
Chapitre 7

Récursivité
Exercices

Simon Dauguet
simon.dauguet@gmail.com

29 janvier 2026

Exercice 1 :
Le mathématicien perse Al-Khwârizm̂ı (780-850), qui donna le terme algorithme, possède 27 pièces d’or. Un fieffé
voleur dérobe une pièce et la remplace par une fausse pièce plus légère. Al-Khwârizm̂ı possède une balance à
fléau (balance qui précise seulement lequel des deux plateaux est le plus lourd). Combien de pesés doit-il faire au
minimum pour déterminer à coup sûr la fausse pièce ?

Exercice 2 :
De manière rudimentaire si (x, y) ∈ Z × N, le calcul de la somme x + y se fait également par la relation :
s(x, y) = s(x + 1, y − 1) et s(x, 0) = x.

Proposer une fonction récursive qui calcule la somme x + y.

Exercice 3 :
On cherche à calculer la somme des valeurs d’un tableau d’entiers tab en remarquant que
somme(tab) = tab[0] + somme( tab[1:] ).

1. Préciser l’état de la pile d’exécution pour tab=[3, 7, 21]

2. Écrire la fonction récursive somme(tab: list) -> int, qui répond à la question et étudier sa complexité
temporelle.

3. Déterminer le variant pour montrer la terminaison, puis l’invariant pour montrer la correction de la fonction
somme().

Exercice 4 :
On cherche à définir une fonction récursive rechercheTab(tab: list, v: int) -> bool, qui renvoie True
si v est une valeur de tab, False sinon.

1. Préciser l’état de la pile d’exécution pour tab=[3, 7, 21] et v=7.
2. Écrire la fonction récursive rechercheTab(tab: list, v: int) -> bool, qui répond à la question et

étudier sa complexité temporelle.
3. Déterminer le variant pour montrer la terminaison, puis l’invariant pour montrer la correction de la fonction

rechercheTab().

1



4. Même exercice, cette fois-ci avec une fonction rechercheTab(tab: list, v: int, i0: int=0) -> bool,
qui recherche la valeur v à partir de l’indice i0.

Exercice 5 :
Si tab est trié, une fonction de recherche dichotomique récursive rechercherDicho(tab: list, v: int) -> bool,
qui renvoie True si v est une valeur de tab, False sinon, peut se définit ainsi :

◦ la fonction renvoie True si le tableau est de longueur 1 et v est la valeur du tableau, False si vide.
◦ sinon la fonction renvoie le résultat d’elle-même appliquée au demi-tableau de gauche ou le résultat d’elle-

même appliquée au demi-tableau de droite
1. Préciser l’état de la pile d’exécution pour tab=[1,1,4,5,6,6,8,9] et v=7.
2. Implémenter la fonction rechercherDicho(tab:list, v:int) -> bool.
3. Déterminer le variant pour montrer la terminaison, puis l’invariant pour montrer la correction de la fonction

rechercheDicho().

Exercice 6 :
Déterminer ce que font chacune des fonctions suivantes,

1 from math import sqrt
2 def mystere1 (m:int) -> int: # 0 <= m
3 if m == 2:
4 return (True)
5 elif m == 1 or m % 2 == 0:
6 return (False)
7 return ( mystereR1 (m, 3))
8 def mystereR1 (m:int , n:int) -> int:
9 if n > sqrt(m):

10 return (True)
11 elif m % n == 0:
12 return (False)
13 return ( mystereR1 (m, n+2))
14
15 def mystere2 (n:int) -> str: # 0 <= n
16 if n == 0:
17 return (0)
18 mystere3 (n//2)
19 print(n % 2 , end=’’) # end=’’ permet de ne pas aller a la ligne a la fin du print

Exercice 7 :
On souhaite déterminer par dichotomie et de manière récursive l’approximation à ε près du zéro dans [a, b] d’une
fonction f croissante de sorte que f(a)f(b) < 0. Ainsi si |b− a| > ε, on calcule c milieu de [a, b] et selon le signe
de f(a)f(c) on cherche un zéro de f dans [a, c] ou [c, b]. Si |b− a| ≤ ε, on renvoie la valeur de c.

