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Ce chapitre prend la suite de la fin du chapitre sur les suites pour étendre ces notions aux
fonctions. Au méme titre qu'on a, en quelques sortes, étendues les notions de limite des suites aux
fonctions numériques (on est passé de limites discrétes a des limites continues) ce qui a donné
naissance a la notion de continuité et de dérivabilité sur les fonctions, on va ici se poser la question
de la comparaison (asymptotique) de fonctions. On va essayer de comparer leur croissance pour
déterminer celles qui croissent le plus vite (ou qui tendent vers une valeur le plus vite).

On va donc d'abord définir des relations de comparaison pour les fonctions (0, O et ~) puis on
va utiliser ses outils pour faire des développement limités dans le prochain chapitre.

Attention par contre. Pour les suites, on se placait toujours en +o00 puisque c'était la seule chose
vers laquelle on pouvait fait tendre la variable n. C'est le seul infini disponible. Pour les fonctions,
ce ne sera plus le cas. On pourra faire tendre notre variable x vers +o0o bien siir, mais aussi vers
des valeurs finies. Il y a des infinies partout dans R. On peut se rapprocher indéfiniment d'un réel a
sans jamais |'atteindre. On a ici une notion d'infiniment proche. Il faudra donc prendre bien garde
au lieu ou I'on va faire nos comparaisons. Comme c’est une notion locale, une comparaison valable
en a € R par exemple ne le sera plus forcément en b # a et certainement pas en +oc. On prendra
donc toujours bien garde a bien indiqué ou se passe la comparaison que I'on étudie. Sans quoi, on
ne pourra dire si elle est juste ou fausse. Et donc dans le doute, c'est faux.
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On rappelle que pour un intervalle I C R, on note I I'intervalle fermé ayant les méme bornes que
I dans R. Donc par exemple, si I =]0,+oo[, I = [0,+occ]. Dans la suite a pourra éventuellement
étre +00.

On rappelle que la droite réelle achevée R n'est pas au programme mais est trés utile pour alléger
les énoncés. On prendra bien garde a ne pas oublier que a peut éventuellement étre +oo.

On rappelle que la notion de “[...] au voisinage de a” signifie “In > 0, Vo € IN[a —n,a + 1),

Comme avant, K sera le corps R ou C. On ne considérera que des intervalles de R non vide et
non réduit a un point.
Remarque :
Toutes les notions de ce chapitres sont des notions asymptotiques, donc des notions “aux limites”.
Grace aux caractérisations séquentielles, pour tout démontrer en utilisant ce que |'on sait sur les
suites.

1 Négligeabilité

Définition (HP) 1.1 (Négligeabilité)

Soit I C R un intervalle non vide et non réduit & un point, a € I éventuellement +oco et
frg: 1=K
On dira que f est négligeable devant g au voisinage de a et on écrira f(x) = o(g(z)) si
r—a

In>0ete:INfa—na+mn — K tel que e(x) —= 0 telle que Vx € I N[a —n,a+ 1),
f(z) = e(x)g().

On peut le dire de fagon un peu plus courte : f(x) o(g(zx)) si il existe € une fonction définie

xT

au voisinage de a telle que e(x) — -+ 0et f(z) = g(x)e(x) pour tout x dans un voisinage de a.
r—a
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[11 ATTENTION !!! |I

On rappelle que c'est une notion LOCALE! La relation n'est vraie QUE proche de a (et le
plus proche sera le mieux).

A\

Comme pour les suites, la définition au dessus est la bonne mathématiquement mais elle n'est
pas au programme. Je vous donne donc la version qui est programme. Mais il y a des conditions en
plus. Et surtout, comme pour le suites, il y a des contre-exemples qu'on ne peut pas donner sans la
définition du dessus.

Définition 1.2 (Négligeabilité au voisinage de a) :
Soit I C R, a € I éventuellement +00 et f,g: I — K. Si g ne s’annule pas au voisinage de a,

alors :
F(@) = olg(a)) = L& g

r—a g(x) r—a

Bien siir dans la pratique, c'est cette définition la qui est utile.

Remarque :
On notera que cette définition fonctionne encore méme si g ou f n'est pas défini en a.

