
Chapitre 17
Analyse Asymptotique

Simon Dauguet
simon.dauguet@gmail.com

3 février 2026

Ce chapitre prend la suite de la fin du chapitre sur les suites pour étendre ces notions aux
fonctions. Au même titre qu’on a, en quelques sortes, étendues les notions de limite des suites aux
fonctions numériques (on est passé de limites discrètes à des limites continues) ce qui a donné
naissance à la notion de continuité et de dérivabilité sur les fonctions, on va ici se poser la question
de la comparaison (asymptotique) de fonctions. On va essayer de comparer leur croissance pour
déterminer celles qui croissent le plus vite (ou qui tendent vers une valeur le plus vite).

On va donc d’abord définir des relations de comparaison pour les fonctions (o, O et ∼) puis on
va utiliser ses outils pour faire des développement limités dans le prochain chapitre.

Attention par contre. Pour les suites, on se plaçait toujours en +∞ puisque c’était la seule chose
vers laquelle on pouvait fait tendre la variable n. C’est le seul infini disponible. Pour les fonctions,
ce ne sera plus le cas. On pourra faire tendre notre variable x vers +∞ bien sûr, mais aussi vers
des valeurs finies. Il y a des infinies partout dans R. On peut se rapprocher indéfiniment d’un réel a
sans jamais l’atteindre. On a ici une notion d’infiniment proche. Il faudra donc prendre bien garde
au lieu où l’on va faire nos comparaisons. Comme c’est une notion locale, une comparaison valable
en a ∈ R par exemple ne le sera plus forcément en b ̸= a et certainement pas en ±∞. On prendra
donc toujours bien garde à bien indiqué où se passe la comparaison que l’on étudie. Sans quoi, on
ne pourra dire si elle est juste ou fausse. Et donc dans le doute, c’est faux.
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1 NÉGLIGEABILITÉ TABLE DES MATIÈRES
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On rappelle que pour un intervalle I ⊂ R, on note I l’intervalle fermé ayant les même bornes que
I dans R. Donc par exemple, si I =]0, +∞[, I = [0, +∞]. Dans la suite a pourra éventuellement
être +∞.

On rappelle que la droite réelle achevée R n’est pas au programme mais est très utile pour alléger
les énoncés. On prendra bien garde à ne pas oublier que a peut éventuellement être ±∞.

On rappelle que la notion de “[...] au voisinage de a” signifie “∃η > 0, ∀x ∈ I ∩ [a − η, a + η],

[...]”.
Comme avant, K sera le corps R ou C. On ne considérera que des intervalles de R non vide et

non réduit à un point.
Remarque :
Toutes les notions de ce chapitres sont des notions asymptotiques, donc des notions “aux limites”.
Grâce aux caractérisations séquentielles, pour tout démontrer en utilisant ce que l’on sait sur les
suites.

1 Négligeabilité

Définition (HP) 1.1 (Négligeabilité)

Soit I ⊂ R un intervalle non vide et non réduit à un point, a ∈ I éventuellement ±∞ et
f, g : I → K.

On dira que f est négligeable devant g au voisinage de a et on écrira f(x) =
x→a

o(g(x)) si
∃η > 0 et ε : I ∩ [a − η, a + η] → K tel que ε(x) −−−→

x→a
0 telle que ∀x ∈ I ∩ [a − η, a + η],

f(x) = ε(x)g(x).

On peut le dire de façon un peu plus courte : f(x) =
x→a

o(g(x)) si il existe ε une fonction définie
au voisinage de a telle que ε(x) −−−→

x→a
0 et f(x) = g(x)ε(x) pour tout x dans un voisinage de a.
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1 NÉGLIGEABILITÉ

"
!!! ATTENTION !!!

On rappelle que c’est une notion LOCALE ! La relation n’est vraie QUE proche de a (et le
plus proche sera le mieux).

Comme pour les suites, la définition au dessus est la bonne mathématiquement mais elle n’est
pas au programme. Je vous donne donc la version qui est programme. Mais il y a des conditions en
plus. Et surtout, comme pour le suites, il y a des contre-exemples qu’on ne peut pas donner sans la
définition du dessus.

