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Le but des fractions rationnelles est de “compléter” un peu les polynômes. L’une des difficulté
des polynômes étant que K[X] est seulement un anneau et pas un corps. On a vu qu’il y a une
similarité très forte dans le fonctionnement entre l’anneau Z et l’anneau K[X]. Mais précisément,
dans les entiers, on sait qu’on peut passer aux rationnels Q pour obtenir une structure de corps. Ce
qui est très pratique. On va ici adapter le processus de fabrication des rationnels à partir des entiers,
pour fabriquer les fractions rationnelles (d’où la similarité des les dénominations). Q est donc à Z ce
que K(X) sera à K[X].
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Dans l’ensemble de ce cours, on se placera sur un corps K qui sera soit R soit C. Les résultats
seront donc valables indifféremment sur les deux corps, sauf s’il est précisé, bien sûr.

1 Définitions et propriétés
Construction du corps des fractions rationnelles K(X) (HP) :
On définit sur K[X] × K[X]∗ la relation ∼ définit par

(A, B) ∼ (C, D) ⇐⇒ AD = BC.

La relation ∼ est une relation d’équivalence sur K[X]×K[X]∗. On note alors A
B la classe d’équivalence

de (A, B) ∈ K[X] × K[X]∗.
D’où :

Définition 1.1 (Corps des fractions rationnelles, Représentant d’une fraction rationnelle) :
On note K(X) le corps des fractions rationnelles sur K (définie comme au dessus, c’est-à-dire) :

K(X) =
{

A

B
, A, B ∈ K[X], B ̸= 0

}
.

Si F ∈ K(X) et si (A, B) ∈ K[X] × K[X]∗ tel que F = A
B , alors on dit que A

B est un
représentant de F .

Remarque :
La construction du corps des fraction rationnelles n’est officiellement pas au programme. Elle n’est
donc pas à connâıtre car elle flirt un peu avec la notion d’ensemble quotient par une relation
d’équivalence qui, lui, est clairement hors programme. Mais il me semble bon pédagogiquement
(et intellectuellement) de montrer d’où viennent les choses, qu’elles ne sont pas parachuter. Il semble
raisonnable d’un point de vue culture mathématique d’avoir une idée de la construction. Ca éclaire
beaucoup alors sur les propriétés qui vont avec.

On vient d’affubler l’ensemble K(X) du nom de corps. Ce n’est pas anodin et ce n’est pas pour
rien. Autant K[X] est un anneau pour les opérations usuelles entre polynômes, autant K(X) va
devenir un corps pour ces mêmes opérations (qu’il faudra tout de même redéfinir). On a donc vendu
un peu la mèche en avance, on vient d’affirmer que c’est un corps a priori de la démonstration.
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1 DÉFINITIONS ET PROPRIÉTÉS

Définition-Propriété 1.2 (Opérations sur K(X)) :
On munit K(X) de deux LCI notée + et × et d’une LCE définies par : si F, G ∈ K(X)
et λ ∈ K, alors ∃A, B, C, D ∈ K[X] avec B, D ̸= 0 tels que F = A

B et G = C
D . On

pose alors

F + G = A

B
+ C

D
= AD + BC

BD
, F × G = A

B
× C

D
= AC

BD
, λF = λA

B
.

Remarque :
Il faut montrer que ces opérations sont bien des LCI et LCE, qu’elles sont bien définies. Attention
à ne pas confondre les opérations. Elles sont notées de la même manières, mais il y a ici l’addition
définie sur K(X) qui utilise le produit et la somme qui ont été définies sur K[X] et qui se notent
de la même manière. Bien identifié ce qui relève de la nouveauté de ce qui relève des choses déjà
connues, même s’il n’y a pas de signes distinctifs entre les deux.

Il n’y a d’ailleurs pas de notations différentes à dessein.

