
Chapitre 7
Récrusivité

Simon Dauguet
simon.dauguet@gmail.com

29 janvier 2026

1 Définition et premiers exemples

Définition 1.1 (Fonction récursive) :
Une fonction récursive est une fonction qui s’auto-appelera ou aura des appels de fonctions qui l’ap-
pellent elle-même.

La récursivité est, en quelque sorte, la version informatisé de suites définies par récurrence en mathématiques.
Exemple 1.1 :
Les factorielles en mathématiques sont souvent définie par récurrence :

∀n ∈ N, n! =
{

1 n = 0
n × (n − 1)! n > 0

On peut le traduire en Python :

1 def factorielle (n:int) -> int :
2 if n == 0 :
3 return (1)
4 else :
5 return (n* factorielle (n -1))

1



1 DÉFINITION ET PREMIERS EXEMPLES

Définition 1.2 (Fonction itérative) :
Une fonction itérative est une fonction qui n’est pas récursive.

Lors de l’appel d’une fonction récursive, il y a alors une pile d’exécution. Il est toujours possible de
passer d’une fonction récursive à une fonction itérative en simulant itérativement la pile d’exécution de la
fonction récursive.
Remarque :
Lors d’appels récursifs, la pile d’exécution grandie et pour une infinité d’appels, la pile débordera de l’espace
mémoire. Pour palier ce problème, le langage Python instaure une limite pour le nombre de récursion (autour
de 1000 selon vos machines) que l’on peut connâıtre grâce à la commande suivante :

1 import sys
2 sys. getrecursionlimit () # renvoie le nombre d’appels récursifs autorisés

Proposition 1.1 :
Une fonction récursive bien définie doit contenir :

◦ au moins un appel récursif (l’hérédité)
◦ au moins un critère pour terminer les appels (la terminaison)
◦ un return de valeurs (inutile pour une procédure)

Exemple 1.2 (Exemple détaillé avec pile d’appels) :
On souhaite calculer la somme des entiers compris entre n1 et n2. On définit alors une fonction S(n1:int, n2:int) -> int
qui va vérifier S(n1, n2) = 0 si n1 > n2 et S(n1, n2) = S(n1, n2 − 1) + n2 sinon. Ce qui donne :

1 def S(n1:int , n2:int) -> int :
2 if n1 > n2 :
3 return (0)
4 else :
5 return (S(n1 ,n2 -1)+ n2)

C’est donc une fonction récursive.
Si on dépile l’appel de cette fonction pour S(1,4), on obtient :
S(1,4) = 4 + S(1,3)

S(1,3) = 3 + S(1,2)
S(1,2) = 2 + S(1,1)

S(1,1) = 1 + S(1,0)
S(1,0) = 0

S(1,1) = 1
S(1,2) = 3

S(1,3) = 6
S(1,4) = 10

2



2 TERMINAISON, CORRECTION, COMPLEXITÉ

2 Terminaison, Correction, Complexité des algorithmes récursifs
La terminaison, la correction et la complexité se font comme d’habitude. À la différence près que les

démonstrations vont devoir utilisé des récurrences mathématiques.
Exemple 2.1 :
On considère la définition récursive des calculs des puissances de nombres :

1 def puissRec (x:float , n:int) -> float :
2 if n == 0 :
3 return (x)
4 else :
5 return (x* puissRec (x,n -1))

L’invariant de boucle va être la valeur de la variable n. On peut démontrer par récurrence facilement que
la propriété : “Pour tout x ∈ R, l’appel puissRec(x,n) s’arrête” est vraie. En effet, si n = 0, c’est clair.
L’algorithme s’arrête et renvoie x.

Soit n ∈ N. Supposons que ∀x ∈ R, l’appel de puissRec(x,n) s’arrête. Soit x ∈ R. On fait un
appel de puissRec(x,n+1). Alors cet appel renvoie x*puissRec(x,n). Mais par hypothèse de récurrence
puissRec(x,n) s’arrête. Donc il renvoie une valeur explicite. Alors x*puissRec(x,n) est aussi une valeur
explicite. Et donc puissRec(x,n+1) s’arrête également.

On vient donc de montrer par récurrence que la propriété “∀x ∈ R, puissRec(x,n) s’arrête” est vraie
pour tout n ∈ N. Et donc, on vient bien de montrer la terminaison de cet fonction.

Pour la correction, on procède de la même manière. On montre par récurrence que ∀n ∈ N, (∀x ∈ R,
puissRec(x,n) renvoie la valeur de xn).

