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Problème 1 :
On introduit

f :
R∗ → R
x 7→ ln(1+x2)

x

Partie I : Début des prolongations

1. ln est continue sur R∗
+ et ∀x ∈ R, 1 + x2 ≥ 1 > 0. Donc, par composition, x 7→ ln(1 + x2) ∈ C0(R,R).

Finalement, par quotient de fonctions dont le dénominateur ne s’annule par, f ∈ C0(R∗,R).
2. L’application t 7→ ln(1 + t) est continue sur dérivable sur ] − 1, +∞[. Elle est en particulier dérivable en 0 et sa

dérivée en 0 est 1. Donc ln(1+t)
t −−→

t→0
1. Or x2 −−−→

x→0
0, donc, par composition ln(1+x2)

x2 −−−→
x→0

1 et donc, par produit de

fonctions convergentes, f(x) = ln(1+x2)
x = x ln(1+x2)

x2 −−−→
x→0

0 × 1 = 0.
f est continue sur R∗ et f(x) −−−→

x→0
0, donc f est prolongeable par continuité en 0 en posant f(0) = 0..

On considère maintenant

f :
R → R

x 7→
{ ln(1+x2)

x x ̸= 0
0 x = 0

Alors f ∈ C0(R,R).
3. Par composition, x 7→ ln(1 + x2) est dérivable sur R et donc, par quotient de fonctions dérivables dont le

dénominateur ne s’annule pas, f ∈ D1(R∗,R). Et

∀x ̸= 0, f ′(x) =
2x2

1+x2 − ln(1 + x2)
x2 = 2

1 + x2 − ln(1 + x2)
x2 .

4. Par quotient de fonctions continues dont le dénominateur ne s’annule pas, x 7→ ln(1+x2)
x2 ∈ C0(R∗,R). Et de

même, x 7→ 2
1+x2 ∈ C0(R∗,R). Donc, par structure de R-espace vectoriel de C0(R∗,R), on a donc f ′ ∈ C0(R∗,R).

5. Par dérivabilité de t 7→ ln(1 + t) en 0, on a ln(1+x2)
x2 −−−→

x→0
1 et 2

1+x2 −−−→
x→0

2. Donc, par linéarité de la limite,
f ′(x) −−−→

x→0
1.

On a donc f ∈ C0(R,R) ∩ D0(R∗,R) et f ′(x) −−−→
x→0

1 ∈ R, donc, par théorème de prolongement C1 (aka théorème
satanique), f est dérivable en 0 et f ′(0) = 1 (ATTENTION ! on rappelle que l’on ne peut pas prolonger les dérivées !
Même si l’énoncé est fait pour le suggéré).

Donc f ∈ D1(R,R). Et par ailleurs, f ′ ∈ C0(R∗,R) et f ′(x) −−−→
x→0

1 = f ′(1), donc, par caractérisation de la
continuité par les limites, f ′ est continue en 0. Donc f ′ ∈ C0(R,R). Et donc, par définition f ∈ C1(R,R).
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6. On suppose qu’on a montré que f ∈ C∞(R,R). Alors, par Taylor-Young, f admet un développement limité à
tout ordre en 0 et

∀n ∈ N, f(x) =
x→0

n∑
k=0

f (k)(0)
k! xk + o(xn).

D’autre part, en calculant les développements limités, on a

∀n ∈ N∗, ln(1 + x2) =
x→0

2n∑
k=1

(−1)k−1x2k

k
+ o(x2n).

Donc
∀n ∈ N∗, f(x) =

x→0

2n∑
k=1

(−1)k−1x2k−1

k
+ o(x2n−1).

On en déduit donc, par unicité du développements limités,

∀k ∈ N∗,

f (2k)(0) = 0
f (2k−1)(0) = (−1)k−1(2k−1)!

k

et f(0) = 0.

Partie II : Avec des suites

On définit la suite (un)n∈N par

u0 ∈]0, 1] et ∀n ∈ N, un+1 = 1
4f(un).

7. On pose g(t) = ln(1 + t) pour tout t ≥ 0.
(a) g ∈ C+∞(]−1, +∞[, 0) par composition de fonctions de classe C∞. Et alors ∀t ∈ R+, g′(t) = 1

1+t . Or ∀t ∈ R+,
1 + t ≥ 1, donc, par passage à l’inverse (et même par décroissance de la fonction inverse),

∀t ≥ 0, 0 <
1

1 + t
= g′(t) ≤ 1.