Démonstration :
Si F = A1

B1
= A2

B2
et G = C1

D1
= C2

D2
, alors A1

B1
+ C1

D1
= A1D1+B1C1

B1D1
et A2

B2
+ C2

D2
= A2D2+B2C2

B2D2
. Or

(A1D1 + B1C1)B2D2 = (A1B2)D1D2 + (C1D2)B1B2

= (B1A2)D1D2 + (C2D1)B1B2

= (A2D2 + C2B2)B1D1

et donc (A1D1 + B1C2, B1D1) ∼ (A2D2 + B2C2, B2D2), i.e. A1D1+B1C1
B1D1

= A2D2+B2C2
B2D2

et donc +
est bien définie sur K(X).

On fait la même chose avec les deux autres opérations. □

Remarque :
On vient donc de montrer que les opérations sur K(X) qui sont définies à partir des opérations dans
K[X] et d’un représentant des fractions rationnelles, ne dépendent pas des représentants choisis pour
effectuer les calculs. Les choses sont donc cohérentes.

Autrement dit, on vient de montrer que les opérations de K[X] “passent bien” à la relation
d’équivalence.
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1 DÉFINITIONS ET PROPRIÉTÉS

Définition-Propriété 1.3 (Forme irréductible) :
Toute fraction rationnelle sur K s’écrit de façon unique avec deux polynômes premiers
entre eux et de dénominateur unitaire, i.e.

∀F ∈ K(X), ∃!(A, B) ∈ K[X]×K[X]∗, t.q. F = A

B
et A∧B = 1 et coeff dom(B) = 1.

Cette écriture à partir de deux polynômes premiers entre eux s’appelle la forme
irréductible.

Démonstration :
La démonstration est la même que pour Q. Soit F ∈ K(X) et (A, B) ∈ K[X] × K[X]∗ tel que
F = A

B . Soit D = A ∧ B. Alors ∃A′, B′ ∈ K[X] premiers entre eux tels que A = DA′ et B = DB′.
Alors

F = A

B
= DA′

DB′ = A′

B′

car AB′ = DA′B′ = A′B.
D’où l’existence d’une telle écriture.
Tout d’abord, il est évident que si F = 0, alors l’écriture est unique puisque F = 0 ⇐⇒ A = 0

et 0 ∧ B = 1 ⇐⇒ B = 1. On va donc considérer F ̸= 0.
Supposons ∃(A, B), (C, D) ∈ K[X]∗ × K[X]∗ tels que F = A

B = C
D et A ∧ B = C ∧ D et B

et D unitaire. Alors on a AD = BC. Donc A|BC. Or A et B sont premiers entre eux, donc A|C.
De même, C|AD or D ∧ C = 1, donc C|A. Et donc ∃λ ∈ K∗ tel que C = λA. D’où AD = λAB
et donc D = λB car A ̸= 0. Mais B et D sont unitaire, donc par unicité du coefficient dominant,
λ = 1. Puis (A, B) = (C, D). Et donc l’unicité. □

Remarque (Plongement de K[X] dans K(X)) :
Techniquement, les polynômes ne sont pas des classes d’équivalences, donc K[X] ̸⊂ K(X) car les
objets ne sont pas de la même nature. Ce pendant, on peut faire un application injective K[X] →
K(X) qui permet alors de “voir” K[X] comme un sous-ensemble de K(X) en identifiant K[X] et
son image dans K(X) par ce plongement. Pour cela :

K[X] → K(X)
P 7→ P

1

Il est facile de montrer que cette application est injective, elle est linéaire, et elle est compatible avec
toutes les lois à gauche et à droite. On peut donc alors faire un amalgame entre un polynôme P et
sa classe d’équivalence P

1 .
C’est ce qu’on fait en écrivant Z ⊂ Q.
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1 DÉFINITIONS ET PROPRIÉTÉS

Remarque :
On rappelle que dans la divisibilité, les inversibles sont “invisibles” et donc ne peuvent pas être
mâıtrisés. Donc, toutes les relations de divisibilité ne donnent que des informations à inversibles près,
c’est-à-dire à produit par un scalaire près. Il est important d’avoir une information supplémentaire
pour pouvoir alors fixé les coefficients et avoir l’unicité. D’où la condition supplémentaire sur le
dénominateur unitaire qui apparâıt par rapport au cas de Q.

