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Mark my words! You harness that Negative power of yours,
ad you can wake Tt 1o the top Just like me!

Le but des fractions rationnelles est de “compléter” un peu les polynémes. L'une des difficulté
des polynémes étant que K[X] est seulement un anneau et pas un corps. On a vu qu'il y a une
similarité trés forte dans le fonctionnement entre I'anneau Z et I'anneau K[X]. Mais précisément,
dans les entiers, on sait qu'on peut passer aux rationnels Q pour obtenir une structure de corps. Ce
qui est treés pratique. On va ici adapter le processus de fabrication des rationnels a partir des entiers,
pour fabriquer les fractions rationnelles (d'ou la similarité des les dénominations). Q est donc a Z ce
que K(X) sera a K[X].
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Dans I'ensemble de ce cours, on se placera sur un corps K qui sera soit R soit C. Les résultats
seront donc valables indifféremment sur les deux corps, sauf s'il est précisé, bien sir.
1 Définitions et propriétés

Construction du corps des fractions rationnelles K(X) (HP) :
On définit sur K[X] x K[X]* la relation ~ définit par

(A,B) ~ (C,D) <= AD = BC.
La relation ~ est une relation d'équivalence sur K[ X | xK[X]*. On note alors % la classe d'équivalence

de (A, B) € K[X] x K[X]*.
D'ou :

Définition 1.1 (Corps des fractions rationnelles, Représentant d'une fraction rationnelle) :
On note K(X) le corps des fractions rationnelles sur K (définie comme au dessus, c’est-a-dire) :

K(X) = {2, A, B eK[X], B+ o}.

B

Si F e K(X) etsi (A,B) € KIX] x K[X]* tel que F = 4, alors on dit que 4 est un
représentant de F'.

Remarque :

La construction du corps des fraction rationnelles n’est officiellement pas au programme. Elle n’est
donc pas a connaitre car elle flirt un peu avec la notion d'ensemble quotient par une relation
d'équivalence qui, lui, est clairement hors programme. Mais il me semble bon pédagogiquement
(et intellectuellement) de montrer d'oui viennent les choses, qu’elles ne sont pas parachuter. Il semble
raisonnable d’un point de vue culture mathématique d’'avoir une idée de la construction. Ca éclaire
beaucoup alors sur les propriétés qui vont avec.

On vient d'affubler I'ensemble K(X) du nom de corps. Ce n’est pas anodin et ce n'est pas pour
rien. Autant K[X] est un anneau pour les opérations usuelles entre polyndmes, autant K(X) va
devenir un corps pour ces mémes opérations (qu'il faudra tout de méme redéfinir). On a donc vendu
un peu la meéche en avance, on vient d'affirmer que c'est un corps a priori de la démonstration.



1 DEFINITIONS ET PROPRIETES

Définition-Propriété 1.2 (Opérations sur K(X)) :

On munit K(X') de deux LCl notée + et x et d'une LCE définies par :si F, G € K(X)
et A € K, alors 3A, B,C, D € K[X] avec B, D # 0 tels que F' = % et G = %. On
pose alors

AC AA

C
x5 =%D AP = —.

AD + BC
' D’ B

5D FxG=

o

A C
F = — —_— =
+G B+D

oS

Remarque :
Il faut montrer que ces opérations sont bien des LCl et LCE, qu’elles sont bien définies. Attention
a ne pas confondre les opérations. Elles sont notées de la méme maniéres, mais il y a ici |'addition
définie sur K(X) qui utilise le produit et la somme qui ont été définies sur K[X] et qui se notent
de la méme maniére. Bien identifié ce qui releve de la nouveauté de ce qui reléve des choses déja
connues, méme s'il n'y a pas de signes distinctifs entre les deux.

Il n'y a d'ailleurs pas de notations différentes a dessein.

Démonstration :

s AL A _ G _ G A G AD1+BiCy Ar | O _ AsDo+BCo
SIF_Bl_Bg etG—Dl—D2,3|0I’S B1+D1_ B1D1 et BQ+D2_ BaDs . Or

(A1D1 + BlCl)Bng = (A1BQ)D1D2 -+ (C1D2)BlBg

= (B1A42)D1 D + (CoD1)B1 By
= (A2D3 + C2B3)B1 Dy

et donc (Al_D1 + B1C5, B1D1) ~ (A2Dy + ByC, BaDs), ie. Al%lJrD?lCl = AZDBQ;FD?CQ et donc +
est bien définie sur K(X).
On fait la méme chose avec les deux autres opérations. O

Remarque :
On vient donc de montrer que les opérations sur K(X') qui sont définies a partir des opérations dans
K[X] et d'un représentant des fractions rationnelles, ne dépendent pas des représentants choisis pour
effectuer les calculs. Les choses sont donc cohérentes.

