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Probléme 1 :
On introduit
R* — R
In(14+22)
X

o=
Partie | : Début des prolongations

1. In est continue sur R% et Vo € R, 1 +2* > 1 > 0. Donc, par composition, z — In(1 + 2%) € C°(R,R).
Finalement, par quotient de fonctions dont le dénominateur ne s'annule par, f € CO(R*,R).

2. L'application ¢ — In(1 + ) est continue sur dérivable sur | — 1, 4o0[. Elle est en particulier dérivable en 0 et sa

2
dérivée en 0 est 1. Donc M —— 1. Or 22 —— 0, donc, par composition M —— 1 et donc, par produit de
t—0 ) $—>§) x z—0
fonctions convergentes, f(z) = ln(lf” ) = x‘“(ljf ) 0x1=0.

z—0
f est continue sur R* et f(x) — 0, donc f est prolongeable par continuité en 0 en posant f(0) = 0..
Tr—r

On considére maintenant
R — R

: In(1+2?)
f'x . - x#0
0 z=0
Alors f € C°(R,R).

3. Par composition, = + In(1 4 ) est dérivable sur R et donc, par quotient de fonctions dérivables dont le
dénominateur ne s'annule pas, f € D!(R*,R). Et

22 2
— —In(1+2?) 2 In(1 + 2?)
Vo #0, f(z) = H——y i prive R p

2
4. Par quotient de fonctions continues dont le dénominateur ne s'annule pas, x — ln(lx#) € C°(R*,R). Et de

méme, x — 25 € C°(R*, R). Donc, par structure de R-espace vectoriel de C°(R*, R), on a donc f’ € C°(R*,R).

5. Par dérivabilité de ¢ — In(1+t) en 0, on a 204")

fl(x) — b

On a donc f € CO(R,R) ND°(R*,R) et f'(x) — 1 € R, donc, par théoréme de prolongement C! (aka théoréme
T—

1et —2 5 2. Donc, par linéarité de la limite,

x—0 Ia?

satanique), f est dérivable en 0 et f/(0) =1 (ATTENTION ! on rappelle que I'on ne peut pas prolonger les dérivées !
Méme si I'énoncé est fait pour le suggéré).
Donc f € DY(R,R). Et par ailleurs, ' € C°(R*,R) et f'(x) — 1 = f'(1), donc, par caractérisation de la
T—

continuité par les limites, f’ est continue en 0. Donc f’ € C°(R,R). Et donc, par définition f € C*(R,R).



6. On suppose qu'on a montré que f € C(R,R). Alors, par Taylor-Young, f admet un développement limité a
tout ordre en 0 et
F®(0)

VneN, f(z) = Z o z® + o(z™).
k=0 ’

D’autre part, en calculant les développements limités, on a

2 2n (—1)k—ta2F 2
Vn € N*, In(1 + )zfoz k + o(x*")
k=1
Donc )
* _ E (_l)kilekil 2n—1
VneN,f(:n)z:OZT+o(:n ).

k=1

On en déduit donc, par unicité du développements limités,

et f(0) =0.
Partie Il : Avec des suites

On définit la suite (up)nen par
1
ug €]0,1] et VneN, upi1 = Zf(un)

7. On pose g(t) = 1In(1 + ¢) pour tout t > 0.

(a) g € CT>°(] =1, +00[,0) par composition de fonctions de classe C*. Et alors Vt € Ry, ¢'(t) = %th OrVt € Ry,
1+t >1, donc, par passage a l'inverse (et méme par décroissance de la fonction inverse),

1
VtE>0,0< — =¢'(t) < 1.
>0, 157 g (t) <

(b) Soit ¢ > 0. ¢’ est décroissante sur [0,¢], donc Va € [0,t], ¢'(t) = 1%% <d'(z) <1

g étant dérivable sur [0, t] et de dérivée bornée sur [0, ], I'inégalité des accroissements finis, nous donne

1 _9w)—g(=) _
1+t~ y—=x =

1.

Va,y € [0,t], x #y,

En particulier,
1 g(t) —g(0) In(1+1¢) <

< = 1.
14+t~ t—0 t -
On vient donc de montrer que Vt > 0, l%rt < ln(l;rt) <1
(c) D’aprés la question précédente, on a
2
Vr > 0, 1 Sln(l—l—:z:):!}"(x)gl
1+ 22 x2 T
Et donc, .

