
Chapitre 7

Récursivité
TP

Simon Dauguet
simon.dauguet@gmail.com

29 janvier 2026

Exercice 1 :
Un palindrome est un mot qui se lit de la même manière à l’endroit comme à l’envers (en omettant les espaces
et autres signes de ponctuation). Par exemple, ”elle”, ”kayak”, ”Élu par cette crapule” et ”Engage le jeu que je
le gagne” sont des palindromes tandis que ”il”, ”papa” ou ”Seth a été à Sète” n’en sont pas.

Pour la suite, on suppose qu’un mot ne contient que des lettres minuscules, sans accent, ni espace ou marque
de ponctuation.

1. Écrire une fonction itérative palindromeI(mot: str) -> bool, qui vérifie si mot est un palindrome.
2. Un mot vide est-il un palindrome ? un mot contenant un seul caractère ?
3. Supposons que nous ne puissions comparer qu’un couple de lettres, lesquelles vérifieriez-vous pour savoir si

le mot peut être un palindrome ? Comment se ramener à ce cas en avançant dans la comparaison du mot ?
4. Écrire une fonction récursive palindromeR(mot: str) -> bool, qui vérifie si mot est un palindrome.

Exercice 2 :
On souhaite tracé le triangle de Sierpinski en partant d’un triangle équilatéral.

Voici les résultats attendus :
TSierpinski(n) n=1 n=2 n=3

résultat

1. À partir des points A(xA, yA), B(xB, yB), C(xC , yC) sommets du triangle parent ABC, quelles sont les
coordonnées des points sommets des trois triangles fils ?

2. Pour créer récursivement les triangles de Sierpinski, on commence par créer une fonction permettant de
dessiner un triangle. Puis, on construit la fonction récursive qui créée les différents calques avec tous les
triangles. Et enfin, la fonction qui permet d’afficher tous les calques créés par récursivité. Compléter la
fonction récursive d’appel principal
TSierpinski(n:int, A:tuple=(0,0), B:tuple=(1,0), C:tuple=(1/2,mt.sqrt(3)/2)) -> None, et l’ap-
pel de la fonction Sierpinski(n:int)->None permet alors d’afficher les triangles de Sierpinski de pro-
fondeur n.

1



1 def triangle (A:tuple , B:tuple , C:tuple) -> None : # trace le triangle ABC
2 plt.fill( [ A[0], B[0], C[0] ], [ A[1], B[1], C[1] ], ’k’)
3
4 def TSierpinski (n:int , A:tuple =(0 ,0) , B:tuple =(1 ,0) , C:tuple =(1/2 , mt.sqrt (3)/2)) -> None: #

par défaut, triangle équilatéral de côté 1
5 if n == 1:
6 ...
7 else:
8 ... # plusieurs lignes
9

10 def Sierpinski (n:int) -> None :
11 plt. figure ()
12 triangle_sierpinski (n)
13 plt.show ()

Exercice 3 :
On souhaite obtenir la figure ci-contre de manière récursive (ici profondeur 4).
La figure est formée d’un cercle et de deux copies de ce cercle ayant subies une
réduction d’un facteur 2, ces deux petits cercles étant tangents extérieurement au
cercle initial et tels que les lignes des centres sont parallèles aux axes du repère. Ces
deux petits cercles deviennent à leur tour ”cercle initial” pour poursuivre la figure.
Commencer par créer une fonction cercle(coord:tuple, r:float) -> None qui
créé le calque du cercle de centre coord et de rayon r. Puis créer les fonctions
répondant au problème dont l’une construira les calques des cercles par récursivité,
en s’inspirant de la méthode proposée dans l’exercice précédent.

Exercice 4 (Décomposition en produit de nombres premiers) :
Le but de cet exercice est de fournir le moyen de fournir le graphe de la décomposition en produit de nombres
premiers d’un entier.

1. Écrire une fonction pgpd(n:int) -> int qui renvoie le plus grand diviseur premier de l’entier n.
2. Écrire une fonction cercle(n:int) -> tuple qui renvoie le couple de deux listes correspondants respec-

tivement aux abscisses et ordonnées de n points régulièrement répartis sur le cercle trigonométrique.
3. Écrire récursive une fonction diagrame(n:int) -> tuple renvoyant les listes Xn et Yn respectivement

des abscisses et ordonnées des points du diagramme de la factorisation de n :

2



• Si n est premier, les points du diagramme sont en cercle
• Sinon, en notant d le plus grand diviseurs premier de n, Xn est la liste des xd + x

d où xd parcourent
Xd et x parcourt X n

d
.

• De même pour Yn.
4. Enfin, écrire une procédure afficheDiv(n:int) -> None qui affiche le diagramme de décomposition d’un

entier n. On mettra en titre du graphe l’entier n.
Remarque : Attention à ce que les cercles soient des cercles.

Exercice 5 :
On souhaite dessiner le flocon de Von Koch.

Voici les résultats attendus où chaque simili triangle est un triangle équilatéral sans la base :

flocon(n) n=0 n=1 n=2 n=3

résultat

En vous inspirant des exos précédent, proposer une fonction VonKoch(n:int) -> None, qui trace les résultats
affichés sur un seul segment, puis une autre version VonKochEntier(n:int) -> None qui trace le flocon de
Von Koch “en entier” (sur les trois côtés).

3