(b) Soit t > 0. g′ est décroissante sur [0, t], donc ∀x ∈ [0, t], g′(t) = 1
1+t ≤ g′(x) ≤ 1.

g étant dérivable sur [0, t] et de dérivée bornée sur [0, t], l’inégalité des accroissements finis, nous donne

∀x, y ∈ [0, t], x ̸= y,
1

1 + t
≤ g(y) − g(x)

y − x
≤ 1.

En particulier,
1

1 + t
≤ g(t) − g(0)

t − 0 = ln(1 + t)
t

≤ 1.

On vient donc de montrer que ∀t > 0, 1
1+t ≤ ln(1+t)

t ≤ 1.
(c) D’après la question précédente, on a

∀x > 0,
1

1 + x2 ≤ ln(1 + x2)
x2 = f(x)

x
≤ 1

Et donc,
∀x > 0,

x

1 + x2 ≤ f(x) ≤ x.

(d) On a ∀x > 0, 1
1+x2 ≤ f(x)

x = f(x)−f(0)
x−0 ≤ 1. Or, par continuité 1

1+x2 −−−→
x→0

1. Donc, par théorème des

gendarmes, f(x)−f(0)
x−0 −−−→

x→0
1. Et donc, par définition, f est dérivable en 0 et f ′(0) = 1. Ce qui est cohérent avec ce

qui a été prouvé en partie I.
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8. D’après ce qui précède, on a ∀x ∈]0, 1], 0 < x
1+x2 ≤ f(x) ≤ x ≤ 1. Donc ∀x ∈]0, 1], f(x) ∈]0, 1] et donc, par

définition, f(]0, 1]) ⊂]0, 1]. Donc ]0, 1] est intervalle stable par f .
Or u0 ∈]0, 1] et (un)n∈N est une suite récurrente d’ordre 1. Donc elle est bien définie et ∀n ∈ N, un ∈]0, 1].
9. On a vu que ∀t ̸= 0, f ′(t) = 2

1+t2 − ln(1+t2)
t2 . Donc,

∀t > 0, |f ′(t)| =
∣∣∣∣∣ 2
1 + t2 − ln(1 + t2)

t2

∣∣∣∣∣
≤ 2

1 + t2 +
∣∣∣∣∣ ln(1 + t2)

t2

∣∣∣∣∣ inégalité triangulaire

≤ 2 + 1 = 3 cf question 6

10. On vient de voir que ∀t > 0, |f ′(t)| ≤ 3. Or f ′(0) = 1 < 3. Donc ∀t ∈ R+, |f ′(t)| ≤ 3.
f est dérivable sur R+ et f ′ est bornée sur R+, donc, par inégalité des accroissements finis, on a

∀x, y ∈ R+, |f(x) − f(y)| ≤ 3|x − y|.

En particulier, pour y = 0, on a
∀x ∈]0, 1], |f(x)| = |f(x) − f(0)| ≤ 3|x|.

Or ∀n ∈ N, un ∈]0, 1]. Donc
∀n ∈ N, |un+1| = 1

4 |f(un)| ≤ 3
4 |un|.

11. On a |u0| ≤ (3/4)0|u0|. Supposons ∃n ∈ N, |un| ≤ (3/4)n|u0|. Alors |un+1| ≤ 3/4|un| ≤ (3/4)n+1|u0|.
Donc, par principe de récurrence, ∀n ∈ N, |un| ≤ (3/4)n|u0|.
Or 3/4 ∈]0, 1[, donc, par convergence des suites géométriques, (3/4)n −−−−−→

n→+∞
0. Donc, par corollaire du théorème

des gendarmes, un −−−−−→
n→+∞

0.

Parti III : Dérivation annexe

On définit la fonction
γ : R → R

x 7→ 1
1+x2

12. En tant qu’inverse de fonction non nulle de classe C∞, on a γ ∈ C∞(R,R).
13. On a

∀x ∈ R, γ′(x) = −2x

(1 + x2)2

et
∀x ∈ R, γ′′(x) = −2(1 + x2)2 + 8x2(1 + x2)

(1 + x2)4 = 2(3x2 − 1)
(1 + x2)3

et enfin
∀x ∈ R, γ′′′(x) = 12x(1 + x2)3 − 12x(3x2 − 1)(1 + x2)2

(1 + x2)6 = −24x(x2 − 1)
(1 + x2)4 .