Autrement dit, on vient de montrer que les opérations de K[X] “passent bien” a la relation
d’'équivalence.



1 DEFINITIONS ET PROPRIETES

Définition-Propriété 1.3 (Forme irréductible) :
Toute fraction rationnelle sur K s'écrit de facon unique avec deux polynémes premiers
entre eux et de dénominateur unitaire, i.e.

VF € K(X), 3(A, B) € KIX|xK[X]*, t.q. F = % et AAB =1 et coeff dom(B) = 1.

Cette écriture a partir de deux polynémes premiers entre eux s'appelle la forme
irréductible.

Démonstration :
La démonstration est la méme que pour Q. Soit F' € K(X) et (4,B) € K[X] x K[X]* tel que
F = %. Soit D = AA B. Alors A’ B' € K[X] premiers entre eux tels que A= DA’ et B= DB'.
Alors

A DA A

B DB B

car AB' = DA'B' = A’'B.

D'ou I'existence d'une telle écriture.

Tout d’abord, il est évident que si F' = 0, alors I'écriture est unique puisque F'=0 <— A =0
et 0ANB =1 <= B =1. On va donc considérer F' # 0.

Supposons 3(4, B), (C,D) € K[X|* x K[X]* tels que F = 4 = S et ANB=CADetB
et D unitaire. Alors on a AD = BC. Donc A|BC. Or A et B sont premiers entre eux, donc A|C.
De méme, C|AD or D A C =1, donc C|A. Et donc I\ € K* tel que C = AA. D'ou AD = \AB
et donc D = AB car A # 0. Mais B et D sont unitaire, donc par unicité du coefficient dominant,
A = 1. Puis (4, B) = (C, D). Et donc I'unicité. O

Remarque (Plongement de K[X] dans K(X)) :

Techniquement, les polyndmes ne sont pas des classes d’'équivalences, donc K[X] ¢ K(X) car les
objets ne sont pas de la méme nature. Ce pendant, on peut faire un application injective K[X]| —
K(X) qui permet alors de “voir” K[X] comme un sous-ensemble de K(X) en identifiant K[X] et
son image dans K(X) par ce plongement. Pour cela :

K[X] — K(X)
r ~ £

Il est facile de montrer que cette application est injective, elle est linéaire, et elle est compatible avec
toutes les lois a gauche et a droite. On peut donc alors faire un amalgame entre un polyndme P et
sa classe d'équivalence %

C'est ce qu'on fait en écrivant Z C Q.



1 DEFINITIONS ET PROPRIETES

Remarque :

On rappelle que dans la divisibilité, les inversibles sont “invisibles” et donc ne peuvent pas étre
maitrisés. Donc, toutes les relations de divisibilité ne donnent que des informations a inversibles prés,
c'est-a-dire a produit par un scalaire prés. Il est important d'avoir une information supplémentaire
pour pouvoir alors fixé les coefficients et avoir |'unicité. D'ol la condition supplémentaire sur le
dénominateur unitaire qui apparait par rapport au cas de Q.

Proposition 1.1 (Structure algébrique de K(X)) :
En munissant K(X) des opérations précédentes, on a :

(i) (K(X),+, x) est un corps commutatif appelé corps des fractions rationnelles sur K
(i) (K(X),+, - ) est K-espace vectoriel de dimension infinie.
(iii) (K(X),+, x, - ) est une K-algébre commutative.

Démonstration :

Il suffit de le vérifier. O
Remarque :

Comme on a une structure d'anneau, on peut définir une application K"*! — K(X) par (ag, . .., an)

S 7o apF*. Autrement dit, on peut définir K[X] — K(X) par P+ P o F une composition.

Mais dans la mesure oi K(X) est un corps, il y a une application d'inversion (i.e. I'application
P+ % sur K[X]\ {0}) et donc on peut définir aussi K[X]\ {0} — K(X) par P~ &-=. Et donc,
en multipliant les deux, on peut définir une composition dans K(X).

