à résoudre f(x, y) = (x, y), c’est-à-dire (x − y, 3x − 3y) = (0, 0). Une solution

évidente non nulle est (1, 1). On pose donc u = (1, 1).
On veut résoudre maintenant (f + IdE)(x, y) = 0 qui est équivalent à (3x− y, 3x− y) = (0, 0) dont une solution

évidente non nulle est (1, 3). On pose alors v = (1, 3).
(e) On a montré que f est une symétrie vectorielle. Donc, par caractérisation des symétries, f est la symétrie par

rapport à ker(f − IdE) parallèlement à ker(f + IdE) et E = ker(f − IdE)⊕ ker(f + IdE). Or u ∈ ker(f − IdE) et v ∈
ker(f +IdE) d’après la question précédente. Donc dim(ker(f +IdE)) ≥ 1 et dim(ker(f−IdE)) ≥ 1. Or, par Grassmann
(ou par caractérisation des supplémentaires en dimension finie), dim(ker(f−IdE))+dim(ker(f +IdE)) = dim(E) = 2.
Donc dim(ker(f − IdE)) ≤ 1 et dim(ker(f + IdE)) ≤ 1. Donc dim(ker(f − IdE)) = dim(ker(f + IdE)) = 1.

Or Vect(u) ⊂ ker(f − IdE) et u ̸= 0 donc Vect(u) est une droite vectorielle. Donc ker(f − IdE) = Vect(u). De
même, v ∈ ker(f + IdE), v ̸= 0 et dim(ker(f + IdE)), donc ker(f + IdE) = Vect(v).

Finalement, E = ker(f − IdE)⊕ker(f +IdE) = Vect(u)⊕Vect(v). Donc (u, v) est la concaténation de deux bases
de deux supplémentaires de E, donc (u, v) est une base de E adaptée à la somme directe Vect(u)⊕Vect(v).

Partie III : Cas p = 3

Soit f ∈M(3). On considère F = ker(f − IdE) et G = ker(f2 + f + IdE).
5. Si dim(F ) = 2, on a alors F = E car dim E = 2. Et donc f − IdE = 0 ce qui nous amène à f = IdE .
6. (a) Soit x ∈ F ∩ G. Donc x ∈ ker(f − IdE) ce qui conduit à f(x) = x. Par ailleurs, on a aussi x ∈ G =

ker(f2 + f + IdE). On a donc f2(x) + f(x) + x = 0. Mais comme f(x) = x, on a aussi f2(x) = f(f(x)) = f(x) = x.
On a donc finalement 3x = 0 ce qui nous donne x = 0 et donc F ∩G = {0}.

(b) Soit x ∈ E.

(f − IdE)(f2(x) + f(x) + x) = f3(x) + f2(x) + f(x)− f2(x)− f(x)− x par linéarité
= x− x car f3 = IdE

= 0
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Donc f2(x) + f(x) + x ∈ F . Mais comme F est un sev de E (puisque c’est le noyau d’une application linéaire), on en
déduit 1

3(f2(x) + f(x) + x) ∈ F .
De même, on calcul

(f2 + f + IdE)(2x− f(x)− f2(x))
=2(x)− f3(x)− f4(x) + 2f(x)− f2(x)− f3(x) + 2x− f(x)− f2(x) Linéarité
=− x− f(f3(x)) + f(x)− x + 2x car f3 = IdE

=0

donc 2x− f(x)− f2(x) ∈ G et par stabilité par combinaison linéaire, on a donc 1
3(2x− f(x)− f2(x)) ∈ G.

(c) Si x ∈ E, on a
x = 1

3(x + f(x) + f2(x)) + 1
3(2x− f(x)− f2(x))

Donc x ∈ ker(f − IdE) + ker(f2 + f + IdE). On a donc ker(f − IdE) ⊕ ker(f2 + f + IdE) = E par définition des
supplémentaires en utilisant la question 6a et 6b.