14. On pose P0(X) = 1 ∈ R[X]. Alors ∀x ∈ R, γ(x) = P̃0(x)
(1+x2)2 .

Supposons qu’il existe Pn ∈ R[X] tel que ∀x ∈ R, γ(n)(x) = P̃n(x)
(1+x2)n+1 .

Comme γ ∈ C∞(R,R), on peut donc dériver γ(n) et alors

∀x ∈ R, γ(n+1)(x) = P̃n
′(x)(1 + x2)n+1 − 2(n + 1)x(1 + x2)nP̃n(x)

(1 + x2)2n+2

= P̃n
′(x)(1 + x2) − 2(n + 1)xP̃n(x)

(1 + x2)n+2
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On pose alors Pn+1(X) = P ′
n(X)(1 + X2) − 2(n + 1)XPn(X). Alors Pn+1 ∈ R[X] et

∀x ∈ R, γ(n+1)(x) = P̃n+1(x)
(1 + x2)n+2 .

On vient donc de montrer par récurrence que ∀n ∈ N, ∃Pn ∈ R[X], ∀x ∈ R,

γ(n)(x) = P̃n(x)
(1 + x2)n+1

avec
Pn+1(X) = (1 + X2)P ′

n(X) − 2(n + 1)XPn(X).

15. D’après les calculs de γ, γ′, γ′′ et γ′′′, on a

P0(X) = 1, P1(X) = −2X, P2(X) = 2(3X2 − 1), P3(X) = −24X(X2 − 1).

16. Soit n ∈ N. Supposons qu’il existe Pn, Qn ∈ R[X] tels que ∀x ∈ R,

P̃n(x)
(1 + x2)n+1 = γ(n)(x) = Q̃n(x)

(1 + x2)n+1 .

Comme ∀x ∈ R, 1 + x2 ̸= 0, on a donc ∀x ∈ R, P̃n(x) = Q̃n(x). Autrement dit, le polynôme Rn = Pn − Qn est
constant égal à 0 (par linéarité de P 7→ P̃ ). Donc Pn = Qn et d’où l’unicité.

17. D’après la question précédente, on a deg(Pn) = n et coeff dom(Pn) = (−1)n(n + 1)! pour n ∈ {0, 1, 2, 3}.
Supposons que ∃n ∈ N∗, deg(Pn) = n et coeff dom(Pn) = (−1)n(n+1)!. On a Pn+1(X) = (1+X2)P ′

n(X)−2(n+
1)XPn(X). On a donc deg(P ′

n) = n−1 ≥ 0. Et donc deg((1+X2)P ′
n(X)) = n+1. De même, deg(XPn(X)) = n+1.

Mais
coeff dom(2(n + 1)XPn(X)) = 2(n + 1) coeff dom(Pn(X)) = (−1)n2(n + 1)(n + 1)!

et
coeff dom((1 + X2)P ′

n(X)) = coeff dom(P ′
n) = deg(Pn) coeff dom(Pn) = n(−1)n(n + 1)!.

Donc le coefficient de Pn+1 de Xn+1 est (−1)nn(n + 1)! − 2(n + 1)(−1)n(n + 1)! = (−1)n(n + 1)!(n − 2n − 2) =
(−1)n+1(n + 1)!(n + 2) = (−1)n+1(n + 2)! ̸= 0.

Donc Pn+1 est de degré n + 1 (la plus grande puissance de X qui apparâıt est Xn+1 avec un coefficient non nul)
et donc coeff dom(Pn+1) = (−1)n+1(n + 2)!.

Finalement, par principe de récurrence, ∀n ∈ N, deg(Pn) = n et coeff dom(Pn) = (−1)n(n + 1)!.

Lien entre les polynômes Pn et f

On introduit les fonctions
g : R

∗ → R
x 7→ 1

x

et h : R → R
x 7→ ln(1 + x2)

18. g est de classe C∞ en tant que fraction rationnelle et x 7→ 1 + x2 est C∞ sur R à valeur dans [1, +∞[ et
ln ∈ C∞(R∗

+,R). Donc par composition, h ∈ C∞(R,R).
19. Comme g ∈ C∞(R∗,R), on peut la dériver autant de fois que désirer et

∀x ̸= 0, g(x) = 1
x

, g′(x) = −1
x2 , g′′(x) = 2

x3

Supposons que ∃k ∈ N tel que ∀x ̸= 0, g(k)(x) = (−1)kk!
xk+1 . Alors ∀x ̸= 0, g(k+1)(x) = −(−1)kk!(k+1)

xk+2 = (−1)k+1(k+1)!
xk+2 .