Définition 1.4 (Composition de fractions rationnelles) :
Soit F,G € K(X).

Si F =4 avec A € K[X] et B € K[X]\ {0}, on définit F o G par

Ao(G
BoG’

FoG=




1 DEFINITIONS ET PROPRIETES

Définition-Propriété 1.5 (Degré d'une fraction rationnelle) :
Soit F' € K(X).
Si (A, B) € K[X] x K[X]* tel que F' = 4, on définit le degré de F par

deg(F') = deg(A) — deg(B) € ZU {—o0}.

qui est indépendant du choix du représentant.

Démonstration :

La définition du degré dépendant, pour le moment, du représentant que I'on utilise pour F. Il faut
montrer que cette définition est bien cohérente et que donc la notion de degré d'une fraction ration-
nelle a bien un sens sur la classe d’'équivalence, autrement dit qu'elle ne dépend pas du représentant
choisi.

Soit donc (A4, B), (C,D) € K[X] x K[X]* tel que F' = % = %. Donc AD = BC. Alors
deg(A) + deg(D) = deg(B) + deg(C) <= deg(A) — deg(B) = deg(C) — deg(D). Donc le degré
de F' est bien défini et constant sur la classe d'équivalence. Autrement dit, deg(F’) est bien défini
et est unique pour une fraction rationnelle donnée (ce qui justifie a posteriori le choix de la notation
qui ne dépend que de F' et pas du représentant choisi pour le calculer). O

Proposition 1.2 (Propriété du degré pour les fractions rationnelles) :
Soit F,G € K(X) et A € K. Alors

(i) deg(F + G) < max(deg(F'),deg(G))
(i) deg(FG) = deg(F) + deg(G)
(iii) Si A # 0, deg(AF) = deg(F)

Démonstration :
Le plus dur est le premier point. On va prouver seulement celui la. Les deux autres sont beaucoup

plus faciles. Laissés en exercices.
Soit A, B,C, D € K[X] avec BD # 0 tels que F' = % et G=%.Alors F+G = M Donc

deg(F 4+ G) = deg(AD + BC') — deg(BD)
< max(deg(AD),deg(BC)) — deg(B) — deg(D)
= max(deg(A) + deg(D), deg(B) + deg(C')) — deg(B) — deg(D)
= max(deg(A) — deg(B),deg(C) — deg(D) a vérifier
= max(deg(F), deg(G)).
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Remarque :
Il n'y a pas de formule générale pour le degré d'une composée.

11t ATTENTION !!! |I

F € K[X] n'est PAS équivalent a deg(F) > 0. Ca ne suffit pas! Ne pas oublier le
dénominateur! Par exemple, % ¢ K[X] et pourtant le degré est 2.

A\

Exemple 1.1 :
Montrer que K™ (X) = {F € K(X), deg(F) < 0} est un espace vectoriel et que Vn € N, Va € K,

(ﬁ)oq€< est une famille libre de K™ (X).

Définition-Propriété 1.6 (Dérivée d'une fraction rationnelle) :
Soit F' € K(X). Soit (A, B) € K[X] x K[X]* tel que F = 4.
On appelle fraction rationnelle dérivée de F' la fraction rationnelle notée I définie
par
A'B — AB’
= 53 _

et I est indépendant du choix du représentant de F.

F/

Démonstration :
Il suffit de faire le vérifier. Si AD = BC, alors A'D + AD' = B'C' + BC' et donc

(A'B — AB'YD? = D(A'BD — (AD)B')
— D(A'BD — BCB')
= BD(A'D — B'O)
= BD(BC' — AD")
= B(BC'D — (AD)D’)
= B(BC'D — BCD')
= B*(C'D - CD))
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Proposition 1.3 (Degré de la dérivée d’une fraction rationnelle) :
Soit F' € K(X). Alors
deg(F") < deg(F) — 1

Avec égalité si et seulement si deg(F) # 0.

Démonstration :

C'est le cas d'égalité qui est intéressant. Si deg(F) = 0, alors deg(A) = deg(B) = d. Donc
deg(A'B — AB') < d(d — 1) et donc deg(F') < d(d — 1) — d*> = —d. Donc si d > 2, alors
deg(F') << —1 = deg(F) — 1. En étudiant le cas d = 0 et d = 1, a part, on voit que deg(F’) <
—1 =deg(F) — 1.