(d) On a Vx > 0, ﬁ < @ = % < 1. Or, par continuité ﬁ ——O—> 1. Donc, par théoréme des
T—

gendarmes, %{;(0) — 1. Et donc, par définition, f est dérivable en 0 et f’(0) = 1. Ce qui est cohérent avec ce
T—

qui a été prouvé en partie |.



8. D’apres ce qui précede, on a Vx €]0,1], 0 < =55 < f(z) < = < 1. Donc Vz €]0,1], f(z) €]0,1] et donc, par
définition, f(]0,1]) C]0,1]. Donc ]0, 1] est intervalle stable par f.
Or ug €]0,1] et (up)nen est une suite récurrente d'ordre 1. Donc elle est bien définie et Vn € N, u,, €]0,1].

9. OnavuqueVt#0, f/(t) = 2z — ln(lt;Hz). Donc,

2 In(1+ %)

vt >0, [f(t)] =

1+
2 In(1 4+ ¢2
< T a( t—; ) inégalité triangulaire
<2+1=3 cf question 6

10. On vient de voir que V¢t > 0, |f'(¢t)| < 3. Or f/(0) =1 < 3. Donc Vt € Ry, |f'(¢)| < 3.
f est dérivable sur R, et f’ est bornée sur R, donc, par inégalité des accroissements finis, on a

Va,y € Ry, [f(x) = f(y)] < 3z —yl.

En particulier, pour y =0, on a
va €]0,1], [f(z)| = [f(z) — f(0)] < 3|z].

Or ¥n € N, u, €]0,1]. Donc
1 3
Vn €N, |un+1‘ = 1|f(un)| < Z|un|

11. On a |ug| < (3/4)%ug|. Supposons In € N, |u,| < (3/4)™|ug|. Alors |uny1]| < 3/4|un| < (3/4)" 1 |ug.
Donc, par principe de récurrence, Vn € N, |u,| < (3/4)™|ug.

Or 3/4 €]0, 1], donc, par convergence des suites géométriques, (3/4)" — 0. Donc, par corollaire du théoréme
n o0

des gendarmes, u, — 0.
n—-+00

Parti 11l : Dérivation annexe

On définit la fonction
R = R

: 1
A v

v

12. En tant qu'inverse de fonction non nulle de classe C*°, on a v € C*°(R, R).

13. On a 9
—2x
v R, ~/ = —
et 212 2 2 2
Ve € R 7,,(:8):—2(1—1—30) + 8z (1—|—x):2(3x -1)
’ (1+22)t (1+22)3
et enfin

Vo c R, 7///(@,) — 12$(1 + $2)3 - 1235'(3:1?2 — ]_)(]. + 1’2)2 . _24$($2 _ 1)

(1+ 22)0 T (T2t
14. On pose Py(X) =1 € R[X]. Alors Vz € R, y(x) = %.
Supposons qu'il existe P, € R[X] tel que Yz € R, 4 (z) = %.

Comme v € C*(R, R), on peut donc dériver 4" et alors

-/

P, (2)(14 22" —2(n + Da(1 + 22)" Py (2)
(1 +x2)2n+2

B, (2)(1 + %) — 2(n + DaP,(x)

- (1 _|_$2)n+2

vz e R, /") () =

3



On pose alors P, 1(X) = P (X)(1 + X?) —2(n+ 1) X P,(X). Alors P,,,1 € R[X] et

—~—

Poi1(x)

Yz S R, ’}/(n—‘rl)([]}') = W

On vient donc de montrer par récurrence que Vn € N, 3P, € R[X], Vz € R,

Poi1(X) = (1+ XHP(X) —2(n+ 1) X P, (X).