Définition 1.2 (Négligeabilité au voisinage de a) :
Soit I ⊂ R, a ∈ I éventuellement ±∞ et f, g : I → K. Si g ne s’annule pas au voisinage de a,
alors :

f(x) =
x→a

o(g(x)) ⇐⇒ f(x)
g(x) −−−→

x→a
0

Bien sûr dans la pratique, c’est cette définition là qui est utile.
Remarque :
On notera que cette définition fonctionne encore même si g ou f n’est pas défini en a.

Démonstration :
Il suffit d’écrire la définition avec ε de f(x) =

x→a
o(g(x)) et utiliser le fait que g(x) ̸= 0 au voisinage

de a. Attention ! Il n’y a pas de raison a priori que ce soit le même voisinage pour écrire le o et le fait
que g ne soit pas nul. On a deux voisinages de a qui interviennent. Il faut se placer à l’intersections
des deux pour ne pas avoir de soucis. □

Remarque :
Cette proposition fonctionne encore si f et g sont définie en a (i.e. si a ∈ I) et si f(a) = g(a) = 0. En
effet, on demande seulement que le rapport f/g tende vers 0 quand x → a, ce qui est indépendant,
a priori, de la valeur des fonctions en a : on peut remplacer −−−→

x→a
par −−−→

x→a
x ̸=0

ce qui règle le problème

(et on rappelle aussi que c’est d’ailleurs comme ça qu’il faut comprendre les limites : on tend vers
mais sans jamais atteindre la limite).

Exemple 1.1 :
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1 NÉGLIGEABILITÉ

Montrer :
ln x =

x→+∞
o(x), x =

x→+∞
o(x2), x2 =

x→+∞
o(ex), 1

x2 =
x→+∞

o

( 1
x

)
et

x2 =
x→0

o(x), ln(x − 5) =
x→5

o(1/(x − 5)), 1
x − 2 =

x→2
o

( 1
(x − 2)2

)

"

!!! ATTENTION !!!

Cette relation ne se lit que de gauche à droite et PAS de droite à gauche (suivre le sens
de la flèche). En dépit de l’utilisation du symbole “=”, il n’y a pas de symétrie. Ce n’est pas
une relation d’équivalence.

Par ailleurs,
f(x) =

x→a
o(h(x))

g(x) =
x→a

o(h(x)) ≠⇒ f = g

même au voisinage de a. C’était déjà faux avec les suites, ça l’est toujours ici. Par exemple,
x2 =

x→0
o(x) et e

1
x2 =

x→0
o(x) et pourtant, il est clair que x2 ̸= e1/x2 . Il y a quelques points

d’intersections éventuellement, mais en nombres finis.

Remarque :
La notation f(x) =

x→a
o(1) signifie en particulier f(x) −−−→

x→a
0.

Proposition 1.1 (Opérations et o) :
Soit I ⊂ R, a ∈ I éventuellement ±∞, λ ∈ K∗ et f, g, h : I → K. Alors

1. f(x) =
x→a

o(g(x)) ⇐⇒ f(x) =
x→a

o(λg(x))

2. Si f(x) =
x→a

o(h(x)) et g(x) =
x→a

o(h(x)), alors f(x) + g(x) =
x→a

o(h(x)).

3. Si f(x) =
x→a

o(g(x)) alors f(x)h(x) =
x→a

o(h(x)g(x))

Démonstration :
On va supposer que nos trois fonctions ne s’annulent pas au voisinage de a.
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1 NÉGLIGEABILITÉ

1. Au voisinage de a :

f(x) =
x→a

o(g(x)) ⇐⇒ f(x)
g(x) −−−→

x→a
0 ⇐⇒ f(x)

λg(x) −−−→
x→a

0 ⇐⇒ f(x) =
x→a

o(λg(x))

par opération sur les limites.
2. Au voisinage de a :

f(x) + g(x)
h(x) = f(x)

h(x) + g(x)
h(x) −−−→

x→a
0

par opération sur les limites
3. au voisinage de a :

f(x)h(x)
g(x)h(x) = f(x)

g(x) −−−→
x→a

0

□

Comme pour les suites, on retiendra ces relations par :
1. o(λg(x)) =

x→a
o(g(x))

2. o(g(x)) + o(g(x)) =
x→a

o(g(x))

3. h(x)o(g(x)) =
x→a

o(h(x)g(x))

"

!!! ATTENTION !!!

On a en particulier
o(g(x)) − o(g(x)) =

x→a
o(g(x))

et non pas 0 ! On ne peut pas simplifier les o.