Donc, par principe de récurrence,

∀k ∈ N, ∀x ̸= 0, g(k)(x) = (−1)kk!
xk+1 .
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20. h est de classe C∞ sur R donc en particulier dérivable et

∀x > 0, h′(x) = 2x

1 + x2 = α(x)γ(x)

où α : x 7→ 2x et γ : x 7→ 1
1+x2 introduite dans la partie III. On a α, γ ∈ C∞(R,R) et donc, par Leibniz,

∀k ∈ N, ∀x ∈ R, h(k+1)(x) = (h′)(k)(x) =
k∑

i=0

(
k

i

)
α(i)(x)γ(k−i)(x).

Or, d’après la question 13,

∀i ∈ N, ∀x ∈ R, γ(i)(x) = P̃i(x)
(1 + x2)i+1

et

∀i ∈ N, ∀x ∈ R, α(i)(x) =


2x si i = 0
2 si i = 1
0 si i ≥ 2

On en déduit donc

∀k ∈ N∗, ∀x ∈ R, h(k+1)(x) =
k∑

i=0

(
k

i

)
α(i)(x)γ(k−i)(x)

= α(x)γ(k)(x) + kα′(x)γ(k−1)(x)

= 2xP̃k(x)
(1 + x2)k+1 + 2kP̃k−1(x)

(1 + x2)k

21. Par définition, on a f = gh et g, h ∈ C∞(R∗
+,R). Donc, par produit de fonctions C∞, on a bien f ∈ C∞(R∗

+,R).
22. On a déjà calculé à la question 3 que

∀x > 0, f ′(x) = 2
1 + x2 − ln(1 + x2)

x2 .

Donc,
∀x > 0, f ′′(x) = −4x

(1 + x2)2 − 2
x(1 + x2) + 2 ln(1 + x2)

x3 .

Enfin, en utilisant la formule de Leibniz et les questions précédentes pour les calculs des dérivées dans la formule de
Leibniz, on a, ∀n ∈ N, n ≥ 2, ∀x > 0,

f (n)(x) =
n∑

k=0

(
n

k

)
h(k)(x)g(n−k)(x)

= h(x)g(n)(x) + nh′(x)g(n−1)(x) +
n∑

k=2

(
n

k

)
h(k)(x)g(n−k)(x)

= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!x

xn(1 + x2) +
n−1∑
k=1

(
n

k + 1

)
h(k+1)(x)g(n−k−1)(x)

= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!

xn−1(1 + x2)

+ 2
n−1∑
k=1

(
n

k + 1

)(
xP̃k(x)

(1 + x2)k+1 + kP̃k−1(x)
(1 + x2)k

)
(−1)n−k−1(n − k − 1)!

xn−k

= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!

xn−1(1 + x2) + 2
n−1∑
k=1

(
n

k + 1

)
(−1)n−k−1(n − k − 1)!P̃k(x)

(xn−k−1(1 + x2)k+1

+ 2
n−1∑
k=1

(
n

k + 1

)
(−1)n−k−1(n − k − 1)!kP̃k−1(x)

xn−k(1 + x2)n−k−1
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= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!

xn−1(1 + x2) + 2n!
n−1∑
k=1

(−1)n−k−1P̃k(x)
(k + 1)!xn−k−1(1 + x2)k+1

+ 2n!
n−1∑
k=1

(−1)n−k−1kP̃k−1(x)
(k + 1)!xn−k(1 + x2)k

= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!

xn−1(1 + x2) + 2n!
n∑

k=2

(−1)n−kP̃k−1(x)
k!xn−k(1 + x2)k

+ 2n!
n−1∑
k=1

(−1)n−k−1kP̃k−1(x)
(k + 1)!xn−k(1 + x2)k

= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!

xn−1(1 + x2) + 2n!(−1)n−2P̃0(x)
2!xn−1(1 + x2)

+ 2n!
n−1∑
k=2

(−1)n−kP̃k−1(x)
xn−k(1 + x2)k

( 1
k! − k

(k + 1)!