15. D’apres les calculs de v, 7/, 7" et 7"/, on a
P(X)=1, P(X)=-2X, P(X)=20BX*-1), P(X)=-24X(X*-1).
16. Soit n € N. Supposons qu'il existe P,, @, € R[X] tels que Vz € R,

Py(x " Qu(
(1+x(2))”+1 = )(l‘) = 1 +x(2)21+1'

Comme Vz € R, 1 +22 # 0, on a donc Vz € R, EL(CC) = @;(x) Autrement dit, le polynéme R, = P, — @,, est
constant égal a 0 (par linéarité de P — P). Donc P, = Q,, et d'ou I'unicité.
17. D’'apres la question précédente, on a deg(P,) = n et coeff dom(FP,) = (—1)"(n + 1)! pour n € {0, 1,2, 3}.
Supposons que 3n € N*, deg(P,) = n et coeff dom(P,) = (—=1)"(n+1)!. Ona P11 (X) = (1+X?)P,(X)—2(n+
1)X P,(X). On adonc deg(P!) =n—1 > 0. Et donc deg((1+ X2)P/ (X)) = n+1. De méme, deg(X P, (X)) = n+1.
Mais
coeff dom(2(n + 1) X P, (X)) = 2(n + 1) coeff dom(P, (X)) = (—=1)"2(n+ 1)(n + 1)!

et
coeff dom((1 + X?)P! (X)) = coeff dom(P)) = deg(P,) coeff dom(P,,) = n(—1)"(n + 1)!.
Donc le coefficient de P41 de X" est (—=1)"n(n + 1)! —2(n + 1)(=1)"(n+ 1)! = (=1)*(n+ D)!(n — 2n — 2) =
(D" (n+1D)(n+2) = (—1)" L (n+2)! £0.
Donc P, est de degré n + 1 (la plus grande puissance de X qui apparait est X! avec un coefficient non nul)
et donc coeff dom(P,;1) = (—1)"T1(n + 2)!.
Finalement, par principe de récurrence, Vn € N, deg(P,,) = n et coeff dom(P,) = (—=1)"(n + 1)!.

Lien entre les polynémes P, et f

On introduit les fonctions
R — R

r +— In(l+2?)

R* —
g’x —

et h:

g~ =

18. g est de classe C*™ en tant que fraction rationnelle et x +— 1 + 22 est C* sur R a valeur dans [1, +oo et
In € C*°(R%,R). Donc par composition, h € C*(R, R).
19. Comme g € C*°(R*,R), on peut la dériver autant de fois que désirer et

VA0 o) =, d@=—, @)=

Supposons que 3k € N tel que Vz # 0, g¥)(z) = (;ii)jlk' Alors Yz # 0, g*+1(z) = 7(712;ﬁ!2(k+1) = (71)1;:1(2’““)!.

Donc, par principe de récurrence,

(—1)*k!



20. h est de classe C* sur R donc en particulier dérivable et

Ve >0, h(z) = : ime = afx)y(z)

ola:x—2xety:z— H% introduite dans la partie Illl. On a a,y € C*°(R, R) et donc, par Leibniz,

Vk €N, Vo e R, h¥+D(z) = (h)®)(z) = Ek: <k> a® (z)y ().

Or, d'aprés la question 13,

, P
VieN, Vo e R, 79 (z) = i ;f))m

et

2¢ sit =0

Vi € N, Vx € R, a(i)(:n): 2 sii=1

0 sit>2

On en déduit donc
k
Vk e N, Vz e R, hFD(z Z ( ) B0 ()

= a(x)v( (@) + ko ()" V()

_ 2uP(z) | 2kP(x)
(T2l (1 a2)k

21. Par définition, on a f = gh et g,h € C*°(R% ,R). Donc, par produit de fonctions C*, on a bien f € C*°(R* ,R).
22. On a déja calculé a la question 3 que

2 In(1 + z?)

Vo >0, f(r)= 722 =

Donc,
—4z 2 2In(1 + 2?)

(1+22)2  z(1+a?) + a3
Enfin, en utilisant la formule de Leibniz et les questions précédentes pour les calculs des dérivées dans la formule de
Leibniz, on a, Vn € N, n > 2, Vx > 0,

f(n) (z) = i (Z) B k) (a?)g("*k) (x)

Ve >0, f'(x) =

k=0
= h(z)g™ (z) + nh/(x)g Z( ) )g" M) ()
—1)"n!In 22 n—1 -
_ ( 1) :L"Tll+(11—|— )+ QLn(11)+x2 2:: <k+1> k+1)( )g(nfkfl)(x)
(—=1)"n!In(1 4 22) 2(—1)""1n!
- rntl n— 1(1—|—.%'2
xPy( kP (z —1) k-l — k= 1)!
+22<k+1><1+Z2k+1+(1i;g)’2>( ) xn(—k :
—1)"n!In(1 + 22 2(—1 1”_’“_171—/4:—1!?1’
Ne xn—i-(l ) T In( 1 )1+x2 Z <I<:+ 1> )(xn—k:—(l(l +$2)k)+1k( )