Si n = 0, alors clairement ∀x ∈ R, puissRec(x,n) renvoie 1 = x0.
Soit n ∈ N. On suppose que ∀x ∈ R, puissRec(x,n) renvoie xn. Soit x ∈ R. Alors puissRec(x,n+1)

renvoie x*puissRec(x,n). Or, par hypothèse de récurrence, puissRec(x,n) correspond à xn. Donc
puissRec(x,n+1) renvoie la valeur de x × xn, c’est-à-dire xn+1.

Donc, par principe de récurrence, on vient de montrer que ∀n ∈ N, (∀x ∈ R, puissRec(x,n) renvoie
la valeur de xn). Et donc la fonction puissRec est donc correcte.

La complexité se fait également par récurrence. On va calculer la complexité en fonction de la taille de
n. Notons, pour tout n ∈ N, C(n) le nombre d’opération effectuées par l’appel de puissRec(x,n) pour
tout x ∈ R.

On note que puissRec(x,0) ne fait qu’un test et renvoie immédiatement la valeur de x. Donc
puissRec(x,0) ne fait que deux opérations. Donc C(0) = 2.

Soit n ∈ N et x ∈ R. Lors de l’appel de puissRec(x,n+1), il y a une comparaison qui est faite ;
puis un renvoie ; et un produit de x par la même fonction puissRec(x,n). Donc on a 1 + 1 + 1 × C(n)
opérations. Autrement dit, C(n + 1) = 2 + C(n).

On vient donc de montrer que ∀n ∈ N, C(n + 1) = 2 + C(n). Autrement dit, (C(n))n∈N est une suite
arithmétique de raison 2. Donc ∀n ∈ N, C(n) = C(0) + 2n = 2(n + 1).

Et donc finalement, comme C(n) est le nombre d’opération de puissRec(x,n), la complexité de cette
fonction est linéaire O(n).

3



3 MÉTHODE “DIVISER POUR RÉGNER”

Exercice 1 :
On considère la méthode de Héron d’Alexandrie d’approximation de la racine carré d’un réel : Soit a ≥ 0.
On pose u0 = 1 et ∀n ∈ N, un+1 = 1

2

(
un + a

un

)
.

1. Écrire la fonction itérative heronI(a:float, n:int) -> float qui renvoie le n-ème terme de la
suite de Héron approchant √

a.
2. Écrire la fonction récursive heronR(a:float, n:int) -> float qui fait la même chose.
3. Faire la preuve de la terminaison de la fonction heronR.
4. Faire la preuve de la correction de heronR.
5. Étudier la complexité des deux fonctions heronI et heronR.

3 Méthode “diviser pour régner”
Les méthodes “diviser pour régner” sont des sous-catégories des méthodes récursives.

Définition 3.1 (Méthode “diviser pour régner”) :
La méthode “diviser pour régner” suit le schéma suivant :

◦ diviser : diviser le problème initial en un ou plusieurs sous-problèmes de plus petites tailles.
◦ régner : résoudre les problèmes de taille minimale (c’est la terminaison).
◦ assemblage : le solutions des sous-problèmes sont rassemblées pour construire la solution au

problème initial.

Exemple 3.1 :
On souhaite dessiner l’ensemble tri-adique de Cantor :

Pour tracer l’ensemble de Cantor, il faut prendre un segment donné, puis le découper en trois morceaux et
dessiner les deux morceaux extérieur (c’est la division).

On sait facilement tracer un segment entre deux points donné (c’est le règne).
Il ne reste plus qu’à assembler tout ça.

4



3 MÉTHODE “DIVISER POUR RÉGNER”

1 def line(a,b) :
2 # règne : tracer le segment entre le point de coordonnées (a,0) et (b,0).
3 plt.plot ([a,b],[0,0],"k",lw =2)
4
5 def cantor (a,b,n) :
6 # division : on fait des appels récursifs pour diviser le segment entre (a,0) et (b,0)

en trois morceaux. Et on assemble.
7 if n==1 :
8 line(a,b)
9 else :

10 cantor (a ,2/3*a+b/3,n -1)
11 cantor (a/3+2*b/3,b,n -1)
12
13 def Cantor (n) :
14 # On dessine le calque créé.
15 cantor (0,1,n)
16 plt.show ()

On obtient alors les jolis dessins suivant :

5


	Définition et premiers exemples
	Terminaison, Correction, Complexité
	Méthode ``diviser pour régner"