Démonstration :

Il suffit d’écrire la définition avec € de f(x) = o(g(z)) et utiliser le fait que g(x) # 0 au voisinage
de a. Attention! Il n'y a pas de raison a priorJlf qaue ce soit le méme voisinage pour écrire le o et le fait
que g ne soit pas nul. On a deux voisinages de a qui interviennent. Il faut se placer a I'intersections

des deux pour ne pas avoir de soucis. Il

Remarque :

Cette proposition fonctionne encore si f et g sont définieen a (i.e.sia € I) etsi f(a) = g(a) = 0. En
effet, on demande seulement que le rapport f/g tende vers 0 quand = — a, ce qui est indépendant,
a priori, de la valeur des fonctions en a : on peut remplacer —— o par > ce qui regle le probleme

#0
(et on rappelle aussi que c'est d’ailleurs comme ¢a qu'il faut comprendre les limites : on tend vers

mais sans jamais atteindre la limite).

Exemple 1.1 :



1 NEGLIGEABILITE

Montrer :

et

11t ATTENTION !!! |I

Cette relation ne se lit que de gauche a droite et PAS de droite a gauche (suivre le sens
de la fleche). En dépit de |'utilisation du symbole =", il n'y a pas de symétrie. Ce n'est pas
une relation d'équivalence.

A Par ailleurs,
f@) Z o)
9() = o(h(x))
méme au voisinage de a. C'était déja faux avec les suites, ¢a I'est toujours ici. Par exemple,

a . . :
a? = o(z) et e = o(x) et pourtant, il est clair que % # /% Il y a quelques points
T— T—

d’intersections éventuellement, mais en nombres finis.

Remarque :
La notation f(z) = o(1) signifie en particulier f(x) — 0.

T—a T—a

Proposition 1.1 (Opérations et o) :
Soit I C R, a € I éventuellement 00, A € K* et f,g,h: I — K. Alors

L f@) = olg(e)) <= £(x) = o(rg(®))
2. Si f(x) = o(h(z)) et g(x) = o(h(x)), alors f(z)+ g(x) = o(h(x)).

T—a Tr—a

3. Si f(x) = olg(x)) alors f(x)h(z) = o(h(x)g(x))

r—ra

Démonstration :
On va supposer que nos trois fonctions ne s'annulent pas au voisinage de a.
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1. Au voisinage de a :

@ (@)
f(x) e (g( )) — g(x) E)O — )\g(x) T—a

par opération sur les limites.

2. Au voisinage de a :

par opération sur les limites

3. au voisinage de a :

Comme pour les suites, on retiendra ces relations par :
1. o(Ag(z)) = olg(x))

2. olg(a)) + olg(x) = olg(a))

3. hia)o(g(x)) = o(h(x)g(x))

[1't ATTENTION !!! |I

A On a en particulier
o(g(x)) —olg(x)) = o(g(x))

et non pas 0! On ne peut pas simplifier les o.

Proposition 1.2 (Enchainement de o) :
Soit I C R, a € I éventuellement +o0c et f,g,h: I — K.

Si f(z) = o(g(x) et g(x) = o(h(x)), alors f(x) = o(h(z)).

x
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Démonstration :
On va faire la démonstration dans le cas ou les trois fonctions ne s’annulent pas au voisinage de a.

Dans ce cas
@) _ f@) gla)
h(z)  g(z) h(z) z—a

toujours par opérations sur les limites de fonctions. [l

0x0=0

Dans la pratique, si g(z) = o(h(z)), on écrira o(g(x)) = o(h(z)). ATTENTION!! Cette
relation ne se lie que de gauche a droite. h n’est pas négligeable devant ¢! C'est le contraire.
Dans la pratique, on écrira donc

o(x) — zo(x) = o(z) —o(z?) = o(z) —o(z) = o(x)
2 Dominance

Définition (HP) 2.1 (Dominance)

Soit I C R, a € I éventuellement +o00 et f,g: 1 — K.
On dit que f est dominée par g au voisinage de a si AM € Ry et In > 0 tel que Vx €
INnja—mn,a+n),
|f(@)] < Mlg(x)]

On écrira alors f(x) = O(g(z)).