(d) On pose p = 1
3(f2 + f + IdE) et q = 1

3(2 IdE −f − f2). Alors

p2 = 1
9(f2 + f + IdE)2 q2 = 1

9(2 IdE −f − f2)2

= 1
9(f4 + 2f3 + 3f2 + 2f + IdE) = 1

9(4 IdE −4f − 3f2 + 2f3 + f4)

= 1
9(f + 2 IdE +3f2 + 2f + IdE) = 1

9(4 IdE −4f − 3f2 + 2 IdE +f) car f3 = IdE

= 1
3(f2 + f + IdE) = 1

3(2 IdE −f − f2)

= p = q

Donc, par caractérisation des projecteurs, p et q sont des projecteurs.
De plus, p est le projecteur sur Im(p) = ker(p− IdE) parallèlement à ker(p) avec E = ker(p)⊕ Im(p). Or, d’après

la définition de p, Im(p) ⊂ F et ker(p) = G. Donc, par théorème du rang, rg(p) = dim(E)−dim(G) = dim(F ). Donc
Im(p) = F . Donc p est le projecteur sur F parallèlement à G.

De plus, p + q = IdE , donc q est le projecteur sur Im(q) = ker(q − IdE) = ker(p) = G parallèlement à ker(q) =
ker(IdE −p) = Im(p) = F .

7. On suppose dim F = 1.
(a) On a E = F ⊕ G. Donc la formule de Grassmann nous donne dim(G) = dim E − dim F = 1. Donc F et G

sont des droites vectorielles de E. Par ailleurs, la concaténation de deux bases de F et G donne une base de E. On
choisit donc une base de F et une base de G, c’est à dire un vecteur u1 ̸= 0 de F et un vecteur u2 ̸= 0 de G, puisque
ce sont des droites vectorielles et donc une base est composé d’un seul vecteur non nul.

Alors la concaténation de ces deux bases est alors (u1, u2) et est donc une base de E.
(b) On a f(u2) ∈ E = F ⊕G. Donc ∃a, b ∈ R tels que f(u2) = au1 +bu2 puisque F = Vect(u1) et G = Vect(u2).
Mais u2 ∈ G = ker(f2+f+IdE). Donc f2(u2)+f(u2)+u2 = 0. Mais f2(u2) = f(au1+bu2) = au1+b(au1+bu2) =

(a + ab)u1 + b2u2. Donc f2(u2) + f(u2) + u2 = (2a + ab)u1 + (b2 + b + 1)u2 = 0. La liberté de la famille entrâıne alors
en particulier b2 + b + 1 = 0 qui est de discriminant 1 − 4 = −3 < 0. Il n’y a donc pas de solution réelle. Or b ∈ R.
Donc A.

L’hypothèse supplémentaire faite est donc fausse, autrement dit dim F ̸= 1.
8. On suppose dim F = 0.
(a) Supposons que (e1, f(e1)) n’est pas libre. Elle est donc liée. On a forcément f(e1) ̸= 0, sinon e1 ∈ F et donc

F ̸= {0}. Ce qui est absurde par hypothèse. Donc ∃λ ∈ R tel que f(e1) = λe1.
Mais d’autre part, comme F et G sont supplémentaires, le formule de Grassmann nous donne dim G = 2 = dim E

et donc G = E. Donc e1 = G = ker(f2 + f + IdE). On en déduit donc f2(e1) + f(e1) + e1 = (λ2 + λ + 1)e1 = 0.
Mais e1 ̸= 0 entrâıne donc λ2 + λ + 1 = 0 ce qui est impossible dans R.

Donc (e1, f(e1)) ne peut pas ne pas être libre, elle est donc libre.

9



C’est alors une famille de cardinal 2 en dimension 2, c’est donc une base de E, par caractérisation des bases en
dimension finie.