)
+ 2n!P̃n−1(x)

n!(1 + x2)n

= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!

xn−1(1 + x2) + n!(−1)n

xn−1(1 + x2)

+ 2n!
n−1∑
k=2

(−1)n−kP̃k−1(x)
k!xn−k(1 + x2)k

(
1 − k

k + 1

)
+ 2P̃n−1(x)

(1 + x2)n

= (−1)nn! ln(1 + x2)
xn+1 + 2(−1)n−1n!

xn−1(1 + x2) + (−1)nn!
xn−1(1 + x2)

+ 2n!
n−1∑
k=2

(−1)n−kP̃k−1(x)
(k + 1)!xn−k(1 + x2)k

+ 2P̃n−1(x)
(1 + x2)n

= (−1)nn! ln(1 + x2)
xn+1 + (−1)n−1n!

xn−1(1 + x2) + 2n!
n−1∑
k=2

(−1)n−kP̃k−1(x)
(k + 1)!xn−k(1 + x2)k

+ 2P̃n−1(x)
(1 + x2)n

= (−1)nn! ln(1 + x2)
xn+1 + 2n!

n−1∑
k=1

(−1)n−kP̃k−1(x)
(k + 1)!xn−k(1 + x2)k

+ 2P̃n−1(x)
(1 + x2)n

On pourra remarquer que cette formule est encore vraie pour n = 1 si l’on prend en compte la convention que la somme
est nulle puisque n − 1 < 1 ; et cette formule est encore vraie pour n = 0 avec la même convention et en rajoutant
P−1(X) = 0.

Problème 2 (Théorème de Zeckendorff) :
On appelle (un)n∈N la suite de Fibonacci.

Partie A : Quelques résultats sur la suite

1. (a) On a u2 = u1 = 1 ∈ N∗.
Supposons ∃n ∈ N∗ tel que un, un+1 ∈ N∗. Alors un+2 = un +un+1 ∈ N∗. Donc, par principe de récurrence double,

∀n ∈ N∗, un ∈ N∗.
(b) On a ∀n ∈ N∗, un+2 = un +un+1 ≥ 1+un+1 > un+1. Donc (un)n≥2 est strictement croissante. Donc (un)n∈N

est strictement croissante à partir du rang 2.
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(c) On a vu dans la question précédente que ∀n ∈ N∗, un+2 ≥ 1 + un+1. Donc ∀n ≥ 2, un+1 ≥ 1 + un.
En particulier u3 ≥ 1 + u2 ≥ 2. Supposons ∃n ≥ 2 tel que un ≥ n − 1. Alors un+1 ≥ 1 + un ≥ n. Donc, par

principe de récurrence simple, ∀n ≥ 2, un ≥ n − 1.
Et donc, par théorème des gendarmes branche infinie, un −−−−−→

n→+∞
+∞.

Remarque :
On pouvait faire cette question de plusieurs manières différentes. Notamment, on pouvait aussi utiliser le faire que la
suite (un)n∈N∗ est une suite d’entier strictement croissante et donc diverge vers +∞. Mais ce dernier point est loin
d’être trivial et donc me dérange toujours à utiliser tel quel.

2. Notons que u2u0 − u2
1 = −u2

1 = −1 = (−1)1.
Supposons ∃n ∈ N∗ tel que un+1un−1 − u2

n = (−1)n. Alors

un+2un − u2
n+1 = (un + un+1)un − u2

n+1

= u2
n + unun+1 − u2

n+1

= u2
n + un+1(un − un+1)

= u1
n − un+1un−1

= −(−1)n HR
= (−1)n+1

Donc, par principe de récurrence, ∀n ∈ N∗, un+1un−1 − u2
n = (−1)n.

3. Remarquons d’abord que

∀p ∈ N∗, up = 0 × up−1 + 1 × up = u0up−1 + u1up.

Supposons ∃n ∈ N tel que ∀p ∈ N∗, un+p = unup−1 + un+1up. Alors

∀p ∈ N∗, un+1+p = un+(p+1)

= unup + un+1up+1 HR
= unup + un+1(up + up−1)
= (un + un+1)up + un+1up−1

= un+1up−1 + un+2up

Et donc, par principe de récurrence,

∀n ∈ N, (∀p ∈ N∗, un+p = unup−1 + un+1up).

4. On commence par
0∑

k=0
u2k = u0 = 0 = u1 − 1,

0∑
k=0

u2k+1 = u1 = 1 = u2 − 1.