Proposition 1.2 (Enchâınement de o) :
Soit I ⊂ R, a ∈ I éventuellement ±∞ et f, g, h : I → K.

Si f(x) =
x→a

o(g(x)) et g(x) =
x→a

o(h(x)), alors f(x) =
x→a

o(h(x)).

5



2 DOMINANCE

Démonstration :
On va faire la démonstration dans le cas où les trois fonctions ne s’annulent pas au voisinage de a.
Dans ce cas

f(x)
h(x) = f(x)

g(x)
g(x)
h(x) −−−→

x→a
0 × 0 = 0

toujours par opérations sur les limites de fonctions. □

Dans la pratique, si g(x) =
x→a

o(h(x)), on écrira o(g(x)) =
x→a

o(h(x)). ATTENTION ! ! Cette
relation ne se lie que de gauche à droite. h n’est pas négligeable devant g ! C’est le contraire.

Dans la pratique, on écrira donc

o(x) − xo(x) =
x→0

o(x) − o(x2) =
x→0

o(x) − o(x) =
x→0

o(x)

2 Dominance

Définition (HP) 2.1 (Dominance)

Soit I ⊂ R, a ∈ I éventuellement ±∞ et f, g : I → K.
On dit que f est dominée par g au voisinage de a si ∃M ∈ R+ et ∃η > 0 tel que ∀x ∈

I ∩ [a − η, a + η],
|f(x)| ≤ M |g(x)|

On écrira alors f(x) =
x→a

O(g(x)).

Les mêmes remarques que pour la négligeabilité sont valables. Cette relation ne se lit que de
gauche à droite. Ce n’est absolument pas symétrique. Le symbole “=” qu’on utilise est trompeur ici
aussi.

Définition 2.2 (Dominance) :
Soit I ⊂ R, a ∈ I éventuellement ±∞ et f, g : I → K avec g qui ne s’annule pas au voisinage
de a. Alors

f(x) =
x→a

O(g(x)) ⇐⇒ f

g
est bornée au voisinage de a

Bien entendu, dans la pratique, c’est cette version qui sera utile.
Remarque :
La notation f(x) =

x→a
O(1) signifie que f est bornée au voisinage de a. Mais ça ne dit rien sur la

convergence. Par exemple, on a cos x =
x→+∞

O(1) et sin(1/x) =
x→0

O(1) mais ni l’une ni l’autre ne
converge.
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2 DOMINANCE

Proposition 2.1 (Opérations et O) :
Soit I ⊂ R, a ∈ I éventuellement ±∞, λ ∈ K∗ et f, g, h : I → K.

1. Si f(x) =
x→a

O(λg(x)), alors f(x) =
x→a

O(g(x)).

2. Si f(x) =
x→a

O(g(x)) et g(x) =
x→a

O(h(x)), alors f(x) =
x→a

O(h(x)).

3. Si f(x) =
x→a

O(g(x)) alors f(x)h(x) =
x→a

O(g(x)h(x))

Démonstration :
Laissée en exercice. □

On retiendra cette proposition sous la forme :
1. O(λg(x)) =

x→a
O(g(x))

2. O(g(x)) + O(g(x)) =
x→a

O(g(x))

3. h(x)O(g(x)) =
x→a

O(g(x)h(x))

Proposition 2.2 (Enchâınement de o avec O) :
soit I ⊂ R, a ∈ I éventuellement ±∞ et f, g, h : I → K.

1. Si f(x) =
x→a

o(g(x)) et si g(x) =
x→a

O(h(x)) alors f(x) =
x→a

o(h(x)).

2. Si f(x) =
x→a

O(g(x)) et si g(x) =
x→a

o(h(x)) alors f(x) =
x→a

o(h(x)).

3. Si f(x) =
x→a

O(g(x)) et si g(x) =
x→a

O(h(x)) alors f(x) =
x→a

O(h(x)).

Démonstration :
On va encore se placer dans le cas où les trois fonctions ne s’annulent pas dans un voisinage de a.

