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1 Fractions Rationnelles
Exercice 1 :
Soit p, q ∈ Z avec p ∧ q = 1. On considère la fraction rationnelle :

F (X) = Xp − 1
Xq − 1

Déterminer les racines et les pôles de F avec leur multiplicités.

Exercice 2 :
Soit F ∈ K(X).

1. Montrer que si a ∈ K est racine de F de multiplicité α ∈ N∗, alors a est racine de F ′ de multiplicité α − 1.
2. Comparer également les pôles de F et de F ′ et leurs multiplicité.

Exercice 3 (*) :
Montrer qu’il n’existe pas de F ∈ C(X) tel que

F ′(X) = 1
X

.

Exercice 4 (Décomposition en éléments simples dans C(X)) :
Décomposer les fractions rationnelles suivantes en éléments simples dans C(X) :

1. F (X) = X2+2X+5
X2−3X+2 2. F (X) = 4

(X2+1)2

3. F (X) = X2+1
(X−1)(X−2)(X−3) 4. F (X) = 3X−1

X2(X+1)2

5. F (X) = 1
X(X−1)2 6. F (X) = 1

X4+X2+1
7. F (X) = 2X

X2+1 8. F (X) = 3
(X2−1)2

9. F (X) = 1
X2+X+1 10. F (X) = X3+X2+1

X3+X2+X

Exercice 5 (Décompositions en éléments simples dans R(X)) :
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Décomposer les fractions rationnelles suivantes dans R(X) :

1. F (X) = X3

X2−3X+2 2. F (X) = X−1
X3−3X+2

3. F (X) = 1
(X−1)2(X+1)2 4. F (X) = X

X3−1
5. F (X) = 1

(X2+1)(X2+X+2) 6. F (X) = 1
(X2+1)2−X2

7. F (X) = X4

(X4+X2+1)(X4−X2+1) 8. F (X) = X4+1
X2(X2+X+1)2

Exercice 6 (*) :
Soit n ∈ N∗ et ω = e2iπ/n.

1. Soit P ∈ C[X] tel que P (ωX) = P (X). Montrer que ∃Q ∈ C[X] tel que P (X) = Q(Xn).
2. En déduire la réduction au même dénominateur de la fraction rationnelle

F (X) =
n−1∑
k=0

X + ωk

X − ωk
.

Exercice 7 (*) :
Soit n ∈ N∗ et a0, . . . , an, b0, . . . , bn ∈ R. Soit

f : x 7→
n∑

k=0
(ak cos(kx) + bk sin(kx)).

Montrer que f s’annule au plus 2n fois sur [0, 2π[.

Exercice 8 :
Soit n ∈ N. Décomposer en éléments simples la fraction

Fn(X) = n!
X(X − 1)(X − 2) . . . (X − n) .

Exercice 9 :
Soit λ1, . . . , λn des complexes deux à deux distincts et P (X) =

∏n
k=1(X − λk). Exprimer en fonction de P et

de ses dérivées les fractions

F (X) =
n∑

k=1

1
X − λk

, G(X) =
n∑

k=1

1
(X − λk)2 , H(X) =

∑
1≤k ̸=ℓ≤n

1
(X − λk)(X − λℓ)

.

Exercice 10 :
Soit

F (X) = 1
1 + X2 ∈ C(X)

1. Effectuer la décomposition en éléments simples de F , puis en déduire une expression de F (n) pour tout
n ∈ N.

2. Montrer ∀n ∈ N, ∃Pn ∈ Rn[X] tel que

F (n)(X) = Pn(X)
(X2 + 1)n+1 .
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3. Déterminer les racines de Pn.

Exercice 11 :
Soit P ∈ C[X] scindé à racines simples x1, . . . , xn, n ≥ 2.

1. Former la décomposition en éléments simples de 1
P .

2. En supposant que P
:(0) ̸= 0, montrer que

n∑
k=1

2

xkP ′:(xk)
= − 1

P
:(0)

.

3. Effectuer la décomposition en éléments simple de P ′′

P .
4. En déduit que

n∑
k=1

P ′′:(xk)

P ′:(xk)
= 0.

Exercice 12 :
Étudier l’existence de solutions du système

x
1+a + y

1+2a + z
1+3a = 1

x
2+a + y

2+2a + z
2+3a = 1

x
3+a + y

3+2a + z
3+3a = 1

Exercice 13 :
Soit a1, . . . , an, b1, . . . , bn ∈ C 2 à 2 distincts tels que ∀i, j ∈ {1, . . . , n}, ai + bj ̸= 0. Résoudre le système∑n

j=1
xj

ai+bj
= 1 pour tout i ∈ {1, . . . , n}.

Exercice 14 (**) :
Soit P (X) =

∑n
k=0 akXk ∈ R[X] dont toutes les racines sont réelles.

1. Montrer que ∀x ∈ R, P ′:(x)2 − P
:(x)P ′′:(x) ≥ 0.

2. En déduire
∀k ∈ {1, . . . , n − 1}, ak−1ak+1 ≤ a2

k.