T—ra

Les mémes remarques que pour la négligeabilité sont valables. Cette relation ne se lit que de
gauche a droite. Ce n'est absolument pas symétrique. Le symbole "=" qu’on utilise est trompeur ici
aussi.

Définition 2.2 (Dominance) :
Soit I C R, a € I éventuellement +oo et f,g: I — K avec g qui ne s’annule pas au voisinage
de a. Alors

f(z) = O(g(z)) <= f est bornée au voisinage de a
g

Bien entendu, dans la pratique, c'est cette version qui sera utile.

Remarque :

La notation f(z) = O(1) signifie que f est bornée au voisinage de a. Mais ¢a ne dit rien sur la
convergence. Par exemple, on a cosx e O(1) et sin(1/x) = O(1) mais ni I'une ni I'autre ne
converge.
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Proposition 2.1 (Opérations et O) :
Soit I C R, a € I éventuellement +00, A € K* et f,g,h: I — K.

1. Si f(z) = O(Ag(z)), alors f(x) = O(g(x)).
2. Si f(x) = O(g(z)) et g(x) = O(h(z)), alors f(x) = O(h(x)).
351 f(2) = Olg(x) alors f(x)h(z) = Olg(a)h(x))

Démonstration :
Laissée en exercice. O

On retiendra cette proposition sous la forme :
1. O(\g(x)) = O(g(a)

2. O(g(x)) + Olg(a)) = Olg(a))

3. h@)O(9(x) = Olg(a)h(x))

Proposition 2.2 (Enchainement de o avec O) :
soit I C R, a € T éventuellement oo et f,g,h: 1 — K.

1. Si f(z) = o(g(z)) et si g(x) = O(h(z)) alors f(x) = o(h(x)).

2. Si f(x) = O(g(x)) et si g(x) = o(h(x)) alors f(z) = o(h(x)).

3. Si f(x) = O(g(z)) et si g(x) = O(h(z)) alors f(x) = O(h(x)).
Démonstration :

On va encore se placer dans le cas ou les trois fonctions ne s'annulent pas dans un voisinage de a.

1. Dans un voisinage de a :

‘f(x)

_ ‘ f(z) g(z)
h(z)

f(z)
9() hiz)| = M‘ e 0

g(w r—a

2. Dans un voisinage de a :

@) _ @ o@)| _ |9
‘h(x) B ’g(x) h(x)| — M‘h(m) T—a
3. Dans un voisinage de a : f@) o) |
z)| | f(z)g(z ,
h@)| ~ gt | = MM
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[11 ATTENTION !!! |I

A Je n’ai pas trop insister dessus auparavant, mais pour pouvoir utiliser ces relations, il faut se
placer au voisinage du méme point a a chaque fois! Si on a une relation au voisinage de a
et une au voisinage de b, on ne peut rien faire.

3 Croissance comparée

On ne va bien siir que s’occuper des fonctions usuelles. 1l y a déja largement de quoi faire avec
celles 1a.

Lemme 3.1 (Passage a l'inverse) :
Soit I C R, a € I éventuellement +o0, et f,g: I — K ne s’annulant pas au voisinage de a.

Si f(x) = o(g(z)), alors = O(f(lx)>

T—a g(l‘) z:a

et
. 1 1
Si f(x) =, 0lg()), dlors s = O (m))
Démonstration :
o) = olg(o) = T o
1
= I 0
(z)
1 1
T gl@) <f(rc))
et de méme
f(x) = Olg(x) < M >0, ﬂg\ <M
1
< dM >0, g(f”) <M
f(=@)
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3.1 Croissance comparée en 400

Théoréme 3.2 (Croissance comparée en +oco de fonctions de méme type) :
Ona:

» Va,0 ERaveca < f

O o(fcﬁ) et (Inz)* = 0((111$)B)

» Va,beRavec0<a<b

X — X
at = o(b")
Démonstration :
xOé
B = l‘aiﬁ 4+> O
X Tr—r+00
car B > «. Et de méme avec le In.
a.’L’
b7 _ eacln(a/b) T 0
X o0
car 0 <a/b< 1. O

Remarque :
On notera qu'il n'est demandé ici que o« < . Donc on pourrait prendre des valeurs négatives par

exemples. Et donc, on pourrait avoir ¢ —+> 0. Ce résultat est donc trés fort. Il est double, en
T—r—+00

quelque sorte. Il contient des limite infini ET des limites nulles.

