—ycée
—oges

Chapitre 7
Récursivité
Exercices

Simon Dauguet
simon.dauguet@gmail.com

29 janvier 2026

Exercice 1 :

Le mathématicien perse Al-Khwérizm? (780-850), qui donna le terme algorithme, posséde 27 pieces d’or. Un fieffé
voleur dérobe une piéce et la remplace par une fausse piece plus légere. Al-Khwarizmi posséde une balance a
fléau (balance qui précise seulement lequel des deux plateaux est le plus lourd). Combien de pesés doit-il faire au
minimum pour déterminer a coup siir la fausse piéce?

Exercice 2 :
De maniére rudimentaire si (z,y) € Z x N, le calcul de la somme x + y se fait également par la relation :

s(z,y) =s(x+ 1,y — 1) et s(x,0) = .
Proposer une fonction récursive qui calcule la somme z + y.

Exercice 3 :
On cherche a calculer la somme des valeurs d'un tableau d’entiers tab en remarquant que

somme (tab) = tab[0] + somme(tab[1:]).
1. Préciser I'état de la pile d'exécution pour tab=[3, 7, 21]
2. Ecrire la fonction récursive somme (tab: 1list) -> int, qui répond a la question et étudier sa complexité
temporelle.
3. Déterminer le variant pour montrer la terminaison, puis I'invariant pour montrer la correction de la fonction
somme ().

Exercice 4 :
On cherche a définir une fonction récursive rechercheTab(tab: list, v: int) -> bool, qui renvoie True

si v est une valeur de tab, False sinon.
1. Préciser I'état de la pile d'exécution pour tab=[3, 7, 21] et v=7.
2. Ecrire la fonction récursive rechercheTab(tab: list, v: int) =-> bool, qui répond a la question et
étudier sa complexité temporelle.

3. Déterminer le variant pour montrer la terminaison, puis I'invariant pour montrer la correction de la fonction
rechercheTab().

4. Méme exercice, cette fois-ci avec une fonction rechercheTab(tab: list, v: int, i0: int=0) -> bool,
qui recherche la valeur v a partir de I'indice i0.

Exercice 5 :
Si tab est trié, une fonction de recherche dichotomique récursive rechercherDicho(tab: list, v: int) -> bool,
qui renvoie True si v est une valeur de tab, False sinon, peut se définit ainsi :

o la fonction renvoie True si le tableau est de longueur 1 et v est la valeur du tableau, False si vide.

o sinon la fonction renvoie le résultat d’'elle-méme appliquée au demi-tableau de gauche ou le résultat d'elle-
méme appliquée au demi-tableau de droite

1. Préciser |'état de la pile d’exécution pour tab=[1,1,4,5,6,6,8,9] et v=7.
2. Implémenter la fonction rechercherDicho(tab:1list, v:int) -> bool.

3. Déterminer le variant pour montrer la terminaison, puis |'invariant pour montrer la correction de la fonction
rechercheDicho ().

Exercice 6 :
Déterminer ce que font chacune des fonctions suivantes,

from math import sqrt
def mysterel(m:int) -> int: #0<=m
if m == 2:
return(True)
elif m == 1 or m % == 0:
return(False)
return(mystereRli(m, 3))
def mystereR1(m:int, n:int) -> int:
if n > sqrt(m):
return(True)
elif m % == 0:
return(False)
return(mystereRl1(m, n+2))

def mystere2(m:int) -> str: # 0 <=n
if n == 0:
return (0)
mystere3(n//2)
print(n % 2 , end=’’) # end=’’ permet de ne pas aller a la ligne a la fin du print

Exercice 7 :

On souhaite déterminer par dichotomie et de maniére récursive |'approximation a ¢ prés du zéro dans [a, b] d'une
fonction f croissante de sorte que f(a)f(b) < 0. Ainsi si |b—a| > ¢, on calcule ¢ milieu de [a, b] et selon le signe
de f(a)f(c) on cherche un zéro de f dans [a,c| ou [c,b]. Si |b— a| < &, on renvoie la valeur de c.