Proposition 1.1 (Structure algébrique de K(X)) :
En munissant K(X) des opérations précédentes, on a :

(i) (K(X), +, ×) est un corps commutatif appelé corps des fractions rationnelles sur K
(ii) (K(X), +, · ) est K-espace vectoriel de dimension infinie.
(iii) (K(X), +, ×, · ) est une K-algèbre commutative.

Démonstration :
Il suffit de le vérifier. □

Remarque :
Comme on a une structure d’anneau, on peut définir une application Kn+1 → K(X) par (a0, . . . , an) 7→∑n

k=0 akF k. Autrement dit, on peut définir K[X] → K(X) par P 7→ P ◦ F une composition.
Mais dans la mesure où K(X) est un corps, il y a une application d’inversion (i.e. l’application

P 7→ 1
P sur K[X] \ {0}) et donc on peut définir aussi K[X] \ {0} → K(X) par P 7→ 1

P ◦F . Et donc,
en multipliant les deux, on peut définir une composition dans K(X).

Définition 1.4 (Composition de fractions rationnelles) :
Soit F, G ∈ K(X).

Si F = A
B avec A ∈ K[X] et B ∈ K[X] \ {0}, on définit F ◦ G par

F ◦ G = A ◦ G

B ◦ G
.
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1 DÉFINITIONS ET PROPRIÉTÉS

Définition-Propriété 1.5 (Degré d’une fraction rationnelle) :
Soit F ∈ K(X).

Si (A, B) ∈ K[X] × K[X]∗ tel que F = A
B , on définit le degré de F par

deg(F ) = deg(A) − deg(B) ∈ Z ∪ {−∞}.

qui est indépendant du choix du représentant.

Démonstration :
La définition du degré dépendant, pour le moment, du représentant que l’on utilise pour F . Il faut
montrer que cette définition est bien cohérente et que donc la notion de degré d’une fraction ration-
nelle a bien un sens sur la classe d’équivalence, autrement dit qu’elle ne dépend pas du représentant
choisi.

Soit donc (A, B), (C, D) ∈ K[X] × K[X]∗ tel que F = A
B = C

D . Donc AD = BC. Alors
deg(A) + deg(D) = deg(B) + deg(C) ⇐⇒ deg(A) − deg(B) = deg(C) − deg(D). Donc le degré
de F est bien défini et constant sur la classe d’équivalence. Autrement dit, deg(F ) est bien défini
et est unique pour une fraction rationnelle donnée (ce qui justifie a posteriori le choix de la notation
qui ne dépend que de F et pas du représentant choisi pour le calculer). □

Proposition 1.2 (Propriété du degré pour les fractions rationnelles) :
Soit F, G ∈ K(X) et λ ∈ K. Alors

(i) deg(F + G) ≤ max(deg(F ), deg(G))
(ii) deg(FG) = deg(F ) + deg(G)
(iii) Si λ ̸= 0, deg(λF ) = deg(F )

Démonstration :
Le plus dur est le premier point. On va prouver seulement celui là. Les deux autres sont beaucoup
plus faciles. Laissés en exercices.

Soit A, B, C, D ∈ K[X] avec BD ̸= 0 tels que F = A
B et G = C

D . Alors F + G = AD+BC
BD . Donc

deg(F + G) = deg(AD + BC) − deg(BD)
≤ max(deg(AD), deg(BC)) − deg(B) − deg(D)
= max(deg(A) + deg(D), deg(B) + deg(C)) − deg(B) − deg(D)
= max(deg(A) − deg(B), deg(C) − deg(D) à vérifier
= max(deg(F ), deg(G)).

□
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1 DÉFINITIONS ET PROPRIÉTÉS

Remarque :
Il n’y a pas de formule générale pour le degré d’une composée.

"
!!! ATTENTION !!!

F ∈ K[X] n’est PAS équivalent à deg(F ) ≥ 0. Ça ne suffit pas ! Ne pas oublier le
dénominateur ! Par exemple, X4−1

X2+1 /∈ K[X] et pourtant le degré est 2.