(—1)" k1 — k — 1)1kPp_; ()
Z <k+ 1> xn—k(1+x2)n—k—1 :

5



~1)"nln(l +2?)  2(-1)""'nl = 1)h-1p,
_( )nn(1 a7 (1) n! +2”'Z (= )4@7 () ]
l-nJr xn (1+ ) k_|_1)lxn 1(1+l‘2) +1

n—k 1k,P
+ 2n! Z (](€+))|$n k(lk;g(czi
(=

1\ 2 _1\n— 1 n n—k
_(C)aln(l4a?) | 2(-1) +2'Z D"k By (2)
rntl = 1(1 + klpen— k 1 + LUQ)

n—1 n—k—1
(-1) kPi1(z)
2n!
+an ; (k + 1)lan—F(1 + 22)F

(=1)"n!In(1 4+ 22)  2(=1)""n!  2n!(=1)""2Py(x)

m”'H SL'"_1<1—|-$2) 2|xn—1(1+$2)
n k D
Pk 1( ) 1 k 2n'Pn,1(l')
! - _
- 2n! Z o : (1t 22)F <k! (k+1)!> T+ 2
(=D)"n!ln(1+2?)  2(=1)""In! n!(—=1)"
- J;n-l-l x"‘1(1+x2) ( +ZC2)
n k D
Pk 1( )( k ) 2Pn_1(l‘)
2n! 1—-
+nzk'”k1+x2) 1) Tty
(=)™ In(1 4+ 22)  2(—~1)""!n! (—=1)"n!
o pn+l a1+ 22) | zn (14 22)

n—1 ( )n kPk ( ) 21571\—/1(55)
+2n'z (k+ 1)1z~ k(l:_xQ)k + (14 a2)n

_(=)"ln(i+a?) (=)' ')+zn"zl( (—)"*Pi(w) | 2P a(x)

antl " 1(1 + k+1)lan=k(1 4 22)F (14 22)n
_(Cytan(i4a?) 'Z kP (x) 2P, ()
antl (k + 1 'x” 14+ 22)F (1 +a22)n

On pourra remarquer que cette formule est encore vraie pour n = 1 si I'on prend en compte la convention que la somme
est nulle puisque n — 1 < 1; et cette formule est encore vraie pour n = 0 avec la méme convention et en rajoutant
P_1(X)=0.

Probleme 2 (Théoréme de Zeckendorff) :
On appelle (un)nen la suite de Fibonacci.

Partie A : Quelques résultats sur la suite

1. (a) Onawug =u; =1¢€N*

Supposons dn € N* tel que uy,, unpy1 € N*. Alors u,10 = Uy +unt1 € N*. Donc, par principe de récurrence double,
Vn € N*, u, € N*,

(b) OnaVn € N*, upyo = tup+uny1 > 1+ups1 > Upt1. Donc (uy,)n>2 est strictement croissante. Donc (up, )nen
est strictement croissante a partir du rang 2.



(c) On a vu dans la question précédente que Vn € N*, u,19 > 1+ upy1. Donc Vn > 2, upy1 > 14 uy,.

En particulier ug > 1 4 ug > 2. Supposons In > 2 tel que u, > n — 1. Alors u,4+1 > 1 4+ u, > n. Donc, par

principe de récurrence simple, Vn > 2, u, > n — 1.

Et donc, par théoréme des gendarmes branche infinie, u, —+> ~+00.
n—-+0oo

Remarque :
On pouvait faire cette question de plusieurs maniéres différentes. Notamment, on pouvait aussi

utiliser le faire que la

suite (un)nen+ est une suite d'entier strictement croissante et donc diverge vers +oo. Mais ce dernier point est loin

d’étre trivial et donc me dérange toujours a utiliser tel quel.