Exercice 15 (**) :
Soit P ∈ K[X] avec deg(P ) = n ∈ N tel que

∀k ∈ {1, . . . , n},

ˆ 1

0
xkP
:(x)dx = 0.

Montrer que ˆ 1

0
P
:(x)2dx = (n + 1)2

(ˆ 1

0
P
:(x)dx

)2

.

Exercice 16 (Polynômes symétriques) :
On dit qu’un polynôme P ∈ C[X] de degré n est symétrique s’il s’écrit P (X) =

∑n
k=0 akXk avec ∀k ∈

{0, . . . , n}, ak = an−k.
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1. Soit P ∈ C[X] de degré n. Montrer que P est symétrique si, et seulement si, P (X) = XnP (1/X).
2. Montrer qu’un produit de polynômes symétriques est symétrique.
3. Soit P, Q ∈ C[X] symétriques tels que P |Q. Montrer que Q

P est symétrique.
4. Soit P ∈ C[X] symétrique.

(a) Soit α ∈ C. Montrer que si α est racine de P , alors α ̸= 0 et 1
α est racine de P .

(b) Montrer que si 1 est racine de P , alors 1 est racine au moins double de P .
(c) Montrer que si P est de degré impair, alors −1 est racine de P .
(d) Montrer que si P est de degré pair et si −1 est racine de P , alors −1 est racine au moins double de

P .
5. Soit P ∈ C[X] symétrique de degré pair 2n. Montrer qu’il existe a2n, b1, . . . , bn ∈ C tels que

P (X) = a2n

n∏
k=1

(X2 + bkX + 1).

6. Que dire de P si P ∈ C[X] symétrique de degré impair ?

2 Shampooing (Tout-en-un)
Exercice 17 (Polynôme de Tchebychev [✓][✓]) :

Partie 1 : Généralités

1. Montrer que ∀n ∈ N, ∃!Pn ∈ R[X] tel que ∀θ ∈ R, Pn
:(cos(θ)) = cos(nθ).

On définit, pour tout n ∈ N, le polynôme Tn par :
T0(X) = 1
T1(X) = X

∀n ∈ N, Tn+2(X) = 2XTn+1(X) − Tn(X)

2. Calculer T2, T3.
3. Montrer que ∀n ∈ N, ∀θ ∈ R, Tn

:(cos(θ)) = cos(nθ).
Indic : Par récurrence. Ou pas.

4. Déterminer le degré des polynômes Tn.
Indic : Récurrence encore.

5. Étudier la parité des polynômes Tn.
6. Montrer que les polynômes Tn sont à coefficients entiers et calculer leurs coefficients dominants.

Indic : Récurrence ...
7. En utilisant la questions 3., trouver les racines de Tn et en déduire un factorisation de Tn pour n ≥ 1.
8. En déduire les valeurs de

∑n−1
k=0 cos

(
(2k+1)π

2n

)
et
∏n−1

k=0 cos
(

(2k+1)π
2n

)
pour tout n ≥ 1.

9. Montrer que Tn est solution de l’équation différentielle

(x2 − 1)y′′ + xy′ − n2y = 0

10. Effectuer la décomposition en éléments simples de 1
Tn

pour n ≥ 1.
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2 SHAMPOOING (TOUT-EN-UN)

Partie 2 : Décompositions en éléments simples

Dans toute la suite du problème, on prend n ∈ N∗ et on pose ∀k ∈ {0, . . . , 2n − 1}, θk = 2k+1
4n π.

11. Soit P ∈ R2n−1[X]. Déterminer la décomposition en éléments simples de P
T2n

en fonctions des P
:(cos(θk)).

12. Montrer que

∀m ∈ {0, . . . , n}, ∀θ ∈ [0, 2π[\{θ0, . . . , θ2n−1},
T ′

2m

:
(cos(θ))

T2n
:(cos(θ))

=
2n−1∑
k=0

(−1)k m

n

sin(2mθk) cos(θ)
cos(θ)2 − cos(θk)2 .

13. En déduire que

∀m ∈ {0, . . . , n},
2n−1∑
k=0

(−1)k sin(2mθk)
sin(θk)2 = 4mn.

14. Une identité de Riesz : On souhaite montrer l’identitée de Riesz :

∀P ∈ Rn[X], ∀θ ∈ R, ieiθP ′:(eiθ) = 1
2n

2n−1∑
k=0

(−1)k P
:(ei(θ+2θk))
2 sin(θk)2 .

(a) Montrer qu’il suffit d’établir l’identitée de Riesz pour les polynômes Pm(X) = Xm pour tout m ≤ n.
(b) Soit m ≤ n. Montrer que l’identitée de Riesz pour Pm(X) = Xm est équivalente à

2n−1∑
k=0

(−1)k e2imθk

sin(θk)2 = 4imn.

(c) Calculer, pour tout k ∈ {0, . . . , 2n − 1}, θk + θ2n−1−k.
(d) Conclure.

Les polynômes de Tchebychev sont des polynômes hyper classiques. Ils font partis du folklore mathématique.
On peut faire encore beaucoup de choses avec ces polynômes, comme trouver une autre équation différentielles
vérifiée par ces polynômes, trouver des expressions de ces polynômes etc (voir graphe)
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