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Le devoir dure 4h.

La qualité de la rédaction et de la présentation seront prises en compte dans la notation. On prendra bien garde
à la justesse et la précision des justifications.

Si un candidat repère ce qui lui semble être une erreur d’énoncé, il l’identifiera clairement sur la copie et
explicitera les décisions qu’il sera amené à prendre.

La calculatrice n’est pas autorisée.

Le sujet comporte 3 pages.

Problème 1 :
Le but de ce problème est d’étudier une fonction et ses dérivées successives.

On introduit la fonction f définie par

f :
R∗ → R
x 7→ ln(1+x2)

x

Partie I : Début des prolongations

1. Étudier la continuité de f sur son domaine de définition.
2. Montrer que l’on peut étendre f en une fonction continue sur R. On appellera encore f la fonction après

prolongement.
3. Montrer que f est dérivable sur R∗ et calculer sa dérivée.
4. Montrer que f ′ est continue sur R∗.
5. Étudier la convergence de f ′ en 0 et en déduire que f ∈ C1(R,R).
6. À la fin de l’étude, nous pourrons montrer que f est de classe C∞ sur R. En admettant que nous avons

déjà montré qu’elle est de classe C∞, calculer f (n)(0) pour tout n ∈ N.

Partie II : Avec des suites

On définit la suite (un)n∈N par

u0 ∈]0, 1], et ∀n ∈ N, un+1 = 1
4f(un).
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7. On pose g(t) = ln(1 + t) pour t ∈ R+.
(a) Montrer que ∀t ∈ R+, 0 ≤ g′(t) ≤ 1.
(b) À l’aide de l’inégalité des accroissements finis, montrer que

∀t > 0,
1

1 + t
≤ ln(1 + t)

t
≤ 1.

(c) En déduire également que
∀x > 0,

x

1 + x2 ≤ f(x) ≤ x.

(d) Retrouver le fait que f est dérivable en 0.
8. Déduire de ce qui précède que f(]0, 1]) ⊂]0, 1] puis que la suite (un)n∈N est bien définie.
9. Montrer aussi que ∀t > 0, |f ′(t)| ≤ 3.

10. En déduire que ∀n ∈ N, |un+1| ≤ 3
4 |un|.

11. Montrer alors que (un) ∈ N converge et donner sa limite.

Partie III : Dérivation annexe

On définit la fonction γ par

γ : R → R
x 7→ 1

1+x2

12. Montrer que γ ∈ C∞(R,R).
13. Calculer γ′, γ′′ et γ′′′.

14. Justifier que ∀n ∈ N, ∃Pn ∈ R[X] tel que ∀x ∈ R, γ(n)(x) = P̃n(x)
(1+x2)n+1 , où

∀n ∈ N, Pn+1(X) = (1 + X2)P ′
n(X) − 2(n + 1)XPn(X).

15. Expliciter P0, P1, P2 et P3.
16. Justifier l’unicité des polynômes Pn, pour tout n ∈ N.
17. Montrer que ∀n ∈ N, deg(Pn) = n et coeff dom(Pn) = (−1)n(n + 1)!.

Partie V : Lien entre les polynômes Pn et f

On introduit les fonctions :

g : R
∗
+ → R

x 7→ 1
x

et h : R
∗
+ → R

x 7→ ln(1 + x2)

18. Justifier que g et h sont de classe C∞ sur R∗
+.

19. Calculer g(k) pour tout k ∈ N.
20. Calculer h′ et en déduire les h(k+1) pour tout k ∈ N∗.
21. Monter que f est de classe C∞ sur R∗

+.
22. [Hors Barème] Calculer f ′′ et montrer que pour tout n ∈ N avec n ≥ 2, et pour tout x > 0,

f (n)(x) = (−1)nn! ln(1 + x2)
xn+1 + 2n!

n−1∑
k=1

(−1)n−kP̃k−1(x)
(k + 1)!xn−k(1 + x2)k

+ 2P̃n−1(x)
(1 + x2)n

.
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Problème 2 (Théorème de Zeckendorff) :
On considère la suite de Fibonacci, définie par

u0 = 0, u1 = 1, ∀n ∈ N, un+2 = un + un+1.

Partie A : Quelques résultats sur la suite

1. (a) Montrer que ∀n ∈ N∗, un ∈ N∗.
(b) En déduire que la suite (un)n∈N est strictement croissante à partir d’un certain rang.
(c) Montrer que la suite (un)n∈N diverge vers +∞.

2. Montrer que ∀n ∈ N∗, un+1un−1 − u2
n = (−1)n.

3. Montrer que ∀n ∈ N et ∀p ∈ N∗, un+p = unup−1 + un+1up.
4. Montrer que ∀n ∈ N,

n∑
k=0

u2k = u2n+1 − 1, et
n∑

k=0
u2k+1 = u2n+2 − 1.

Partie B : Arithmétique et suite de Fibonacci

5. Montrer que deux termes consécutifs de la suite de Fibonacci sont premiers entre eux.
6. (a) Montrer que ∀(n, p) ∈ N∗ × N, un ∧ up = un ∧ un+p.

(b) En déduire que ∀(n, q, r) ∈ N∗ × N × N, uqn+r ∧ un = ur ∧ un.
7. Montrer que ∀n, m ∈ N, un ∧ um = un∧m.
8. (a) Montrer que ∀n ≥ 3, ∀p ∈ N, un|up ⇐⇒ n|p.

(b) Montrer que ∀n ≥ 3, si un est premier, alors n est premier.

Partie C : Théorème de Zeckendorf

Le but de cette partie est de montrer que le théorème de Zeckendorf qui affirme que tout entier naturel non
nul s’écrit de manière unique comme somme de termes non nuls et non consécutifs de la suite de Fibonacci.

Dans la suite, si a, b ∈ N, on notera a ≫ b si a ≥ b + 2.
Soit n ∈ N∗. On dit que n possède une décomposition de Zeckendorf si, et seulement si, ∃p ∈ N∗,

∃k1, . . . , kp ∈ N tels que k1 ≫ k2 ≫ · · · ≫ kp ≫ 0 tels que

n =
p∑

i=1
uki

.

9. (a) Donner une décomposition de Zeckendorf des entiers 1, 4 et 12.
(b) Soit n ∈ N∗. Montrer que An = {k ∈ N, k ≥ 2, uk ≤ n} admet un maximum.
(c) Montrer par récurrence forte que tout entier naturel non nul admet une décomposition de Zeckendorf.

10. On suppose n ∈ N∗ possède une décomposition de Zeckendorf. Donc ∃p ∈ N∗, ∃k1, . . . , kp ∈ N tels que
k1 ≫ k2 ≫ · · · ≫ kp ≫ 0 tels que

n =
p∑

i=1
uki

.

(a) Montrer que l’entier k1 vérifier uk1 ≤ n < uk1+1.
(b) En déduire que k1 est unique.

11. Conclure.
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