2. Notons que ugug — u? = —u? = —1 = (-1)L.
Supposons 3n € N* tel que w1 1up_1 — u2 = (—1)". Alors

2 2
Un42Un — Up4q = (Un + Un+1)upn — Up+1
2 2
= Up + UpUni1 — Upyq
2
= Uy, + Unt1(Un — Unt1)

uyll — Up4+1Un—1
=—(=1)" HR
= (-t
Donc, par principe de récurrence, Vn € N*, w1, 1 — u2 = (—1)".
3. Remarquons d'abord que
Vp e N* u, =0 X up_1+1 X up =ugp—1 + uiup.
Supposons dn € N tel que Vp € N*, up4p = upup—1 + Upt1up. Alors
Vp € N, Unti4p = Uny(pt1)
= UpUp + Un1Up+1 HR
= UnUp + Upy1(Up + Up_1)
= (up + UnJrl)up + Up+1Up—1

= Up4+1Up—1 + Un+2Up
Et donc, par principe de récurrence,
VneN, (Vp € N, upip = uptp—1 + Unt1up).

4. On commence par

0

ZU%:UOZOIM—L

k=0

0

k=0

Supposons dn € N tel que Y ) uor = ugnt1 — 1 et Do) _guskt1 = Uzny2 — 1. Alors

n+1

n
Z Ugk = U2n42 + Z U2k
k=0

k=0
= Ugpio + Uopy1 — 1
= U2n+3 — 1

= Ug(nt+1)+1 — 1

Et donc, par principe de récurrence,

n
Vn €N, > ugy = ugns1 — 1,
k=0

n+1 n
Z Uk+1 = U2n+3 T Z U2k+1
k=0 k=0

= Uop43 + Uzpq2 — 1
= Uopts — 1

= Ug(nt1)+2 — 1

n

Z Ugk+1 = Ugny2 — 1.
k=0

ZU2k+1ZU1:1:UQ—1.

HR

Fibonacci



Partie B : Arithmétique et suite de Fibonacci

5. On pose Vn € N, d,, = up, A un+1 la suite des pged des termes consécutifs de la suite de Fibonacci.

Alors dg =ugAu1 =0A1=1.0Onaaussidi =u; Aus =1A1=1. Et de méme dy = us Aug =1 Aug = 1.

Supposons In € N tel que d,, = 1. dy+1 divise up11 €t upt2. Donc dpi1|(Unt2 — Uny1) = up. Donc dyyil|d, =
Up A Upy1 = 1. Donc dp41 = 1.

Et donc, par principe de récurrence, Vn € N, d,, = 1. Donc deux termes consécutifs de la suite de Fibonacci sont
premiers entre eux.

6. (a) Soit n € N* et p € N. Soit d = u, Aup et 6 = up A Upjp.

Sip =0, alors u, = ug = 0. Et u, > 1. Donc u, A up = up = up A uy. Supposons p > 1.

Alors 0|(un+p — Up—1un) car up—1 € N. Or, d’apres , Untp — Up—1Up = Upt1Up. Donc O|upiupy. Or Oluy, et
Up Aup41 = 1 d'apres la question précédente. Donc § Auy41 = 1. Donc, par le lemme de Gauss, 6|u,. Donc §|(uy, Auyp)
par caractérisation du pged. Donc §|d par définition de d.

De plus, d|(untp—1 + Unt1up) donc 8|uy, 1, d'apres B} Or d|u, par définition. Donc par définition de 4, d|d.
Donc d et § sont associés. Or d,0 > 0 car ce sont des pgcd. Donc d = 4.

Et donc Vn,p € N*, u, A up = Up A Up4p.

(b) Soit (n,q,r) € N* x N x N. Alors

Up A Ugntr = Un N Ug_1)ntr question précédente
= Up N U(g—2)n+r

r itérations

= Up N\ Uy

Cette démonstration n'est pas vraiment satisfaisante car elle cache une récurrence. Faisons la donc proprement. On
sait déja que V(n,r) € N* x N, u, A up, = u, A uy,. On notera que d'apres la question précédente, V(n,r) € N* x N,
Uptr N\ Up = Up N\ Up.

Supposons 3¢ € N tel que V(n,7) € N* XN, upgrr Aty = up Au,. Alors V(n,r) € N*xN, (n(g+1)+r,r) € N*xN
et donc Un(g+1)+r N Ur = Ungtrin AUy = Ungr A Up = Up AUy par hypothese de récurrence et en utilisant la question
précédente.