1. Créer la fonction solutionDichoRec(f:’function’, a:float, b:float, epsilon:float) -> float.
2. Préciser la terminaison et l’hérédité de votre fonction.
3. Faut-il modifier solutionDichoRec() si f est décroissante ? Si oui, quoi ?

Exercice 8 :

2



On souhaite calculer le pgcd de deux nombres entiers p et q non
nuls à l’aide de l’algorithme d’Euclide.
On rappelle ci-contre les étapes de cet algorithme pour trouver :
pgcd(10, 24) = 2.

p q r
24 10 4
10 4 2
4 2 0

1. Appliquer l’algorithme d’Euclide “à la main” pour trouver le pgcd de 35 et 126,
2. En utilisant le reste de la division euclidienne, proposer une fonction itérative pgcdI(p:int, q:int) -> int
3. En n’utilisant cette fois que les propriétés suivantes (pgcd(p, q) = pgcd(q, p) ; pgcd(p, q) = pgcd(p− q, q)

et pgcd(p, 0) = p), proposer une fonction récursive pgcdR(p:int, q:int) -> int.

Exercice 9 :
On souhaite calculer les termes de la suite de Fibonacci. On rappelle qu’elle est définie par f0 = 0, f1 = 1 et la
relation ∀n ∈ N∗, fn+1 = fn + fn−1.

1. Proposer une fonction itérative fiboI(n:int) -> int, qui permette de calculer fn,
2. Proposer une fonction récursive fiboR(n:int) -> int, qui permette de calculer fn,
3. Préciser la relation donnant le coût temporel (puis le O correspondant) pour chacune des fonctions.

Exercice 10 (Exponentiation rapide) :
sur tout l’exercice on n’utilisera pas l’opérateur puissance (’**’)

On cherche à calculer de manière efficace xn pour n ∈ N.
1. Puisque xn = x×xn−1, proposer une fonction récursive näıve puissanceRN(x:float, n:int) -> float,

qui calcule xn.
2. On peut remarquer que lorsque

◦ n est pair (i.e. ∃k ∈ N, n = 2k), on a xn = (x2)2.
◦ n est impair (i.e. ∃k ∈ N, n = 2k + 1), on a xn = x(x2)k.

On se propose de mettre en place une fonction récursive puissanceR(x:float, n:int) -> float qui
utilise ces remarques.

Dérouler un jeu de test de l’appel puissanceR(2, 11).
3. Proposer une fonction puissanceR(x:float, n:int) -> float, qui mette en œuvre ces relations.
4. Préciser les coûts temporels des fonctions précédentes.

Exercice 11 :
On considère un jeu où l’utilisateur doit traverser une salle rectangulaire de l’entrée
(en haut à gauche) à la sortie (en bas à droite) en maximisant le chemin utilisé
(chaque case traversée ajoute la valeur de sa case au poids du chemin). Il ne peut se
déplacer que vers le bas ou vers la droite.

→ 3 1 0 1 0
2 0 4 1 1
1 2 0 2 3
2 0 2 4 0 →

1. Quel est le poids du chemin si l’utilisateur se déplace sur la droite tant qu’il peut puis descend jusqu’à la
case de sortie ?

2. Avec les déplacements autorisés, montrer que le nombre de chemins possibles pour un rectangle (n, m) est(n+m−2
n−1

)
.

3. On souhaite connâıtre le chemin de poids maximal. On propose de faire un parcours récursif, qui, näıvement,
va effectuer tous les chemins possibles et garder celui de poids maximal.

Proposer une fonction récursive parcours(grille: list, pos: tuple) -> tuple, qui renvoie un
tuple contenant le poids maximal pour atteindre la position pos=(i,j) ainsi que le tableau des positions
traversées pour atteindre ce poids maximal.

3



Ainsi si le paramètre grille représente le tableau d’exemple, parcours(grille, (1,1)) renverra le
tuple (5,[(0,0),(1,0),(1,1)]) tandis que parcours(grille, (2,0)) renverra le tuple
(6,[(0,0),(1,0),(2,0)]).