(b) On a f(e1) ∈ E = Vect(e1, e2). Donc ∃a, b ∈ R tels que f(e1) = ae1 + be2. Mais on vient de montrer que
(e1, f(e1)) est une base de E, c’est donc une famille libre, ce qui impose e1 et f(e1) à ne pas être colinéaire. Donc on
ne peut pas avoir f(e1) = ae1 autrement dit, b ̸= 0.

(c) On a e2 = 1
b (f(e1)− ae1). Donc f(e2) = 1

b f2(e1)− a
b f(e1) par linéarité.

(d) D’autre part, on a toujours G = E. Donc e1 ∈ G = ker(f2 + f + IdE), ce qui veut donc dire que f2(e1) =
−f(e1)− e1.

(e) On en déduit

f(e2) = 1
2f2(e1)− a

b
f(e1)

= 1
b

(−f(e1)− e1)− a

b
f(e1)

= −a + 1
b

f(e1)− 1
b

e1

= −a + 1
b

(ae1 + be2)− 1
b

e1

= −a2 + a + 1
b

e1 − (a + 1)e2

Partie V : Étude générale

9. L’endomorphisme nul n’est pas dans M(p). Ce n’est donc pas un espace vectoriel.
10. Soit f ∈ M(p). On a donc fp = IdE . Donc f ◦ fp−1 = IdE et p − 1 ≥ 1. donc fp−1 ∈ L(E). Donc, par

théorème d’isomorphisme ou caractérisation de la bijectivité, f est bijective, donc f ∈ GL(E) et f−1 = fp−1.
Par ailleurs, comme on a fp = IdE , en composant à droite par f−1, on obtient fp−1 = f−1, puis fp−2 = (f−1)2

et après p itérations, IdE = (f−1)p. Donc f−1 ∈M(p).
Cependant,M(p) n’est pas un sous-groupe de GL(E). Il manque la stabilité par la composition. Mais pas exemple,

en prenant l’application f : (x, y) 7→ (2x− y, 3x−2y) de la partie 2 et g : (x, y) 7→ (y, x), on a déjà vu que f ∈M(2).
Clairement, g ∈M(2) également. En revanche,

∀x, y ∈ R, g ◦ f(x, y) = (3x− 2y, 2x− y)

et

∀x, y ∈ R, (g ◦ f)2(x, y) = (3(3x− 2y)− 2(2x− y), 2(3x− 2y)− (2x− y))
= (5x− 4y, 4x− 3y)
̸= (x, y).

Donc (g ◦ f)2 /∈ M(2). A fortiori, tous les M(2p) ne sont pas stables pas la composition. Donc, en général, M(p)
n’est pas un sous-groupe de GL(E).

11. On définit f1 et f2 par fi(ej) = δi,jei pour tout i, j ∈ {1, 2}. Donc on connâıt l’image d’une base de E par
f1 et f2. Or toute application linéaire est entièrement déterminé par l’iimage d’une base. On peut donc étendre cette
définition par linérité à E tout entier. On définit donc bien deux applications linéaires définies par

∀x, y ∈ R, fi(xe1 + yej) = xδi,1e1 + yδi,2e2

c’est-à-dire f1(xe1 + ye2) = xe1 et f2(xe1 + ye2) = ye2.
On pose H = Vect(f1, f2).
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12. Soit f ∈M(p) ∩H. Donc ∃a, b ∈ R tels que f = af1 + bf2 puisque f ∈ H.
Montrer alors par récurrence que ∀n ∈ N, fn(ei) = δi,1ane1 + δi,2bne2, i.e. f(e1) = ane1 et fn(e2) = bne2.
On a d’abord f0 = IdE et a0 = b0 = 1, donc la relation est vérifiée. Supposons que ce soit encore le cas pour un

certain n ≥ 0. Alors dans ce cas

fn+1(e1) = f(fn(e1))
= f(ane1) par Hyp Rec
= anf(e1) par linéarité
= an(af1(e1) + bf2(e1)) par def f

= an+1e1 par def f1, f2

On peut effectuer exactement le même calul pour e2 et on trouve alors fn+1(e2) = f(bne2) = bn × be2 = bn+1e2.
On vient donc de prouver par récurrence que ∀n ∈ N, fn(e1) = ane1 et fn(e2) = bne2. En particulier, on a

fp(e1) = ape1 = e1 et fp(e2) = bpe2 = e2 car fp = IdE . Mais comme B = (e1, e2) est une base de E, cette famille
est en particulier libre, donc e1 ̸= 0 et e2 ̸= 0. Donc on doit avoir forcément ap = 1 et bp = 1.