1. Créer la fonction solutionDichoRec(f:’function’, a:float, b:float, epsilon:float) -> float.
2. Préciser la terminaison et I'hérédité de votre fonction.

3. Faut-il modifier solutionDichoRec() si f est décroissante ? Si oui, quoi?

Exercice 8 :

On souhaite calculer le pgcd de deux nombres entiers p et ¢ non P q r
nuls a I'aide de I'algorithme d'Euclide. 24 10 4
On rappelle ci-contre les étapes de cet algorithme pour trouver : 10 4 2
pged(10,24) = 2. 4 2 0
1. Appliquer I'algorithme d'Euclide “a la main” pour trouver le pgcd de 35 et 126,
2. En utilisant le reste de la division euclidienne, proposer une fonction itérative pgcdI(p:int, q:int) -> int
3. En n'utilisant cette fois que les propriétés suivantes (pged(p, ¢) = pged(q, p); pged(p, ¢) = pged(p — ¢, q)
et pged(p,0) = p), proposer une fonction récursive pgcdR(p:int, q:int) -> int.
Exercice 9 :

On souhaite calculer les termes de la suite de Fibonacci. On rappelle qu'elle est définie par fy =0, fi = 1 et la
relation Vn € N*, fo11 = fn + fn-1.

1.
2.
3.

Proposer une fonction itérative fiboI(n:int) -> int, qui permette de calculer f,,
Proposer une fonction récursive fiboR(n:int) -> int, qui permette de calculer f;,,

Préciser la relation donnant le colit temporel (puis le O correspondant) pour chacune des fonctions.

Exercice 10 (Exponentiation rapide) :
sur tout I'exercice on n'utilisera pas I'opérateur puissance ("**’)
On cherche a calculer de maniere efficace ™ pour n € N.

1.

Puisque 2™ = xxx" !, proposer une fonction récursive naive puissanceRN(x:float, n:int) -> float,
qui calcule 2.

. On peut remarquer que lorsque

o n est pair (i.e. Ik € N, n = 2k), on a 2" = (2?)2.
o n est impair (i.e. 3k € N, n =2k + 1), on a 2" = z(2?)F.
On se propose de mettre en place une fonction récursive puissanceR(x:float, n:int) -> float qui
utilise ces remarques.
Dérouler un jeu de test de I'appel puissanceR(2, 11).

3. Proposer une fonction puissanceR(x:float, n:int) -> float, qui mette en ceuvre ces relations.

4. Préciser les colits temporels des fonctions précédentes.

Exercice 11 :

On considere un jeu ou I'utilisateur doit traverser une salle rectangulaire de I'entrée
(en haut a gauche) a la sortie (en bas a droite) en maximisant le chemin utilisé
(chaque case traversée ajoute la valeur de sa case au poids du chemin). Il ne peut se
déplacer que vers le bas ou vers la droite.

1.

%

3
2
1

N O| =
[Ne)
N | =
W = o

210(2|4|0]| =

Quel est le poids du chemin si I'utilisateur se déplace sur la droite tant qu'il peut puis descend jusqu'a la
case de sortie ?

. Avec les déplacements autorisés, montrer que le nombre de chemins possibles pour un rectangle (n, m) est

().

. On souhaite connaitre le chemin de poids maximal. On propose de faire un parcours récursif, qui, naivement,

va effectuer tous les chemins possibles et garder celui de poids maximal.

Proposer une fonction récursive parcours(grille: list, pos: tuple) -> tuple, qui renvoie un
tuple contenant le poids maximal pour atteindre la position pos=(i,j) ainsi que le tableau des positions
traversées pour atteindre ce poids maximal.

