Chapitre 7

Récrusivité

Simon Dauguet
simon.dauguet@gmail.com

29 janvier 2026

GO gle recursion X $ Q

Q Al [Books Images [*] Videos (& News i More Settings Tools

About 60,600,000 results (0.90 seconds)

Did you mean: recursion

1 Définition et premiers exemples

Définition 1.1 (Fonction récursive) :
Une fonction récursive est une fonction qui s'auto-appelera ou aura des appels de fonctions qui I'ap-
pellent elle-méme.

La récursivité est, en quelque sorte, la version informatisé de suites définies par récurrence en mathématiques.

Exemple 1.1 :
Les factorielles en mathématiques sont souvent définie par récurrence :
1 n=20
VneN, nl =
nx(n—-1)" n>0

On peut le traduire en Python :

def factorielle(m:int) -> int
if n ==
return (1)
else
return(n*xfactorielle(n-1))

1 DEFINITION ET PREMIERS EXEMPLES

Définition 1.2 (Fonction itérative) :
Une fonction itérative est une fonction qui n’est pas récursive.

Lors de I'appel d'une fonction récursive, il y a alors une pile d’exécution. Il est toujours possible de
passer d'une fonction récursive a une fonction itérative en simulant itérativement la pile d'exécution de la
fonction récursive.

Remarque :

Lors d'appels récursifs, la pile d'exécution grandie et pour une infinité d'appels, la pile débordera de I'espace
mémoire. Pour palier ce probléme, le langage Python instaure une limite pour le nombre de récursion (autour
de 1000 selon vos machines) que I'on peut connaitre grace a la commande suivante :

import sys
sys.getrecursionlimit () # renvoie le nombre d’appels récursifs autorisés

Proposition 1.1 :
Une fonction récursive bien définie doit contenir :

o au moins un appel récursif (I'hérédité)
o au moins un critére pour terminer les appels (la terminaison)

o un return de valeurs (inutile pour une procédure)

Exemple 1.2 (Exemple détaillé avec pile d’appels) :
On souhaite calculer la somme des entiers compris entre nl1 et n2. On définit alors une fonction S(nl:int, n2:int) ->
qui va vérifier S(ny,n2) = 0 si ny > ng et S(ny,n2) = S(n1,n2 — 1) + ng sinon. Ce qui donne :

def S(nl:int, n2:int) -> int
if nl1 > n2
return (0)
else
return(S(nl1,n2-1)+n2)

C'est donc une fonction récursive.
Si on dépile I'appel de cette fonction pour S(1,4), on obtient :

S(14) = 4 + S(13)
S(1,3) = 3 + S(1.2)
S(1,2) = 2 + S(11)
S(1,1) = 1 + S(1,0)
S(1,0) = 0
S(1,1) = 1
5(1,2) = 3
S(1,3) = 6
S(1,4) = 10

2 TERMINAISON, CORRECTION, COMPLEXITE

2 Terminaison, Correction, Complexité des algorithmes récursifs

La terminaison, la correction et la complexité se font comme d’habitude. A la différence prés que les
démonstrations vont devoir utilisé des récurrences mathématiques.
Exemple 2.1 :
On considére la définition récursive des calculs des puissances de nombres :

def puissRec(x:float, n:int) -> float
if n ==
return (x)
else
return(x*puissRec(x,n-1))

L'invariant de boucle va étre la valeur de la variable n. On peut démontrer par récurrence facilement que
la propriété : “Pour tout = € R, I'appel puissRec(x,n) s’arréte” est vraie. En effet, si n = 0, c'est clair.
L'algorithme s'arréte et renvoie x.

Soit n € N. Supposons que Vx € R, I'appel de puissRec(x,n) s'arréte. Soit x € R. On fait un
appel de puissRec(x,n+1). Alors cet appel renvoie x*puissRec(x,n). Mais par hypothese de récurrence
puissRec(x,n) s'arréte. Donc il renvoie une valeur explicite. Alors x*puissRec(x,n) est aussi une valeur
explicite. Et donc puissRec(x,n+1) s'arréte également.

On vient donc de montrer par récurrence que la propriété “Vo € R, puissRec(x,n) s'arréte” est vraie
pour tout n € N. Et donc, on vient bien de montrer la terminaison de cet fonction.

Pour la correction, on procéde de la méme maniére. On montre par récurrence que ¥Vn € N, (Vx € R,
puissRec(x,n) renvoie la valeur de z™).