Donc, par principe de récurrence,

VgeN, Y(n,r) € N* XN, tunpgir Aty = tUp A ty.

7. Soit n,m € N. Sin =0, alors u,, = 0 et donc u, A Uy, = Uy,. Or n Am =m. Donc u, A Uy = Unam-

Supposons n > 1. On construit alors la suite (r;)o<g<n des restes successifs des divisions euclidiennes dans
I"algorithme d'Euclide de la division euclidienne de m par n. Donc ro = m, r1 = n, ry—1 = nAm, ry = 0 et
Vk € {0,...,N — 1}, 3qx € N tel que ry = qgrigs1 + rir2- Alors

Vk e {0,...,N =1}, tpy Ary,, = Uguryq+rpss N Urppy
= Uy y N Upy [69] car 7441 # 0

En particulier,
Up N\ Up, = Upg A Upy = Upy A Urnyy = Ury = UnAm

carryy1 =0etry =nAm.

8. (a) Soitn >3 etpeN.

Supposons n|p. Alors n A p = n. Et donc, d'apres la question précédente, u, A up = Uppp = Uyp. Donc uy,|uy.

Réciproquement, supposons uy|uy. Alors u, A u, = u,. Or, par la question précédente, u, A u, = uppp. Donc
Un = Unpp. Or n > 3 et, d'aprés la question [Ib] (ux)ren est strictement croissante a partir du rang 2. On notera de
plus que us = 1. Donc ug > 1. Et donc Vk > 3, uy, > 1. Donc uppp = uy, > 1 car n > 3. Et donc, n A p > 3 (sinon
Uppap < 1). Onadoncn >3, nAp> 3, u, = uppp et (ug)r>3 strictement croissante. Donc, par injectivité de u, on
en déduit n = n A p. Et donc n|p.



(b) Soit m > 3. Si n = 3, alors ug = 2 est premier et I'implication est vérifiée. Si n = 4, uy = 5 est premier est
I'implication est encore vérifiée.

Supposons n. > 5. On va montrer la contraposée de I'implication. Donc on va montrer que si u,, n'est pas premier,
alors n n'est pas premier. Supposons donc que u, ne soit pas premier. Par stricte croissance de (uy)r>2, on a donc
U > ug = 5. Donc n a un diviseur stricte p > 3 (si e n'est pas le cas, alors n est le produit de deux diviseurs < 2 et
doncn <4 ®). Et donc, d’aprés la question précédente, uy|u,,. Toujours par stricte croissance de la suite (uy)r>2, on
a3 <p<ndoncuz=2< u, <u,. Donc u, a un diviseur stricte non trivial. Donc u,, n'est pas premier.

Par contraposition, on vient de montrer que Vn > 5, u,, premier = n premier. Or cette implication est encore
vraie pour n = 3 et n = 4. On a donc bien montré que Vn > 3, u, premier = n premier.

Partie C : Théoreme de Zeckendorf

On noteraVa,be N, a>b < a>b+2.

9. (a) Onal=1=wuy. Et4=3+1=wuy+ug. Etenfin 12=8+ 3+ 1 = ug + uq + uo.

(b) Soit n € N*. On pose A, = {k € N, k> 2, u, <n}. La suite (uy)r>2 diverge vers +00 donc A,, est majorée,
par définition.

n # 0 et donc n > 1. Donc n > uy. Donc 2 € A,,.

Donc A,, C N non vide et majorée. Donc max A, existe.

(c) On sait que n = 1 admet une décomposition de Zeckendorf d'aprés ce qui précede.

Supposons In € N* tel que Vm € {1,...,n}, m admet une décomposition de Zeckendorf.

On pose k1 = max A, 1. Donc, par définition de A, 41, ug, < n+1 < ug, 1. On notera que k; > 2. Donc
k1 > 0. Donc si n + 1 = uy,, alors n+ 1 admet une décomposition de Zeckendorf. Si n + 1 # uy,. Alors ug, < mn+ 1.
Donc n +1 — ug, > 0. Donc n + 1 — ug, > 1. De plus, k; > 2, donc ug, > 0. Donc n 4+ 1 — ug, < n. Donc
n+1—ug, €{1,...,n}. Donc, par hypothése de récurrence forte, n+1—uy, admet une décomposition de Zeckendorf.
Donc dp € N*, 3ky, ...k, € Ntels que k> --- >k, > O et

P
n+1—uy :Zu%'
i=1

On pose kg = ki, ..., kpt1 = kj,. Alors
p+1

n+1= Zu;ﬁ
=1

De plus, k3 > --- > kpy1 > 0. |l reste juste a vérifier que k1 > ko i.e. k1 > ko + 2.
Supposons k1 < ko + 2. Donc k1 < ko + 1. Et donc

Uk, + Uky = Upy + Uy —1 = Upy41 >N+ 1

par définition de k1. On a donc E..