Exemple 1.1 :
Montrer que K−(X) = {F ∈ K(X), deg(F ) < 0} est un espace vectoriel et que ∀n ∈ N, ∀a ∈ K,(

1
(X−a)k

)
0≤k≤n

est une famille libre de K−(X).

Définition-Propriété 1.6 (Dérivée d’une fraction rationnelle) :
Soit F ∈ K(X). Soit (A, B) ∈ K[X] × K[X]∗ tel que F = A

B .
On appelle fraction rationnelle dérivée de F la fraction rationnelle notée F ′ définie

par
F ′ = A′B − AB′

B2 .

et F ′ est indépendant du choix du représentant de F .

Démonstration :
Il suffit de faire le vérifier. Si AD = BC, alors A′D + AD′ = B′C + BC ′ et donc

(A′B − AB′)D2 = D(A′BD − (AD)B′)
= D(A′BD − BCB′)
= BD(A′D − B′C)
= BD(BC ′ − AD′)
= B(BC ′D − (AD)D′)
= B(BC ′D − BCD′)
= B2(C ′D − CD′)
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1 DÉFINITIONS ET PROPRIÉTÉS

□

Proposition 1.3 (Degré de la dérivée d’une fraction rationnelle) :
Soit F ∈ K(X). Alors

deg(F ′) ≤ deg(F ) − 1

Avec égalité si et seulement si deg(F ) ̸= 0.

Démonstration :
C’est le cas d’égalité qui est intéressant. Si deg(F ) = 0, alors deg(A) = deg(B) = d. Donc
deg(A′B − AB′) ≤ d(d − 1) et donc deg(F ′) ≤ d(d − 1) − d2 = −d. Donc si d ≥ 2, alors
deg(F ′) ≤< −1 = deg(F ) − 1. En étudiant le cas d = 0 et d = 1, à part, on voit que deg(F ′) <
−1 = deg(F ) − 1.

Supposons deg(F ) ̸= 0. Donc deg(A) ̸= deg(B). Si deg(A) ≥ 1 et deg(B) ≥ 1, alors
coeff dom(A′B) = deg(A) coeff dom(A) coeff dom(B) ̸= deg(B) coeff dom(A) coeff dom(B) =
deg(AB′). Or deg(A′B) = deg(A)+deg(B)−1 = deg(AB′), donc deg(AB′−AB′) = max(deg(A′B), deg(AB′)) =
deg(A) + deg(B) − 1. D’où deg(F ′) = deg(A) − deg(B) − 1 = deg(F ) − 1.

Si F = 0, c’est vrai. Supposons F ̸= 0. Supposons deg(A) = 0. Alors F = λ/B avec λ ̸= 0 et
F ′ = −λB′/B2. Et deg(A) ̸= deg(B), donc deg(B) ≥ 1. Donc deg(B′) = deg(B) − 1. Et donc
deg(F ′) = deg(B) − 1 − 2 deg(B) = − deg(B) − 1 = deg(F ) − 1.

Supposons deg(B) = 0 (car B ̸= 0). Alors deg(A) ≥ 1 car F ̸= 0. Et donc F = λA, donc
deg(F ′) = deg(F ) − 1. □

Remarque :
La contraposée du cas d’égalité est intéressant aussi :

deg(F ′) < deg(F ) − 1 ⇐⇒ deg(F ) = 0.

"
!!! ATTENTION !!!

On peut avoir deg(F ′) < deg(F ) − 1 sans pour autant que F ′ = 0 ! A contrario des
polynômes.
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1 DÉFINITIONS ET PROPRIÉTÉS

Contre-exemple :
Avec F (X) = X

X+1 , on a deg(F ) = 0 et F ′(X) = − 1
(X+1)2 , donc deg(F ′) = −2 < deg(F )−1.

Définition 1.7 (Racines et pôles d’une fraction rationnelle) :
Soit F = A

B ∈ K(X) sou forme irréductible.
On appelle racine d’ordre m de F toute racine de A de multiplicité m.
On appelle pôle d’ordre m de F toute racine de B de multiplicité m.

"

!!! ATTENTION !!!