1. Dans un voisinage de a : ∣∣∣∣f(x)
h(x)

∣∣∣∣ =
∣∣∣∣f(x)
g(x)

g(x)
h(x)

∣∣∣∣ ≤ M

∣∣∣∣f(x)
g(x)

∣∣∣∣ −−−→
x→a

0

2. Dans un voisinage de a : ∣∣∣∣f(x)
h(x)

∣∣∣∣ =
∣∣∣∣f(x)
g(x)

g(x)
h(x)

∣∣∣∣ ≤ M

∣∣∣∣ g(x)
h(x)

∣∣∣∣ −−−→
x→a

0

3. Dans un voisinage de a : ∣∣∣∣f(x)
h(x)

∣∣∣∣ =
∣∣∣∣f(x)
g(x)

g(x)
h(x)

∣∣∣∣ ≤ MM ′

□
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3 CROISSANCE COMPARÉE

"
!!! ATTENTION !!!

Je n’ai pas trop insister dessus auparavant, mais pour pouvoir utiliser ces relations, il faut se
placer au voisinage du même point a à chaque fois ! Si on a une relation au voisinage de a
et une au voisinage de b, on ne peut rien faire.

3 Croissance comparée
On ne va bien sûr que s’occuper des fonctions usuelles. Il y a déjà largement de quoi faire avec

celles là.

Lemme 3.1 (Passage à l’inverse) :
Soit I ⊂ R, a ∈ I éventuellement ±∞, et f, g : I → K ne s’annulant pas au voisinage de a.

Si f(x) =
x→a

o(g(x)), alors 1
g(x) =

x→a
o

( 1
f(x)

)
et

Si f(x) =
x→a

O(g(x)), alors 1
g(x) =

x→a
O

( 1
f(x)

)

Démonstration :

f(x) =
x→a

o(g(x)) ⇐⇒ f(x)
g(x) −−−→

x→a
0

=⇒
1

g(x)
1

f(x)
−−−→
x→a

0

⇐⇒ 1
g(x) =

x→a
o

( 1
f(x)

)
et de même

f(x) =
x→a

O(g(x)) ⇐⇒ ∃M ≥ 0,

∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ M

⇐⇒ ∃M ≥ 0,

∣∣∣∣∣∣
1

g(x)
1

f(x)

∣∣∣∣∣∣ ≤ M

⇐⇒ 1
g(x) =

x→a
O

( 1
f(x)

)
□
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3 CROISSANCE COMPARÉE 3.1 Croissance comparée en +∞

3.1 Croissance comparée en +∞

Théorème 3.2 (Croissance comparée en +∞ de fonctions de même type) :
On a :

• ∀α, β ∈ R avec α < β

xα =
x→+∞

o(xβ) et (ln x)α =
x→+∞

o((ln x)β)

• ∀a, b ∈ R avec 0 < a < b
ax =

x→+∞
o(bx)

Démonstration :

xα

xβ
= xα−β −−−−→

x→+∞
0

car β > α. Et de même avec le ln.

ax

bx
= ex ln(a/b) −−−−→

x→+∞
0

car 0 < a/b < 1. □

Remarque :
On notera qu’il n’est demandé ici que α < β. Donc on pourrait prendre des valeurs négatives par
exemples. Et donc, on pourrait avoir xα −−−−→

x→+∞
0. Ce résultat est donc très fort. Il est double, en

quelque sorte. Il contient des limite infini ET des limites nulles.

Théorème 3.3 (Croissance comparée en +∞ de fonctions de limite +∞ de type
différent) :
Pour tout α, β > 0 et a > 1, on a

ln(x)β =
x→+∞

o(xα) et xα =
x→+∞

o(ax)

Démonstration :

ln(x)β

xα
= eβ ln(ln x)−α ln x = eln x

(
−α+β

ln(ln x)
ln x

)
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3 CROISSANCE COMPARÉE 3.1 Croissance comparée en +∞

mais ln y
y −−−−→

y→+∞
0, donc par composition des limites, on a ln(ln x)

ln x −−−−→
x→+∞

0. Donc

ln x
(
−α + β ln(ln x)

ln x

)
−−−−→
x→+∞

−∞ et donc ln xβ

xα −−−−→
x→+∞

0.

xα

ax
= eα ln x−x ln a = ex(− ln a+α ln x

x )

Or ln x
x −−−−→

x→+∞
0 donc x

(
− ln a + α ln a

x

)
−−−−→
x→+∞

−∞ par opérations sur les limites et donc
xα

ax −−−−→
x→+∞

0. □

Théorème 3.4 (Croissance comparée en +∞ de fonctions de limite 0) :
Pour tout α, β > 0 et 0 < a < 1, on a

ax =
x→+∞

o

( 1
xα

)
et 1

xα
=

x→+∞
o

( 1
(ln x)β

)

Démonstration :
Passage à l’inverse. □

Remarque :
En faisant opérer le changement de variable y = −x dans les croissances comparées qui précèdent,
on obtient des résultats similaires en −∞.