Supposons ∃n ∈ N tel que ∑n
k=0 u2k = u2n+1 − 1 et ∑n

k=0 u2k+1 = u2n+2 − 1. Alors
n+1∑
k=0

u2k = u2n+2 +
n∑

k=0
u2k

n+1∑
k=0

u2k+1 = u2n+3 +
n∑

k=0
u2k+1

= u2n+2 + u2n+1 − 1 = u2n+3 + u2n+2 − 1 HR
= u2n+3 − 1 = u2n+4 − 1 Fibonacci
= u2(n+1)+1 − 1 = u2(n+1)+2 − 1

Et donc, par principe de récurrence,

∀n ∈ N,
n∑

k=0
u2k = u2n+1 − 1,

n∑
k=0

u2k+1 = u2n+2 − 1.
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Partie B : Arithmétique et suite de Fibonacci

5. On pose ∀n ∈ N, dn = un ∧ un+1 la suite des pgcd des termes consécutifs de la suite de Fibonacci.
Alors d0 = u0 ∧ u1 = 0 ∧ 1 = 1. On a aussi d1 = u1 ∧ u2 = 1 ∧ 1 = 1. Et de même d2 = u2 ∧ u3 = 1 ∧ u3 = 1.
Supposons ∃n ∈ N tel que dn = 1. dn+1 divise un+1 et un+2. Donc dn+1|(un+2 − un+1) = un. Donc dn+1|dn =

un ∧ un+1 = 1. Donc dn+1 = 1.
Et donc, par principe de récurrence, ∀n ∈ N, dn = 1. Donc deux termes consécutifs de la suite de Fibonacci sont

premiers entre eux.
6. (a) Soit n ∈ N∗ et p ∈ N. Soit d = un ∧ up et δ = un ∧ un+p.
Si p = 0, alors up = u0 = 0. Et un ≥ 1. Donc un ∧ up = un = un ∧ un. Supposons p ≥ 1.
Alors δ|(un+p − up−1un) car up−1 ∈ N. Or, d’après 3, un+p − up−1un = un+1up. Donc δ|un+1up. Or δ|un et

un ∧un+1 = 1 d’après la question précédente. Donc δ ∧un+1 = 1. Donc, par le lemme de Gauss, δ|up. Donc δ|(un ∧up)
par caractérisation du pgcd. Donc δ|d par définition de d.

De plus, d|(unup−1 + un+1up) donc δ|un+p d’après 3. Or d|un par définition. Donc par définition de δ, d|δ.
Donc d et δ sont associés. Or d, δ ≥ 0 car ce sont des pgcd. Donc d = δ.
Et donc ∀n, p ∈ N∗, un ∧ up = un ∧ un+p.
(b) Soit (n, q, r) ∈ N∗ × N × N. Alors

un ∧ uqn+r = un ∧ u(q−1)n+r question précédente
= un ∧ u(q−2)n+r

... r itérations
= un ∧ ur

Cette démonstration n’est pas vraiment satisfaisante car elle cache une récurrence. Faisons la donc proprement. On
sait déjà que ∀(n, r) ∈ N∗ × N, ur ∧ un = ur ∧ un. On notera que d’après la question précédente, ∀(n, r) ∈ N∗ × N,
un+r ∧ ur = ur ∧ un.

Supposons ∃q ∈ N tel que ∀(n, r) ∈ N∗ ×N, unq+r ∧ur = un ∧ur. Alors ∀(n, r) ∈ N∗ ×N, (n(q+1)+r, r) ∈ N∗ ×N
et donc un(q+1)+r ∧ ur = unq+r+n ∧ ur = unq+r ∧ ur = un ∧ ur par hypothèse de récurrence et en utilisant la question
précédente.

Donc, par principe de récurrence,

∀q ∈ N, ∀(n, r) ∈ N∗ × N, unq+r ∧ ur = un ∧ ur.

7. Soit n, m ∈ N. Si n = 0, alors un = 0 et donc un ∧ um = um. Or n ∧ m = m. Donc un ∧ um = un∧m.
Supposons n ≥ 1. On construit alors la suite (rk)0≤k≤N des restes successifs des divisions euclidiennes dans

l’algorithme d’Euclide de la division euclidienne de m par n. Donc r0 = m, r1 = n, rN−1 = n ∧ m, rN = 0 et
∀k ∈ {0, . . . , N − 1}, ∃qk ∈ N tel que rk = qkrk+1 + rk+2. Alors