Théoreme 3.3 (Croissance comparée en +oo de fonctions de limite 400 de type
différent) :
Pour tout o, >0eta >1,0n a

In(z)? = o(z®) et z* = o(a®)

Démonstration :

ln(x)fB _ eﬂln(lnm)—alnz _ 61nm<—a+5%)
e
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In(Inz)

mais ¥ — 5 0, donc par composition des limites, on a

Y y—+00 Inz

T—r-+00

lnx< oz—l—ﬁlnl(lm ) —— —o0 et donc h”" ———0.
nx T—+00 T—+00

o gzl ( Inat lnT)
T gahnz—zlna _ z(-Inata
a®

0. Donc

Or 2z 0 donc :U( lna—I—alna) ——— —o00 par opérations sur les limites et donc

T x—+oo r—+00
= ——— 0. O
" z—+oo
Théoréeme 3.4 (Croissance comparée en +oco de fonctions de limite 0) :
Pour tout a, 5 >0et0<a<1,ona
- 1 1 1
a = of|— et — = o0
z—+00 xre ¥ z—+oo (ln [L‘)B
Démonstration :
Passage a l'inverse. O
Remarque :
En faisant opérer le changement de variable y = —x dans les croissances comparées qui préceédent,
on obtient des résultats similaires en —cc.
Exemple 3.1 :
Classer par ordre de négligeabilité en 400, les fonctions : e™%, zln x, L1, e % 22, 7 Inx,
xr nx nT rinx
vz Iz * Ilnw

lnCE’I'w'e'J;ﬁ

10
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3.2 Croissance comparée en 0

Théoréme 3.5 (Croissance comparée en 0) :
Pour tout a < 3, on a

Pour tout & > 0, on a

(=) " 2ol
Inz = o — et ¢ = o —
z—>0+ xa :p—>()+ 1n$

Démonstration :
) _
;C—a:arﬁ ¥ ——0carf—a>0.
z—0
e — 2 ng —— 0 par les croissances comparées précédentes et passage 3 I'inverse. Et de
1/(x*) 0+

méme Pour |'autre limite. O
Remarque :

On pourra faire la méme remarque que précédemment. Le premier résultat est trés fort. On impose

aucun signe sur « et 5. lls peuvent donc en particulier &tre négatifs et avoir ¢ ﬁ 400. Le résultat
T—

reste encore vrai. Il est donc trés fort. Il contient beaucoup de chose en une seule ligne.

Remarque :
En opérant le changement de variable x = a+h, on peut énoncer des résultats similaires au voisinage
de a € R. Par exemple, Va < S,

(@ —a)’ = of(z—a)*)

Tr—ra

On ne les énoncera pas. Ca prendrait trop de place (et de temps). Ce sera donc a vous de mixer les
différentes résultats connus en 0 avec des changements de variables adéquat.

Exemple 3.2 :

Classer les fonctions suivantes par ordre de négligeabilité en 0 : 22, 2 1 Inz, ﬁ, 1 VvV, zlnz,
1 1 1 Inxz Inz' x
o Vo' 22

11



4 EQUIVALENCE

4 Equivalence

Définition (HP) 4.1 (Equivalence)

Soit I C R, a € I éventuellement 00 et f,g : I — K. On dit que f est équivalente 3 g au
voisinage de a et on écrit f(z) ~ g(z) sidn > 0et 0 :I1Nfa—mna+mn — K telle que
O(x) — 1 et
r—a
Veelna—mna+n] f(z)=0(x)g(x)

Cette définition est encore hors programme mais elle permet de donner des contre-exemples. Et
surtout, c'est la bonne version mathématiquement parlant. Qui comprend aussi le cas ol g s’annule.

Définition 4.2 (Equivalence) :
Soit I C R, a € I éventuellement fo00, et f,g: I — K et si g ne s'annule pas en a, alors
f(x)
flz) ~ glr) <= = —1

T—a g(gj) T—a

Comme précédemment, c'est cette formulation qu'on va utiliser en pratique.