Exemple 3.1 :
Classer par ordre de négligeabilité en +∞, les fonctions : e−x, x ln x, 1

x2 , 1, x
ln x , 1

ln x , x2, 1
x ln x , ln x,

√
x

ln x , ln x
x , x, ex, ln x

x
√

x
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3 CROISSANCE COMPARÉE 3.2 Croissance comparée en 0

3.2 Croissance comparée en 0

Théorème 3.5 (Croissance comparée en 0) :
Pour tout α < β, on a

xβ =
x→0

o(xα)

Pour tout α > 0, on a

ln x =
x→0+

o

( 1
xα

)
et xα =

x→0+
o

( 1
ln x

)

Démonstration :
xβ

xα = xβ−α −−−→
x→0

0 car β − α > 0.

ln x
1/(xα) = xα ln x −−−−→

x→0+
0 par les croissances comparées précédentes et passage à l’inverse. Et de

même Pour l’autre limite. □

Remarque :
On pourra faire la même remarque que précédemment. Le premier résultat est très fort. On impose
aucun signe sur α et β. Ils peuvent donc en particulier être négatifs et avoir xα −−−→

x→0
+∞. Le résultat

reste encore vrai. Il est donc très fort. Il contient beaucoup de chose en une seule ligne.

Remarque :
En opérant le changement de variable x = a+h, on peut énoncer des résultats similaires au voisinage
de a ∈ R. Par exemple, ∀α < β,

(x − a)β =
x→a

o
(
(x − a)α)

On ne les énoncera pas. Ça prendrait trop de place (et de temps). Ce sera donc à vous de mixer les
différentes résultats connus en 0 avec des changements de variables adéquat.

Exemple 3.2 :
Classer les fonctions suivantes par ordre de négligeabilité en 0 : x2, x

ln x , 1, ln x,
√

x
ln x , 1

x , √
x, x ln x,

1
ln x , 1√

x
, 1

x2 .
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4 ÉQUIVALENCE

4 Équivalence

Définition (HP) 4.1 (Équivalence)

Soit I ⊂ R, a ∈ I éventuellement ±∞ et f, g : I → K. On dit que f est équivalente à g au
voisinage de a et on écrit f(x) ∼

x→a
g(x) si ∃η > 0 et θ : I ∩ [a − η, a + η] → K telle que

θ(x) −−−→
x→a

1 et
∀x ∈ I ∩ [a − η, a + η], f(x) = θ(x)g(x)

Cette définition est encore hors programme mais elle permet de donner des contre-exemples. Et
surtout, c’est la bonne version mathématiquement parlant. Qui comprend aussi le cas où g s’annule.

Définition 4.2 (Équivalence) :
Soit I ⊂ R, a ∈ I éventuellement ±∞, et f, g : I → K et si g ne s’annule pas en a, alors

f(x) ∼
x→a

g(x) ⇐⇒ f(x)
g(x) −−−→

x→a
1

Comme précédemment, c’est cette formulation qu’on va utiliser en pratique.
Exemple 4.1 :
Montrer

x2 + x + 2 ln x ∼
x→+∞

x2, x2 + x + 2 ln x ∼
x→0+

2 ln x

et √
x + x2 ∼

x→+∞
x,

√
x + x2 ∼

x→0+

√
x,

√
x + x2 ∼

x→−∞
−x

Proposition 4.1 (Théorème de l’âne) :
Soit I ⊂ R, a ∈ I éventuellement ±∞ et f : I → K.

Si f(x) −−−→
x→a

ℓ ∈ K∗, alors f(x) ∼
x→a

ℓ.

Démonstration :
Il suffit de diviser par ℓ □
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4 ÉQUIVALENCE

Remarque :
En particulier, si a ∈ I et f continue en a et f(a) ̸= 0, alors f(x) ∼

x→a
f(a).

"
!!! ATTENTION !!!

Écrire f ∼
a

0 veut dire que f = 0 sur un voisinage de a. Donc f est constance égale à 0 sur
un voisinage de a. Ce qui est rarement le cas. Ça n’arrivera jamais. Donc ne pas écrire ça.