∀k ∈ {0, . . . , N − 1}, urk
∧ urk+1 = uqkrk+1+rk+2 ∧ urk+1

= urk+2 ∧ urk+1 6b car rk+1 ̸= 0

En particulier,
un ∧ um = ur0 ∧ ur1 = urN ∧ urN+1 = urN = un∧m

car rN+1 = 0 et rN = n ∧ m.
8. (a) Soit n ≥ 3 et p ∈ N.
Supposons n|p. Alors n ∧ p = n. Et donc, d’après la question précédente, un ∧ up = un∧p = un. Donc un|up.
Réciproquement, supposons up|un. Alors un ∧ up = un. Or, par la question précédente, un ∧ up = un∧p. Donc

un = un∧p. Or n ≥ 3 et, d’après la question 1b, (uk)k∈N est strictement croissante à partir du rang 2. On notera de
plus que u2 = 1. Donc u3 > 1. Et donc ∀k ≥ 3, uk > 1. Donc un∧p = un > 1 car n ≥ 3. Et donc, n ∧ p ≥ 3 (sinon
un∧p ≤ 1). On a donc n ≥ 3, n ∧ p ≥ 3, un = un∧p et (uk)k≥3 strictement croissante. Donc, par injectivité de u, on
en déduit n = n ∧ p. Et donc n|p.
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(b) Soit n ≥ 3. Si n = 3, alors u3 = 2 est premier et l’implication est vérifiée. Si n = 4, u4 = 5 est premier est
l’implication est encore vérifiée.

Supposons n ≥ 5. On va montrer la contraposée de l’implication. Donc on va montrer que si un n’est pas premier,
alors n n’est pas premier. Supposons donc que un ne soit pas premier. Par stricte croissance de (uk)k≥2, on a donc
un > u4 = 5. Donc n a un diviseur stricte p ≥ 3 (si e n’est pas le cas, alors n est le produit de deux diviseurs ≤ 2 et
donc n ≤ 4 A). Et donc, d’après la question précédente, up|un. Toujours par stricte croissance de la suite (uk)k≥2, on
a 3 ≤ p < n donc u3 = 2 ≤ up < un. Donc un a un diviseur stricte non trivial. Donc un n’est pas premier.

Par contraposition, on vient de montrer que ∀n ≥ 5, un premier =⇒ n premier. Or cette implication est encore
vraie pour n = 3 et n = 4. On a donc bien montré que ∀n ≥ 3, un premier =⇒ n premier.

Partie C : Théorème de Zeckendorf

On notera ∀a, b ∈ N, a ≫ b ⇐⇒ a ≥ b + 2.
9. (a) On a 1 = 1 = u2. Et 4 = 3 + 1 = u4 + u2. Et enfin 12 = 8 + 3 + 1 = u6 + u4 + u2.
(b) Soit n ∈ N∗. On pose An = {k ∈ N, k ≥ 2, uk ≤ n}. La suite (uk)k≥2 diverge vers +∞ donc An est majorée,

par définition.
n ̸= 0 et donc n ≥ 1. Donc n ≥ u2. Donc 2 ∈ An.
Donc An ⊂ N non vide et majorée. Donc max An existe.
(c) On sait que n = 1 admet une décomposition de Zeckendorf d’après ce qui précède.
Supposons ∃n ∈ N∗ tel que ∀m ∈ {1, . . . , n}, m admet une décomposition de Zeckendorf.
On pose k1 = max An+1. Donc, par définition de An+1, uk1 ≤ n + 1 < uk1+1. On notera que k1 ≥ 2. Donc

k1 ≫ 0. Donc si n + 1 = uk1 , alors n + 1 admet une décomposition de Zeckendorf. Si n + 1 ̸= uk1 . Alors uk1 < n + 1.
Donc n + 1 − uk1 > 0. Donc n + 1 − uk1 ≥ 1. De plus, k1 ≥ 2, donc uk1 > 0. Donc n + 1 − uk1 ≤ n. Donc
n+1−uk1 ∈ {1, . . . , n}. Donc, par hypothèse de récurrence forte, n+1−uk1 admet une décomposition de Zeckendorf.
Donc ∃p ∈ N∗, ∃k′

1, . . . , k′
p ∈ N tels que k′

1 ≫ · · · ≫ k′
p ≫ 0 et

n + 1 − uk1 =
p∑

i=1
uk′

i
.

On pose k2 = k′
1, . . . , kp+1 = k′

p. Alors

n + 1 =
p+1∑
i=1

uki
.