D'ou k1 > ko. Et donc n + 1 a bien une décomposition de Zeckendorf.

Donc, par principe de récurrence forte, tout entier naturel non nul admet une décomposition de Zeckendorf.
Remarque :
Le théoréme n'est pas encore compléetement démontré. |l reste a prouver 'uncité.

En fait, la construction nous fournit une unicité : elle provient de 'unicité du maximum. Mais on va remontrer
I'uncitié sans s'appuyer sur la construction faite ici.

10. Soit n € N* possédant une décomposition de Zeckendorf. Soit p € N*, kq,...,k, € N tels que k1 > --- >
ky > 0 tels que

p
n=3
=1



(a) Il est facile de montrer que Vi € {1,...,p}, k; < k1 —2(i — 1). Par stricte croissance de (u)r>2, on en déduit

p p
:Zu Z Uk —2(i— 1)_Zuk1 2.
i=1 =1

On effectue alors une disjonctions de cas :
= Sik; =0 [2], alors

p—1
n < Z Uk —2i
i=0
p—1
=D sk, /2-i)
i=0

k1 /2

< Z u2;
=0

= U2(k:1/2)+1 -1 Cf@]
= Uy 41 — 1

< Uk 41-

= Sik; =112], alors
p—1
n < Zukﬁl—Qi
=0
p—1
=) Uy k-1
g 2(Bt i) +1

ki—1

<) ugi
i=0

= Ugko1 )~ 1 cf 4
= Up 41 — 1
< Uk +1

Dans les deux cas, on a up, <1 < U, +1-

(b) Supposons qu'il existe deux entiers k,¢ > 2 tels que ur < n < ugy1 et ug < n < wupyq. Sans perte de
généralités, on peut suppose k > ¢ (car on a une relation d’ordre totale sur N). En soustrayant les deux inégalités, on a

up —upp < 0 < uk+1—uyp.

Donc uy, < ugyq et k > 2. Par stricte croissance de la suite de Fibonacci a partir du rang, on en déduit k < ¢+ 1. Et
de ugy1 —ug >0, on déduit < k+ 1. Donc k—1< ¢ < k+1. Donc k =¢.

Or, d’apres la question précédente, ki de la décomposition de Zeckendorf de n vérifier ux, < n < ug,+1. Donc k;
est unique.

11. On va finir la preuve du théoréme par récurrence forte.

1 admet une unique décomposition de Zeckendorf car 1 = ug et Vk > 2n ug > 2 > 1 ne convient pas.

Supposons dn > 1 tel que Ym € {1,...,n}, m admet une unique décomposition de Zeckendorf.

On a déja montré que n + 1 admet une décomposition de Zeckendorf. Donc dp € N*, 3k; > ko > --- >k, > 0
tels que

P
n+1= Zukl
1=0
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D'apres[10a} ug, < n+ 1 < ug,+1. Donc k; est unique.

Si ug, = n+ 1, alors la décomposition de Zeckendorf de n 4 1 est unique. Si ug, < n+1, alors n +1 —uy, €
{1,...,n}. Et donc, par hypothése de récurrence forte, n + 1 — uy, admet une unique décomposition de Zeckendorf.
Orn+1—ug, =>F ,uy, est une décomposition de Zeckendorf. Donc cette décomposition est unique. Comme k; est
unique, la décomposition de Zeckendorf de n + 1 est aussi unique.

Finalement, par principe de récurrence forte, tout entier naturel non nul peut se décomposer de maniére unique
comme somme de termes de la suite de Fibonacci non consécutifs (et sans les deux premiers termes de la suite).
Remarque :

Evidemment, si on autorise 3 prendre ug et uq, on perd clairement I'unicitié de la décomposition.
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