Si F n’est pas mise sous forme irréductible, il y a des facteurs en trop. On a alors pas les
bonnes multiplicités. Il y a des simplifications qui peuvent s’opérer et donc faire apparâıtre
des pôles “fictifs”. On parle alors de pôles apparents.

S’il y a des racines communes au numérateur et dénominateur, pour savoir si c’est un pôle
ou une racine, il faut faire la différence des multiplicité en tant que racine du numérateur
moins la multiplicité en tant que racine du dénominateur. Si la différence est strictement
positive, on a une racine et la différence est l’ordre ; si la différence est nulle, c’est que c’était
un pôle fictif, ce n’est pas une racine ni un pôle ; si la différence est strictement négative,
c’est que c’est un pôle dont l’ordre est l’opposé de la différence.

Contre-exemple :
On considère la fraction rationnelle F (X) = X4−1

X4+2X3−7X2−8X+12 . Déterminer ses racines et
ses pôles.

Définition 1.8 (Fonction rationnelle associée) :
Soit F = A

B ∈ K(X) sous forme irréductible.
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2 DÉCOMPOSITION EN ÉLÉMENTS SIMPLES

On définit la fonction rationnelle associée à F par

F̃ :
DF → K
x 7→ Ã(x)

B̃(x)

où DF = K \ {pôles de F}.

Autrement dit, F̃ = Ã

B̃
.

Proposition 1.4 (Caractérisation d’égalité de fractions rationnelles par les fonctions
rationnelles associées) :
Soit F, G ∈ K(X). Alors

Il existe une infinité de x ∈ K, F̃ (x) = G̃(x) ⇐⇒ F = G

Démonstration :
Le sens indirecte est évident et n’a pas beaucoup d’intérêt. Supposons qu’il existe un infinité de
x ∈ K tels que F̃ (x) = G̃(x). On note F = A

B et G = C
D . Alors il existe une infinité de x ∈ K tels

que Ã(x)D̃(x) = C̃(x)B̃(x). Autrement dit, le polynôme AD − BC a une infinité de racines. Donc
AD = BC et donc F = A

B = C
D = G. □

2 Décomposition en éléments simples

2.1 Partie Entière

Définition-Propriété 2.1 (Partie entière d’une fraction rationnelle) :
∀F ∈ K(X), ∃(E, R) ∈ K[X] × K(X) tel que

F = E + R, et deg(R) < 0.

E s’appelle la partie entière de F .

Démonstration :
Soit F = A

B ∈ K(X). En effectuant la division euclidienne de A par B, ∃(Q, R) ∈ K[X] tel
que A = BQ + R et deg(R) < deg(B). Alors F = Q + R

B . Et Q ∈ K[X], R
B ∈ K(X) et

deg(R/B) = deg(R) − deg(B) < 0.
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2 DÉCOMPOSITION EN ÉLÉMENTS SIMPLES 2.1 Partie Entière

Pour l’unicité, si F = Q1+R1 = Q2+R2, alors Q1−Q2 = R2−R1. Donc R2−R1 ∈ K[X], donc
deg(R2−R1) ∈ N∪−∞ et deg(R2−R1) ≤ max(deg(R2), deg(R1)) < 0. Donc deg(R2−R1) = −∞
et donc R2 = R1. On en déduit immédiatement Q1 = Q2. □

Remarque :
La partie entière d’une fraction rationnelle est l’analogue de la partie entière définie dans Q.

La partie entière est toujours le quotient de la division euclidienne du numérateur par le dénominateur.

Exemple 2.1 :
Déterminer la partie entière de F (X) = X2+X

X+2 .

Proposition 2.1 (Propriété de la partie entière) :
Soit F ∈ K(X).

1. Si deg(F ) < 0, alors sa partie entière est nulle.
2. Si F ∈ K[X], alors F est égale à sa partie entière.

Démonstration :
C’est évident à partir de la définition de la partie entière. □

Proposition 2.2 (Supplémentarité dans K(X)) :
Si on note K−(X) = {F ∈ K(X), deg(F ) < 0}, alors K[X] et K−(X) sont supplémentaires
dans K(X), i.e.