Sin =0, alors clairement Vx € R, puissRec(x,n) renvoie 1 = 29,

Soit n € N. On suppose que Vx € R, puissRec(x,n) renvoie ™. Soit € R. Alors puissRec(x,n+1)
renvoie x*puissRec(x,n). Or, par hypothése de récurrence, puissRec(x,n) correspond a z". Donc
puissRec(x,n+1) renvoie la valeur de z x z", c’est-a-dire 21

Donc, par principe de récurrence, on vient de montrer que Vn € N, (Vx € R, puissRec(x,n) renvoie
la valeur de z™). Et donc la fonction puissRec est donc correcte.

La complexité se fait également par récurrence. On va calculer la complexité en fonction de la taille de
n. Notons, pour tout n € N, C(n) le nombre d'opération effectuées par I'appel de puissRec(x,n) pour
tout = € R.

On note que puissRec(x,0) ne fait qu'un test et renvoie immédiatement la valeur de x. Donc
puissRec(x,0) ne fait que deux opérations. Donc C'(0) = 2.

Soit n € N et x € R. Lors de I'appel de puissRec(x,n+1), il y a une comparaison qui est faite;
puis un renvoie; et un produit de x par la méme fonction puissRec(x,n). Donconal+1+1x C(n)
opérations. Autrement dit, C(n+1) =2+ C(n).

On vient donc de montrer que Vn € N, C(n+ 1) = 2+ C(n). Autrement dit, (C(n))nen est une suite
arithmétique de raison 2. Donc Vn € N, C(n) = C(0) 4+ 2n = 2(n + 1).

Et donc finalement, comme C(n) est le nombre d'opération de puissRec(x,n), la complexité de cette
fonction est linéaire O(n).

3 METHODE “DIVISER POUR REGNER"

Exercice 1 :
On considére la méthode de Héron d'Alexandrie d'approximation de la racine carré d'un réel : Soit a > 0.
Onposeug =1letVneN, upr1 = % (un + i)

1. Ecrire la fonction itérative heronI(a:float, n:int) -> float qui renvoie le n-eme terme de la
suite de Héron approchant /a.
Ecrire la fonction récursive heronR(a:float, n:int) -> float qui fait la méme chose.
Faire la preuve de la terminaison de la fonction heronR.

Faire la preuve de la correction de heronR.

o & WD

Etudier la complexité des deux fonctions heronI et heronR.

3 Méthode “diviser pour régner”

Les méthodes “diviser pour régner” sont des sous-catégories des méthodes récursives.

Définition 3.1 (Méthode “diviser pour régner") :
La méthode “diviser pour régner” suit le schéma suivant :

o diviser : diviser le probleme initial en un ou plusieurs sous-problemes de plus petites tailles.
o régner : résoudre les problemes de taille minimale (c'est la terminaison).

o assemblage : le solutions des sous-problémes sont rassemblées pour construire la solution au
probléme initial.

Exemple 3.1 :
On souhaite dessiner I'ensemble tri-adique de Cantor :

Pour tracer I'ensemble de Cantor, il faut prendre un segment donné, puis le découper en trois morceaux et
dessiner les deux morceaux extérieur (c'est la division).

On sait facilement tracer un segment entre deux points donné (c'est le regne).
Il ne reste plus qu'a assembler tout ca.

3 METHODE “DIVISER POUR REGNER"

def line(a,b)
régne : tracer le segment entre le point de coordonnées (a,0) et (b,0).
plt.plot([a,b],[0,0],"k",1lw=2)

def cantor(a,b,n)
division : on fait des appels récursifs pour diviser le segment entre (a,0) et (b,0)
en trois morceaux. Et on assemble.
if n==
line(a,b)
else
cantor(a,2/3*a+b/3,n-1)
cantor (a/3+2*b/3,b,n-1)

def Cantor(mn)
On dessine le calque créé.
cantor (0,1,n)
plt.show()

On obtient alors les jolis dessins suivant :

Ensemble de Cantor pour n=1 Ensemble de Cantor pour n=2
0.04 4 0.04 4
0.02 4 0.02 4
0.00 4 0.00 4
-0.02 4 —0.02 q
-0.04 4 —0.04 4
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ensemble de Cantor pour n=3 Ensemble de Cantor pour n=4
0.04 4 0.04 4
0.02 4 0.02 4
0.00{ =— —_— —_— —_— 0.00{ =— — —_—— —_—— —_——
~0.02 —0.02
-0.04 4 —0.04 4
T T T T T T T T T T T T
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

	Définition et premiers exemples
	Terminaison, Correction, Complexité
	Méthode ``diviser pour régner"