Ainsi si le paramétre grille représente le tableau d'exemple, parcours(grille, (1,1)) renverrale
tuple (5,[(0,0),(1,0),(1,1)]) tandis que parcours(grille, (2,0)) renverra le tuple
(6,[(0,0),(1,0),(2,001).

. Quelle est la complexité de cette solution récursive ?

5. On souhaite améliorer cette solution avec une mémoisation
des meilleures chemins. Pour cela, on compte définir un ta- (3,None) | (4,(0,0)) | (1.(0,1))
bleau route de méme taille que grille, qui contient dans (5.(0,0)) | (2.(1,0))
chaque cellule un tuple (poids, case précédente), ou
le poids correspond a la somme du poids de la case
précédente et de la case actuelle, et la case précédente
est choisie pour maximiser le poids. Autrement dit, entre la
case a gauche et la case au dessus, on choisie la case dont
la somme des deux poids est maximale.

Compléter le tableau route pour I'exemple introductif

. Proposer une procédure récursive mRoute (grille: list) =-> list, qui remplie le tableau route donnant
le meilleur chemin.

. En déduire une fonction mParcours(grille: list, pos:tuple) -> tuple, qui renvoie un tuple conte-
nant le poids maximal, ainsi que le chemin correspondant, permettant d'atteindre la position pos de la
grille.

Exercice 12 (Tétris unicouleur ((X-ENS 2019 partie 1V))) :

Dans cette partie, on considére une variante du jeu ou le but du joueur est de former des régions unicolore au lieu
d’'alignements (par exemple un carré de 2 x 2 cases de la méme couleur). Une région unicolore est un ensemble
de cases, toutes de la méme couleur, qui est connexe pour la relation d'adjacence suivante : deux cases sont
adjacentes si elles partagent un coté. La région grisée est une région unicolore maximale : si on y ajoute une case
quelconque, elle ne reste plus connexe et unicolore. En particulier, la case supérieure droite ne peut étre ajoutée
car elle n'est adjacente a aucune case de la région grisée.

/I\

l

voisins d'une case région unicolore maximale

1. Ecrire une fonction récursive tailleRegionUnicolore(grille,x,y) qui renvoie le nombre de cases
appartenant a la plus grande région unicolore de la grille contenant la case (x,y). Justifier la terminaison
de votre fonction.

Considérons le code Python suivant, dont le but est de réaliser le méme travail que la fonction
tailleRegionUnicolore sans utiliser la récursivité.

Intuitivement, la fonction exploreRegion(grille,x,y) effectue un balayage de la grille, d'abord

verticalement a partir de la case (x,y), puis verticalement a partir de chaque voisine horizontale des cases
déja explorées.

def xDansGrille(g: list, x: int)->bool:
return 0 <= x and x < len(g)

def yDansGrille(g: list, y: int)->bool:
return 0 <= y and y < len(gl[0])

def exploreVertical(grille, x, y, dir)->int:

hauteur len(grille[0])
couleur = grillel[x] [yl
v = y + dir
while yDansGrille(grille, v)

if grille[x][v] != couleur

return v - dir

v = v + dir
if dir == 1 : return hauteur - 1
else : return O

def exploreRegion(grille, x, y) -> int:
inf = exploreVertical(grille, x, y, -1)
sup exploreVertical(grille, x, y, 1)
d = exploreHorizontal(grille, x, y, 1)
g = exploreHorizontal(grille, x, y, -1)
score = sup - inf + 1 + d + g
return score

explore vers le bas
explore vers le haut
explore vers la droite
explore vers la gauche

H H B R

2. Déterminer si la fonction exploreRegion(grille,x,y) renvoie le nombre de cases appartenant a la plus
grande région unicolore de la grille contenant la case (x,y). Si oui, justifier soigneusement que la fonction
renvoie toujours une valeur correcte. Si non, donner un exemple de parameétres grille, x, y pour lesquels
la valeur renvoyée par la fonction est incorrecte (on pourra dessiner la grille).

