
NOM :
Prénom :

Vendredi 30 Janvier 2026

Interrogation 6
Complexité
Correction

Exercice 1 :
Donner les syntaxes précises suivantes avec rédaction éventuelle :

1. Définition d’un variant de boucle.
Un variant de boucle est une variable de la boucle cor-
respondant à une suite d’entier strictement décroissante
avec le nombre de passage dans la boucle. La boucle
s’arrêtant quand le variant est nul.
2. Définition d’un invariant de boucle.
Un invariant de boucle est une propriété qui est vraie
après chaque passage dans la boucle. L’invariant de
boucle permet de vérifier que la boucle est correcte.

3. Complexité d’une structure if/else.
Pour une structure :

1 if c :
2 p
3 else :
4 q

en notant C(k) le nombre d’opérations de l’instruction
k, le nombre d’opérations effectuées au maximum est
C(c) + max(C(p), C(q)).
4. Complexité d’une boucle for
Pour une boucle for, le nombre d’opérations effectuées
est le nombre d’opérations sur corps de la boucle, multi-
plié par le nombre de passage dans la boucle. Donc pour
une boucle

1 for k in range(a,b) :
2 p

le nombre d’opérations effectuées est (b−a+1)C(p), où
C(p) est le nombre d’opérations du bloc d’instructions
p.

Exercice 2 :
On considère la fonction suivante :

1 def mystere (L:list) -> float :
2 S=0
3 for x in L :
4 for y in L :
5 S = S + x*y
6 return (S)

1. Faire un dérouler de cette fonction pour L=[1,3,7].
2. Déterminer la complexité de cet algorithme.
3. Proposer un autre code de la même fonction mais avec un meilleure complexité.
4. Étudier la correction de votre nouveau code.

1. On a le dérouler suivant :

Ligne x y S Retour
2 0
3 1 0
4 1 1 0
5 1 1 1
4 1 3 1
5 1 3 4
4 1 7 4
5 1 7 11
3 3 7 11
4 3 1 11
5 3 1 14
4 3 3 14
5 3 3 23
4 3 7 23
5 3 7 44
4 7 1 44
5 7 1 51
4 7 3 51
5 7 3 72
4 7 7 72
5 7 7 121
6 121

2. Si n est la longueur de la liste L, la ligne 5 contenant 3 opérations, la boucle for de la ligne 4 contient alors
3n opérations, et donc la boucle for de la ligne 3 contient 3n2 opérations. Donc la fonction mystere effectue 4n2 + 2
opérations pour une liste de longueur n.

Donc mystere a une complexité linéaire O(n2).
3. Si L est une liste, l’algorithme calcule :

∑
x∈L

∑
y∈L

xy =
∑
x∈L

x
∑
y∈L

y

 =
(∑

x∈L

x

)2

.

Donc on peut proposer, comme simplification de code :

1 def mystereSimple (L:list) -> float :
2 S=0
3 for x in L :
4 S = S+x
5 return (S**2)

5. Soit n ∈ N la longueur de la liste et soit k ∈ N le nombre de passage dans le boucle for et Sk la valeur
de la variable S à la fin du k-ème passage dans la boucle for. Donc S0 (on est pas encore passé dans la boucle
for). Si ∃k ∈ {0, . . . , n − 1} tel que Sk =

∑k−1
j=0 L[j], alors Sk+1 = Sk + L[k] =

∑k
j=0 L[j]. Donc, par récurrence,

∀k ∈ {0, . . . , n}, Sk =
∑k−1

j=0 L[j].

Et donc, à la sortie de la boucle for, après le n-ème passage, l’algorithme renvoie S2
n =

(∑n−1
j=0 L[j]

)2
.