Exemple 4.1 :
Montrer
2 +2x+2nx ~ z2, 2>+ +2ne ~+21n:c
r—+00 xz—0
et

Ve+az? ~ Vi + z? ~+\/5, Ve+az? ~ —x
z—0

x—400 T—>—00

Proposition 4.1 (Théoréme de I'ane) :
Soit I C R, a € I éventuellement oo et f: 1 — K.
Si f(x) —2 ¢ e K*, alors f(z) ~ ¢.
r—a T—a

Démonstration :
Il suffit de diviser par ¢ O

12



4 EQUIVALENCE

Remarque :
En particulier, si a € I et f continue en a et f(a) # 0, alors f(z) ~ f(a).

11t ATTENTION !!! |I

Ecrire f ~ 0 veut dire que f = 0 sur un voisinage de a. Donc f est constance égale a 0 sur
a

A

un voisinage de a. Ce qui est rarement le cas. Ca n'arrivera jamais. Donc ne pas écrire ca.

11t ATTENTION !!! |I

La notation “f ~ 400" n' a pas de sens. Pour s'en convaincre, il suffit d'utiliser la définition

A

HP de I'équivalence dans ce cas la. Donc il ne faut surtout PAS écrire ca. Ca n'a pas de
sens.

[1t ATTENTION !!! |I

Attention ! On rappelle que pour étre équivalent a sa limite, il faut pouvoir se cacher derriére
la valeur de la limite. Si la limite est nulle, il n'y a rien derriere quoi se cacher. On ne voit
plus que la fonction.

A

13



4 EQUIVALENCE

Proposition 4.2 (~ est une relation d’équivalence) :

Soit a € R (donc éventuellement +00), alors ~ est une relation d’'équivalence. En par-
ticulier, si I C R, a € I éventuellement oo et f,g,h: [ — K.
1. Si f(z) ~ g(=) alors g(z) ~ f(z)
2. Si f(x) ~ g(x)etg(z) ~ h(x), alors f(z) ~ h(x).
Démonstration :
C'est pas dur. O

[11 ATTENTION !!! |I

f C'est la relation ~ AVEC le a dessous qui est une relation d'équivalence. Pour pouvoir

r—ra

enchainer les équivalents, il faut faire des équivalents au méme endroit. Ca parait logique,
mais il ne faut pas I'oublier pour autant. D'ou I'importance de bien noter le a en indice.
Sinon, trés vite, on est perdu. Faire la différence entre ~ et ~ c'est pas évident. Tel que je
le pense quand je I'écris, ce ne sont pas les méme. Mais si on ne met pas l'indice, on ne peut
pas le savoir...

Proposition 4.3 (Caractérisation de ~ par o) :
Soit I C R, a € I éventuellement oo et f,g: 1 — K. Alors

f(@) ~ g(x) <= [f(z) = g(x)+o(g(x))

r—a r—a
Démonstration :
Voir la démo pour les suites et I'adapter. O
Exemple 4.2 :

Donner un équivalent simple de Inz + 22 en 400 et 0. De méme pour e + z2.

14



4 EQUIVALENCE

Théoréme 4.4 (Limite a partir d’un équivalent) :
Soit I C R, a € T ou éventuellement +oo, f,g: I — R (resp. C).
Si f(x) ~ g(x) et g(z) —2le R (resp C), alors f(z) —2 4
T—a r—a r—a

Exemple 4.3 :
Déterminer lim,_,o+ (Inz + 1/x)

[11 ATTENTION !!! |I

f La réciproque est fausse en général. Mais :
Si f,g = £ € K*, alors f(z) ~ g(z).
a T—a

car ~ est une relation d’équivalence et par obtention d'un équivalent a partir d'une limite.

r—a

Mais il est nécessaire d'avoir £ € K*. Si £ = 0, on ne peut rien dire. Il n'y a rien derriere
quoi se cacher. Et en 00 ¢a n'a pas de sens.

[1't ATTENTION !!! |I

. }#ff;g

Toujours avoir en téte que :

(penser a f(x) =1/x et g(x) = e* — 1 par exemple) et

penser f(x) =z et g(x) = e* par exemple
* I

15



4 EQUIVALENCE

Théoréme 4.5 (Signe et équivalent) :
Soit I C R, a € I ou éventuellement 00 et f,g: I — R.
Si f(z) ~ g(z), alors f et g ont le méme signe au voisinage de a.