Comme nous sommes dans R, il n’y a que deux possibilitées :
• Soit p est pair. Et dans ce cas a = ±1 et b = ±1. Et donc f = ±f1 ± f2, autrement dit,

M(p) ∩H = {f1 + f2, f1 − f2,−f1 + f2,−f1 − f2}

qui contient donc 4 éléments.
• Soit p est impair et auquel cas, a = b = 1. Et donc

M(p) ∩H = {f1 + f2}

qui ne contient qu’un seul élément.
Au passage, on peut noter aussi que f1 + f2 = IdE .

13. Soit f3, f4 ∈ L(E) telle que
f3(e1) = e2 f3(e2) = 0
f4(e1) = 0 f4(e2) = e1

Une application linéaire étant entièrement déterminée par l’image d’une base, f3 et f4 sont bien des endomorphismes
de E.

Soit λ1, λ2, λ3, λ4 ∈ R tels que ∑4
k=1 λkfk = 0. Alors, en particulier{∑4

k=1 λkfk(e1) = 0∑4
k=1 λkfk(e2) = 0

⇐⇒
{

λ1e1 + λ3e2 = 0
λ2e2 + λ4e1 = 0

⇐⇒
{

λ1 = λ3 = 0
λ2 = λ4 = 0

car (e1, e2) libre

Donc (f1, f2, f3, f4) est une famille libre de L(E). Or dim(E) = 2, donc L(E) est de dimension finie et ∼ (L(E)) =
dim(E)2 = 4. Donc, par caractérisation des bases en dimension finie, (f1, f2, f3, f4) est une base de L(E).

14. Commençons par une remarque générale. Soit f ∈ Vect(f3, f4). Donc ∃λ3, λ4 ∈ R tels que f = λ3f3 + λ4f4.
Alors f(e1) = λ3e2. Et donc f2(e1) = λ3λ4e1. Puis, par une récurrence très facile, ∀n ∈ N, f2n(e1) = (λ3λ4)ne1 et
f2n+1(e1) = λn+1

3 λn
4 e2. De même f2n(e2) = (λ3λ4)e2 et f2n+1(e2) = λn

3 λn+1
4 e1. La symétrie des deux situations nous

permet de nous focaliser que sur e1 par exemple.
En particulier, si f ∈ M(2p + 1), on a f2p+1(e1) = e1. Donc λp+1

3 λp
4e2 = e1. Or (e1, e2) est libre. Donc e1 /∈

Vect(e2). Donc A. Donc
M(2p + 1) ∩Vect(f3, f4) = ∅.

Si f ∈ M(4p), alors f4p(e1) = e1 et donc (λ3λ4)2pe1 = e1. Donc (λ3λ4)2p = 1. Or λ3λ4 ∈ R, donc λ3λ4 = ±1.
Et donc

M(4p) ∩Vect(f3, f4) =
{

λf3 + 1
λ

f4, λf3 −
1
λ

f4, λ ∈ R∗
}

.

11



Si f ∈ M(4p + 2), alors f4p+2(e1) = e1 et donc (λ3λ4)2p+1e1 = e1. Donc (λ3λ4)2p+1 = 1 et donc λ3λ4 = 1 car
λ3λ4 ∈ R. Donc

M(4p + 2) ∩Vect(f3, f4) =
{

λf3 + 1
λ

f4, λ ∈ R∗
}

.
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