De plus, k2 ≫ · · · ≫ kp+1 ≫ 0. Il reste juste à vérifier que k1 ≫ k2 i.e. k1 ≥ k2 + 2.
Supposons k1 < k2 + 2. Donc k1 ≤ k2 + 1. Et donc

uk1 + uk2 ≥ uk1 + uk1−1 = uk1+1 > n + 1

par définition de k1. On a donc A.
D’où k1 ≫ k2. Et donc n + 1 a bien une décomposition de Zeckendorf.
Donc, par principe de récurrence forte, tout entier naturel non nul admet une décomposition de Zeckendorf.

Remarque :
Le théorème n’est pas encore complètement démontré. Il reste à prouver l’uncité.

En fait, la construction nous fournit une unicité : elle provient de l’unicité du maximum. Mais on va remontrer
l’uncitié sans s’appuyer sur la construction faite ici.

10. Soit n ∈ N∗ possédant une décomposition de Zeckendorf. Soit p ∈ N∗, k1, . . . , kp ∈ N tels que k1 ≫ · · · ≫
kp ≫ 0 tels que

n =
p∑

i=1
uki

.
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(a) Il est facile de montrer que ∀i ∈ {1, . . . , p}, ki ≤ k1 − 2(i − 1). Par stricte croissance de (uk)k≥2, on en déduit

n =
p∑

i=1
uki

≤
p∑

i=1
uk1−2(i−1) =

p−1∑
i=0

uk1−2i.

On effectue alors une disjonctions de cas :
• Si k1 ≡ 0 [2], alors

n ≤
p−1∑
i=0

uk1−2i

=
p−1∑
i=0

u2(k1/2−i)

≤
k1/2∑
i=0

u2i

= u2(k1/2)+1 − 1 cf 4
= uk1+1 − 1
< uk1+1.

• Si k1 ≡ 1 [2], alors

n ≤
p−1∑
i=0

uk1−2i

=
p−1∑
i=0

u2
(

k1−1
2 −i

)
+1

≤

k1−1
2∑

i=0
u2i+1

= u2 k1−1
2 +2 − 1 cf 4

= uk1+1 − 1
< uk1+1

Dans les deux cas, on a uk1 ≤ n < uk1+1.
(b) Supposons qu’il existe deux entiers k, ℓ ≥ 2 tels que uk ≤ n < uk+1 et uℓ ≤ n < uℓ+1. Sans perte de

généralités, on peut suppose k ≥ ℓ (car on a une relation d’ordre totale sur N). En soustrayant les deux inégalités, on a

uk − uℓ+1 < 0 < uk + 1 − uℓ.

Donc uk ≤ uℓ+1 et k ≥ 2. Par stricte croissance de la suite de Fibonacci à partir du rang, on en déduit k < ℓ + 1. Et
de uk+1 − uℓ > 0, on déduit ℓ < k + 1. Donc k − 1 < ℓ < k + 1. Donc k = ℓ.

Or, d’après la question précédente, k1 de la décomposition de Zeckendorf de n vérifier uk1 ≤ n < uk1+1. Donc k1
est unique.

11. On va finir la preuve du théorème par récurrence forte.
1 admet une unique décomposition de Zeckendorf car 1 = u2 et ∀k ≥ 2n uk ≥ 2 > 1 ne convient pas.
Supposons ∃n ≥ 1 tel que ∀m ∈ {1, . . . , n}, m admet une unique décomposition de Zeckendorf.
On a déjà montré que n + 1 admet une décomposition de Zeckendorf. Donc ∃p ∈ N∗, ∃k1 ≫ k2 ≫ · · · ≫ kp ≫ 0

tels que

n + 1 =
p∑

i=0
uki

.
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D’après 10a, uk1 ≤ n + 1 < uk1+1. Donc k1 est unique.
Si uk1 = n + 1, alors la décomposition de Zeckendorf de n + 1 est unique. Si uk1 < n + 1, alors n + 1 − uk1 ∈

{1, . . . , n}. Et donc, par hypothèse de récurrence forte, n + 1 − uk1 admet une unique décomposition de Zeckendorf.
Or n + 1 − uk1 =

∑p
i=2 uki

est une décomposition de Zeckendorf. Donc cette décomposition est unique. Comme k1 est
unique, la décomposition de Zeckendorf de n + 1 est aussi unique.

Finalement, par principe de récurrence forte, tout entier naturel non nul peut se décomposer de manière unique
comme somme de termes de la suite de Fibonacci non consécutifs (et sans les deux premiers termes de la suite).
Remarque :
Évidemment, si on autorise à prendre u0 et u1, on perd clairement l’unicitié de la décomposition.
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