Supposons deg(F') # 0. Donc deg(A) # deg(B). Si deg(A) > 1 et deg(B) > 1, alors
coeff dom(A’B) = deg(A) coeff dom(A) coeff dom(B) # deg(B) coeff dom(A) coeff dom(B) =
deg(AB'). Or deg(A’'B) = deg(A)+deg(B)—1 = deg(AB’), donc deg(AB'—AB') = max(deg(A’B), deg(AB’)) =
deg(A) + deg(B) — 1. D'ou deg(F’) = deg(A) — deg(B) — 1 = deg(F) — 1.

Si F' =0, c'est vrai. Supposons F' # 0. Supposons deg(A) = 0. Alors F' = \/B avec A # 0 et
F' = —\B'/B?. Et deg(A) # deg(B), donc deg(B) > 1. Donc deg(B’) = deg(B) — 1. Et donc
deg(F') = deg(B) — 1 — 2deg(B) = —deg(B) — 1 = deg(F) — 1.

Supposons deg(B) = 0 (car B # 0). Alors deg(A) > 1 car F' # 0. Et donc F' = A\A, donc
deg(F') = deg(F) — 1. O

Remarque :
La contraposée du cas d'égalité est intéressant aussi :

deg(F') < deg(F) —1 <= deg(F) =0.

[11t ATTENTION !!! |I

On peut avoir deg(F’) < deg(F) — 1 sans pour autant que F’ = 0! A contrario des
polynémes.

A\
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Contre-exemple :
Avec FI(X) = XLH onadeg(F)=0et F/(X) = —ﬁ, donc deg(F’) = —2 < deg(F)—1.

Définition 1.7 (Racines et pdles d'une fraction rationnelle) :

Soit F' = % € K(X) sou forme irréductible.
On appelle racine d’ordre m de F toute racine de A de multiplicité m.
On appelle péle d’ordre m de F toute racine de B de multiplicité m.

11! ATTENTION !!! |I

Si F' n’est pas mise sous forme irréductible, il y a des facteurs en trop. On a alors pas les
bonnes multiplicités. Il y a des simplifications qui peuvent s'opérer et donc faire apparaitre
A des poles “fictifs”. On parle alors de pdles apparents.

S’il y a des racines communes au numérateur et dénominateur, pour savoir si c'est un pdle
ou une racine, il faut faire la différence des multiplicité en tant que racine du numérateur
moins la multiplicité en tant que racine du dénominateur. Si la différence est strictement
positive, on a une racine et la différence est |'ordre ; si la différence est nulle, c'est que c'était
un pdle fictif, ce n'est pas une racine ni un pole; si la différence est strictement négative,
c'est que c’est un pole dont I'ordre est I'opposé de la différence.

Contre-exemple :

Ly . . . X441 / . .
On consideére la fraction rationnelle F/(X) = XTaxe X _sx iz Déterminer ses racines et
ses poles.

Définition 1.8 (Fonction rationnelle associée) :
Soit F' = % € K(X) sous forme irréductible.



2 DECOMPOSITION EN ELEMENTS SIMPLES

On définit la fonction rationnelle associée a F' par

_ DF — K
L Alx)
o Alz)
B(a)

ot Dp =K\ {pbles de F'}.

Autrement dit, F= %.

Proposition 1.4 (Caractérisation d’égalité de fractions rationnelles par les fonctions

rationnelles associées) :
Soit F,G € K(X). Alors

Il existe une infinité de z € K, F(z) = G(z) < F =G

Démonstration :
Le sens indirecte est évident et n’a pas beaucoup d'intérét. Supposons qu'il existe un infinité de
z € K tels que F(z) = G(z). On note F' = % et G = %. Alors il existe une infinité de z € K tels

que A(z)D(z) = C(z)B(x). Autrement dit, le polynéme AD — BC' a une infinité de racines. Donc
AD:BCetdoncF:%:%:G. ]

2 Décomposition en éléments simples

2.1 Partie Entiére

Définition-Propriété 2.1 (Partie entiére d'une fraction rationnelle) :
VF e K(X), 3(E, R) € K[X] x K(X) tel que

F=FE+R, et deg(R) < 0.

FE s'appelle la partie entiére de F.