K(X) = K[X] ⊕ K−(X).

Démonstration :
C’est évident à partir de la définition de la partie entière et la caractérisation des supplémentaires. □
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2 DÉCOMPOSITION EN ÉLÉMENTS SIMPLES2.2 Décomposition en éléments simples dans C(X)

2.2 Décomposition en éléments simples dans C(X)

Théorème 2.3 (Décomposition en éléments simples dans C(X)) :
Soit F = A

B ∈ C(X) sous forme irréductibles. Soit α1, . . . , αn ∈ C les pôles de F d’ordre
m1, . . . , mn respectivement. Soit Q la partie entière de F .

Alors ∃!(λk,ℓ) 1≤k≤n
1≤ℓ≤mk

∈ Cm1+···+mn tel que

F (X) = Q(X) +
n∑

k=1

mk∑
ℓ=1

λk,ℓ

(X − αk)ℓ︸ ︷︷ ︸
partie polaire
associée à αk

Autrement dit :

F (X) = Q(X) + λ1,1
X − α1

+ λ1,2
(X − α1)2 + · · · + λ1,m1

(X − α1)m1︸ ︷︷ ︸
partie polaire associée à α1

+ · · · + λn,1
X − αn

+ · · · + λn,mn

(X − αn)mn︸ ︷︷ ︸
partie polaire associée à αn

Démonstration :
Ce théorème est admis. □

Proposition 2.4 (Cas des pôles simples) :
Soit F = A

B ∈ C(X) sous forme irréductible et α ∈ C un pôle simple de F . Soit λ ∈ C tel
que λ

X−α soit la partie polaire associée à α. Soit B1 ∈ C[X] tel que B(X) = (X − α)B1(X)
et B̃1(α) ̸= 0. Alors

λ = ˜(X − α)F (α) = Ã(α)
B̃1(α)

= Ã(α)
B̃′(α)

.

Démonstration :
Par caractérisation des racines par la divisibilité, ∃B1 ∈ K[X] tel que B(X) = (X − α)B1(X) et
B̃1(α). De plus, par dérivation et caractérisation de la multiplicité par la dérivation, on a B̃(α) =
B̃1(α) ̸= 0.

Et (X − α)F (X) = A(X)
B1(X) . D’autre part, par décomposition en éléments simples, F (X) =

λ
X−α + G(X) où G ∈ K(X) et α n’est pas un pôle de G. Alors

(X − α)F (X) = λ + (X − α)G(X)

Donc α est une racine simple de la fraction rationnelle (X − α)G(X) et donc λ = Ã(α)
B̃1(α)

. □
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2 DÉCOMPOSITION EN ÉLÉMENTS SIMPLES2.2 Décomposition en éléments simples dans C(X)

Exemple 2.2 :
Déterminer la décomposition en éléments simples dans C(X) de :

1. F (X) = 1
(X−1)(X+2)

2. [✓][✓] Fn(X) = 1
Xn−1 .

Remarque :
Le but d’une décomposition en éléments simples est de calculer des coefficients. Comme un peu tout
problème de calculs, c’est de la débrouille. Il n’y a que peu de méthode universelle qui fonctionnerais
dans tous les cas. Ou alors, elle est très lourde et peu (ou pas) adapté au cas concret. A contrario
de la résolution d’équations différentielles linéaires pour qui on a une méthode assez claire.

Il y a plutôt une liste d’astuces possibles qu’il faut exploiter dans des ordres différents ou pas,
selon le cas.

“Méthode” de décomposition en éléments simples :
— On factorise le numérateur et dénominateur et en écrit la fraction sous forme irréductible.
— On détermine la partie entière en faisant une division euclidienne.
— On détermine les parties polaire associées aux pôles simples.
— Pour les parties polaires associées à des des pôles d’ordre m ≥ 2, on commence par déterminer

le coefficient associé à l’ordre du pôle. Pour les autres coefficients, on exploite, s’il y en a, des
propriétés analytiques de la fraction rationnelle. Par exemple :

— On peut exploiter la parité quand il y en a une, avec l’unicité de la décomposition en
éléments simples.
Déterminer la décomposition en éléments simples de F (X) = X

X4+1 .
— On peut exploiter des limites éventuelles.