Attention, ici, il faut que les fonctions soient a valeurs dans R pour parler du signe!
Exemple 4.4 :
Déterminer le signe de /= — 2 + B2 au voisinage de 0.

T

Proposition 4.6 :
Soit I C R, a € I ou éventuellement 00 et f,g: I — K.

Si f(x) ~ g(x), alors f(x) = O(g(x) et glx) = O((x).

Démonstration :
Il suffit d'utiliser la caractérisation de ~ avec des o.

T—a

Attention, la réciproque est fausse !

Proposition 4.7 (Enchainement ~ et o ou ~ et O) :
Soit I C R, a € I ou éventuellement +o00, f,g,h: I — K.

1.

o )féé(g))} 05,00
2. -

A} = o
3. B

F
4. By

) oz

16



4 EQUIVALENCE

Remarque :
Comme pour la suites, grace aux deux derniéres propriétés, on ne compare les fonctions qu'a des
expressions “simples”, c'est a dire qu'on préfére o(x) a o(z + 1).

[11t ATTENTION !!! |I

A ON NE PEUT PAS SOMMER LES EQUIVALENT !'!
On ne pouvait déja pas avec les suites, on ne peut pas plus avec les fonctions. Il faut
repasser par les o pour pouvoir faire des sommes. Par exemple = + 1 ~ letz—1 ~ —1

T— z—0
mais (1 4+ )+ (x — 1) =2z 7400.

Théoréme 4.8 (Equivalence et produit) :
Soit I C R, a € I ou éventuellement +00 et f, f1, f2,9,91,92 : I — K.

1. Si fi(z) -~ g1(x) et fa(x) -~ g2(z), alors
Ni(@)fa(z) ~ g1(x)ga(z)

2. Si fi(z) ~ gi(z) et fa(z) ~ ga(x), et si fo et g2 ne s'annule pas au voisinage de a,

alors
A@) @)
fo(x) o= go(x)

3. Si f(x) ~ g(x), alors

T—ra

VpeZ, f(x)’ ~ g(x)’

r—ra

Ici, fP est au sens de la puissance dans K, le produit de f par elle-méme p fois.

Théoréme 4.9 (Equivalence et produit dans R) :
Soit I C R, a € I ou éventuellement +oo et f,g: I —]0, +o0].
Si f(z) ~ g(z), alors
Va e R, f(z)* ~ g(z)*

T—a

17



4 EQUIVALENCE

Ce résultat ne vaut que pour des fonctions a valeurs réels strictement positive. Si
les fonctions sont a valeurs complexes, on ne peut déja pas les élever a des puissances
A autres choses qu’entieres, donc ¢a ne peut pas fonctionner, et si f et g prennent des valeurs
négatives, on ne peut pas prendre les racines de ces valeurs la. Ca ne fonctionne donc pas
plus.

Exemple 4.5 :
Déterminer un équivalent simple en +oo de

V3 +zx

Va2 + 1

Proposition 4.10 (Composition par In) :
Soit I C R, a € T ou éventuellement +oo, f,g: I —]0, +oc].

f(@) ~ g() }

o) — £ € Rr\ {1} ou +00f = @) 3, Inlo(o)

r—a

Exemple 4.6 :
Déterminer un équivalent simple de In(1 + z + 22?) en +oc.

Remarque :
Si f(x) — = 1, pour déterminer une équivalent de In of, il suffit de considérer In(1 + g) avec

g=f-1

Exemple 4.7 :
Déterminer un équivalent de In(1 + z + 222) en 0.
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4 EQUIVALENCE

111 ATTENTION ! |I

f ON NE PEUT PAS PASSER A L'EXPONENTIELLE!! Si on veut un équivalent de f, que
vous prenez le log de f (en admettant que vous pouvez), vous ne pourrez pas remonter a f
en prenant I'exponentielle de I'équivalent de In f. C'est FAUX. Il faudra étudier au cas par

cas.
Onal+1/z~1/z mais el /e L el/e,
0
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