Démonstration :
Soit F' = 4 € K(X). En effectuant la division euclidienne de A par B, 3(Q,R) € K[X] tel
que A = BQ + R et deg(R) < deg(B). Alors F = Q + £. Et Q € K[X], £ € K(X) et

deg(R/B) = deg(R) — deg(B) < 0.

10



2 DECOMPOSITION EN ELEMENTS SIMPLES 2.1 Partie Entiere

Pour l'unicité, si F = Q1+ R1 = Q2+ Ro, alors Q1 — Q2 = Ro— R1. Donc Ro— Ry € K[X}, donc
deg(R2—R1) € NU—o0 et deg(Ro— R1) < max(deg(Rz),deg(R1)) < 0. Donc deg(Ro—R1) = —00
et donc Ry = R;. On en déduit immédiatement Q1 = Q5. O

Remarque :
La partie entiére d’une fraction rationnelle est |'analogue de la partie entiére définie dans Q.
La partie entiere est toujours le quotient de la division euclidienne du numérateur par le dénominateur.

Exemple 2.1 :

7 . . N 2
Déterminer la partie entiére de F/(X) = Xxig('

Proposition 2.1 (Propriété de la partie entiére) :
Soit F' € K(X).

1. Sideg(F') < 0, alors sa partie entiére est nulle.
2. Si F € K[X], alors F' est égale a sa partie entiére.

Démonstration :
C'est évident a partir de la définition de la partie entiére. O

Proposition 2.2 (Supplémentarité dans K(X)) :
Si on note K™ (X) = {F € K(X), deg(F) < 0}, alors K[X] et K~ (X)) sont supplémentaires
dans K(X), i.e.

K(X) =K[X] e K™ (X).

Démonstration :
C'est évident a partir de la définition de la partie entiére et la caractérisation des supplémentaires. [

11



2 DECOMPOSITION EN ELEMENTS SIMPRES Décomposition en éléments simples dans C(X)

2.2 Décomposition en éléments simples dans C(X)

Théoréeme 2.3 (Décomposition en éléments simples dans C(X)) :
Soit F' = % € C(X) sous forme irréductibles. Soit aq,...,a, € C les pbles de F' d'ordre
mi, ..., my respectivement. Soit Q) la partie entiére de F.

Alors 3!()\]{7@) 1<kh<n € CMTTMn te que
1<e<my

F(X):Q(X)‘f‘zzk:@()\_k’ik)g

k=1/¢=1

partie polaire
associée a oy

Autrement dit :

A1 A1,2 Ay An,1 An,m
F(X) = X 2 2 . (et Lt S W ’ . (R e L —
B = e P & —a T T ey T T X man T T (e
partie polaire associée a a; partie polaire associée a an,

Démonstration :
Ce théoreme est admis.

Proposition 2.4 (Cas des pdles simples) :

Soit F' = % € C(X) sous forme irréductible et & € C un pdle simple de F. Soit A € C tel
que > soit la partie polaire associée & a. Soit By € C[X] tel que B(X) = (X — a)B1(X)
et By(a) # 0. Alors
— A A
A= (X —a)F(a) = Alo) _ Ale)
Bi(a)  B'(a)

Démonstration :
Par caractérisation des racines par la divisibilité¢, 3B; € K[X] tel que B(X) = (X — a)B1(X)
B:l(a). De plus, par dérivation et caractérisation de la multiplicité par la dérivation, on a B(a)
31 (a) 75 0.

Et (X —a)F(X) = %. D’autre part, par décomposition en éléments simples, F'(X)

Xia + G(X) ot G € K(X) et a nest pas un pble de G. Alors

(X — a)F(X) = A+ (X — a)G(X)

Donc « est une racine simple de la fraction rationnelle (X — a)G(X) et donc A = /;v((a)).
1o

12

et



2 DECOMPOSITION EN ELEMENTS SIMPRES Décomposition en éléments simples dans C(X)

Exemple 2.2 :
Déterminer la décomposition en éléments simples dans C(X) de :
_ 1
L F(X) = ey

2. VIIV] Fa(X) = 5

Remarque :
Le but d'une décomposition en éléments simples est de calculer des coefficients. Comme un peu tout
probléme de calculs, c'est de la débrouille. Il n'y a que peu de méthode universelle qui fonctionnerais
dans tous les cas. Ou alors, elle est trés lourde et peu (ou pas) adapté au cas concret. A contrario
de la résolution d'équations différentielles linéaires pour qui on a une méthode assez claire.