4. Quelle est la complexité de cette solution récursive ?
5. On souhaite améliorer cette solution avec une mémöısation

des meilleures chemins. Pour cela, on compte définir un ta-
bleau route de même taille que grille, qui contient dans
chaque cellule un tuple (poids, case précédente), où
le poids correspond à la somme du poids de la case
précédente et de la case actuelle, et la case précédente
est choisie pour maximiser le poids. Autrement dit, entre la
case à gauche et la case au dessus, on choisie la case dont
la somme des deux poids est maximale.
Compléter le tableau route pour l’exemple introductif

(3,None) (4,(0,0)) (1,(0,1)) ... ...
(5,(0,0)) (2,(1,0)) ...

...

...

6. Proposer une procédure récursive mRoute(grille: list) -> list, qui remplie le tableau route donnant
le meilleur chemin.

7. En déduire une fonction mParcours(grille: list, pos:tuple) -> tuple, qui renvoie un tuple conte-
nant le poids maximal, ainsi que le chemin correspondant, permettant d’atteindre la position pos de la
grille.

Exercice 12 (Tétris unicouleur ((X-ENS 2019 partie IV))) :
Dans cette partie, on considère une variante du jeu où le but du joueur est de former des régions unicolore au lieu
d’alignements (par exemple un carré de 2× 2 cases de la même couleur). Une région unicolore est un ensemble
de cases, toutes de la même couleur, qui est connexe pour la relation d’adjacence suivante : deux cases sont
adjacentes si elles partagent un côté. La région grisée est une région unicolore maximale : si on y ajoute une case
quelconque, elle ne reste plus connexe et unicolore. En particulier, la case supérieure droite ne peut être ajoutée
car elle n’est adjacente à aucune case de la région grisée.

↑
← →

↓

R
R R R N
V R R R R J
J V R J R J
N V R R R R

voisins d’une case région unicolore maximale

1. Écrire une fonction récursive tailleRegionUnicolore(grille,x,y) qui renvoie le nombre de cases
appartenant à la plus grande région unicolore de la grille contenant la case (x,y). Justifier la terminaison
de votre fonction.

Considérons le code Python suivant, dont le but est de réaliser le même travail que la fonction
tailleRegionUnicolore sans utiliser la récursivité.

Intuitivement, la fonction exploreRegion(grille,x,y) effectue un balayage de la grille, d’abord
verticalement à partir de la case (x,y), puis verticalement à partir de chaque voisine horizontale des cases
déjà explorées.

4



1 def xDansGrille (g: list , x: int)->bool:
2 return 0 <= x and x < len(g)
3
4 def yDansGrille (g: list , y: int)->bool:
5 return 0 <= y and y < len(g[0])
6
7 def exploreVertical (grille , x, y, dir)->int:
8 hauteur = len( grille [0] )
9 couleur = grille [x][y]

10 v = y + dir
11 while yDansGrille (grille , v) :
12 if grille [x][v] != couleur :
13 return v - dir
14 v = v + dir
15 if dir == 1 : return hauteur - 1
16 else : return 0
17
18 def exploreRegion (grille , x, y) -> int:
19 inf = exploreVertical (grille , x, y, -1) # explore vers le bas
20 sup = exploreVertical (grille , x, y, 1) # explore vers le haut
21 d = exploreHorizontal (grille , x, y, 1) # explore vers la droite
22 g = exploreHorizontal (grille , x, y, -1) # explore vers la gauche
23 score = sup - inf + 1 + d + g
24 return score

2. Déterminer si la fonction exploreRegion(grille,x,y) renvoie le nombre de cases appartenant à la plus
grande région unicolore de la grille contenant la case (x,y). Si oui, justifier soigneusement que la fonction
renvoie toujours une valeur correcte. Si non, donner un exemple de paramètres grille, x, y pour lesquels
la valeur renvoyée par la fonction est incorrecte (on pourra dessiner la grille).

5