Déterminer la décomposition en éléments simples de F (X) = 1
X3−X2−X+1 .

— Et d’autres propriétés s’il y a lieu. La liste n’est pas exhaustive.
Exemple 2.3 :
Déterminer la décomposition en éléments simples de F (X) = X6−X5−11X4−14X3+23X2+24X−4

X5+3X4−X3−7X2+4 .
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2.3 Décomposition en éléments simples dans R(X)

Théorème 2.5 (Décomposition en éléments simples dans R(X)) :
Soit F = A

B ∈ R(X) sous forme irréductible. Alors, par le théorème fondamentale de
l’arithmétique dans R[X], B se factorise sous la forme B(X) =

∏r
k=1(X − xk)αk

∏s
i=1(X2 +

piX + qi)βi avec p2
i − 4qi < 0. Soit Q la partie entière de F .

Alors il existe trois uniques familles de réels (γk,ℓ) 1≤k≤r
1≤j≤αk

, (λi,j) 1≤i≤s
1≤j≤βi

et (µi,j) 1≤i≤s
1≤j≤βi

tels
que

F (X) = Q +
r∑

k=1

αk∑
ℓ=1

γk,ℓ

(X − xk)ℓ︸ ︷︷ ︸
éléments simples
de 1ere espèce

+
s∑

i=1

βi∑
j=1

λi,jX + µi,j

(X2 + piX + Qi)j︸ ︷︷ ︸
éléments simples

de 2nd espèce

Pour le cas de la décomposition dans R(X), la partie délicate est la gestion des éléments simples
de deuxième espèce. Pour ça, on peut

— repasser dans C(X), décomposer en éléments simples dans C(X) et regrouper les termes de
pôles complexes non réels conjugués et de même puissances ;

— ou alors on peut utiliser la caractérisation F = F pour les fractions rationnelles réelles et
utiliser l’unicité de la décomposition en éléments simples dans C(X) (un peu comme pour la
parité) ;

— ou bien multiplier par (X2 + piX + qi)βi est évalué en les deux racines complexes conjuguées
pour avoir un système en λi,βi

et µi,βi
;

— ou toutes autres idées qui pourraient être utiles compte tenu de la forme de la fraction ration-
nelle (limites, dérivée, évaluations en des points stratégiques ...)

Exemple 2.4 :
Décomposer en éléments simples dans R(X) la faction F (X) = X3−1

X3+1 , G(X) = X3

(X−1)3(X+2) et
H(X) = 2X2

(X2+1)3 .

2.4 Le cas de P ′/P

Proposition 2.6 (Décomposition en éléments simples de P ′/P ) :
Soit P ∈ K[X] scindé. Alors ∃λ, x1, . . . , xn ∈ K et m1, . . . , mn ∈ N∗ tels que les (xi)1≤i≤n

sont deux à deux distincts et P (X) = λ
∏n

k=1(X − xk)mk . Alors

P ′(X)
P (X) =

n∑
k=1

mk

X − xk
.
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Remarque :
On peut en donner une autre variante :

Si y1, . . . , yN sont les racines de P comptés avec multiplicités, alors

P ′(X)
P (X) =

N∑
k=1

1
X − yk

.

Démonstration :
Par dérivation, on a P ′(X) = λ

∑n
k=1 mk(X − xk)mk−1 ∏n

j=1
j ̸=k

(X − xj)mj . Donc

P ′(X)
P (X) =

λ
∑n

k=1 mk(X − xk)mk−1 ∏
j ̸=k(X − xj)mj∏n

k=1(X − xk)mk

=
n∑

k=1

mk(X − xk)mk−1

(X − xk)mk

=
n∑

k=1

mk

X − xk
.

□

Remarque :
Il vient immédiatement que P ′/P n’a que des pôles simples.

Exemple 2.5 :
Montrer ∑

ω∈Un

1
2 − ω

= n2n−1

2n − 1 .
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