Il'y a plutdt une liste d'astuces possibles qu'il faut exploiter dans des ordres différents ou pas,
selon le cas.

“Méthode” de décomposition en éléments simples :
— On factorise le numérateur et dénominateur et en écrit la fraction sous forme irréductible.
— On détermine la partie entiére en faisant une division euclidienne.
— On détermine les parties polaire associées aux pdles simples.

— Pour les parties polaires associées a des des pdles d'ordre m > 2, on commence par déterminer
le coefficient associé a |'ordre du pole. Pour les autres coefficients, on exploite, s'il y en a, des
propriétés analytiques de la fraction rationnelle. Par exemple :

— On peut exploiter la parité quand il y en a une, avec l'unicité de la décomposition en
éléments simples.

Déterminer la décomposition en éléments simples de F'(X) = X%rl'
— On peut exploiter des limites éventuelles.
Déterminer la décomposition en éléments simples de F'(X) = m

— Et d’autres propriétés s'il y a lieu. La liste n’est pas exhaustive.

Exemple 2.3 :

_ X0 X5-11X4-14X3423X2424X 4

Déterminer la décomposition en éléments simples de F'(X) XTI XX T4

13



2 DECOMPOSITION EN ELEMENTS SIMPRES Décomposition en éléments simples dans R(X)

2.3 Décomposition en éléments simples dans R(X)

Théoréme 2.5 (Décomposition en éléments simples dans R(X)) :

Soit F = 4 € R(X) sous forme irréductible. Alors, par le théoreme fondamentale de

I"arithmétique dans R[X], B se factorise sous la forme B(X) = [Th_1 (X — x5) [T, (X% +
piX + ;)% avec p? —4q; < 0. Soit Q la partie entiere de F.

Alors il existe trois uniques familles de réels (y;¢) 1<k<r , (Xij) Jsiss et (pi ;) 1<i<s tels
1<j<ay <i<B; 155<8;
que
S 61
Vit Xij X + i
Q+ZZ T2 X O
oo SO XX+ Qi)
ﬁ—’ =

éléments simples éléments simples
de lere espéce de 2nd espéce

Pour le cas de la décomposition dans R(X), la partie délicate est la gestion des éléments simples
de deuxiéme espéce. Pour ¢a, on peut

— repasser dans C(X), décomposer en éléments simples dans C(X) et regrouper les termes de
pGles complexes non réels conjugués et de méme puissances;

— ou alors on peut utiliser la caractérisation ' = F pour les fractions rationnelles réelles et
utiliser 'unicité de la décomposition en éléments simples dans C(X) (un peu comme pour la
parité) ;

— ou bien multiplier par (X2 + p; X + ¢;)% est évalué en les deux racines complexes conjuguées
pour avoir un systéme en \; g, et ji; 5. ;

— ou toutes autres idées qui pourraient étre utiles compte tenu de la forme de la fraction ration-
nelle (limites, dérivée, évaluations en des points stratégiques ...)

Exemple 2.4 :
Décomposer en éléments simples dans R(X) la faction F(X) = §§§;} GX) = Wi’xﬂ) et
_ _2X?

24 Lecasde P'/P

Proposition 2.6 (Décomposition en éléments simples de P’'/P) :
Soit P € K[X] scindé. Alors 3\, z1,...,x, € K et my,...,m, € N* tels que les (z;)1<i<n
sont deux a deux distincts et P(X) = A[[;_; (X — z)™*. Alors




2 DECOMPOSITION EN ELEMENTS SIMPLES 2.4

Le cas de P'/P

Remarque :
On peut en donner une autre variante :
Si y1,-..,yn sont les racines de P comptés avec multiplicités, alors
P(X) i\f: 1
P(X) k=1 X - Yk

Démonstration :

Par dérivation, on a P'(X) = A X} my(X — zx)™ 1 [}=1 (X — ;)™ . Donc
ik

P/(X) _ AXRoama(X — o)™ (X — 2y)™

P(X) [Tre1 (X — zp) ™
_ i mp(X — xp)™ !
o (X—aym
_ z": my,
= X —x

Remarque :
[l vient immédiatement que P’/P n’a que des pdles simples.

Exemple 2.5 :
Montrer

3 1 n2n!
S2-w -1
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