"
!!! ATTENTION !!!

La notation “f ∼
a

+∞” n’ a pas de sens. Pour s’en convaincre, il suffit d’utiliser la définition
HP de l’équivalence dans ce cas là. Donc il ne faut surtout PAS écrire ça. Ça n’a pas de
sens.

"

!!! ATTENTION !!!

Attention ! On rappelle que pour être équivalent à sa limite, il faut pouvoir se cacher derrière
la valeur de la limite. Si la limite est nulle, il n’y a rien derrière quoi se cacher. On ne voit
plus que la fonction.
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4 ÉQUIVALENCE

Proposition 4.2 (∼ est une relation d’équivalence) :
Soit a ∈ R (donc éventuellement ±∞), alors ∼

a
est une relation d’équivalence. En par-

ticulier, si I ⊂ R, a ∈ I éventuellement ±∞ et f, g, h : I → K.
1. Si f(x) ∼

x→a
g(x) alors g(x) ∼

x→a
f(x)

2. Si f(x) ∼
x→a

g(x) et g(x) ∼
x→a

h(x), alors f(x) ∼
x→a

h(x).

Démonstration :
C’est pas dur. □

"

!!! ATTENTION !!!

C’est la relation ∼
x→a

AVEC le a dessous qui est une relation d’équivalence. Pour pouvoir
enchâıner les équivalents, il faut faire des équivalents au même endroit. Ça parâıt logique,
mais il ne faut pas l’oublier pour autant. D’où l’importance de bien noter le a en indice.
Sinon, très vite, on est perdu. Faire la différence entre ∼ et ∼ c’est pas évident. Tel que je
le pense quand je l’écris, ce ne sont pas les même. Mais si on ne met pas l’indice, on ne peut
pas le savoir...

Proposition 4.3 (Caractérisation de ∼ par o) :
Soit I ⊂ R, a ∈ I éventuellement ±∞ et f, g : I → K. Alors

f(x) ∼
x→a

g(x) ⇐⇒ f(x) =
x→a

g(x) + o(g(x))

Démonstration :
Voir la démo pour les suites et l’adapter. □

Exemple 4.2 :
Donner un équivalent simple de ln x + 2x en +∞ et 0. De même pour ex + x2.
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Théorème 4.4 (Limite à partir d’un équivalent) :
Soit I ⊂ R, a ∈ I ou éventuellement ±∞, f, g : I → R (resp. C).

Si f(x) ∼
x→a

g(x) et g(x) −−−→
x→a

ℓ ∈ R (resp C), alors f(x) −−−→
x→a

ℓ.

Exemple 4.3 :
Déterminer limx→0+(ln x + 1/x)

"

!!! ATTENTION !!!

La réciproque est fausse en général. Mais :
Si f, g −→

a
ℓ ∈ K∗, alors f(x) ∼

x→a
g(x).

car ∼
x→a

est une relation d’équivalence et par obtention d’un équivalent à partir d’une limite.
Mais il est nécessaire d’avoir ℓ ∈ K∗. Si ℓ = 0, on ne peut rien dire. Il n’y a rien derrière

quoi se cacher. Et en ±∞ ça n’a pas de sens.

"

!!! ATTENTION !!!

Toujours avoir en tête que :
f −→

a
0

g −→
a

0

}
≠⇒ f ∼

a
g

(penser à f(x) = 1/x et g(x) = ex − 1 par exemple) et

f −→
a

+∞
g −→

a
+∞

}
≠⇒ f ∼

a
g

(penser f(x) = x et g(x) = ex par exemple)
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Théorème 4.5 (Signe et équivalent) :
Soit I ⊂ R, a ∈ I ou éventuellement ±∞ et f, g : I → R.

Si f(x) ∼
x→a

g(x), alors f et g ont le même signe au voisinage de a.

Attention, ici, il faut que les fonctions soient à valeurs dans R pour parler du signe !
Exemple 4.4 :
Déterminer le signe de √

x − x3 + ln x
x au voisinage de 0.

Proposition 4.6 :
Soit I ⊂ R, a ∈ I ou éventuellement ±∞ et f, g : I → K.

Si f(x) ∼
x→a

g(x), alors f(x) =
x→a

O(g(x)) et g(x) =
x→a

O(f(x)).

Démonstration :
Il suffit d’utiliser la caractérisation de ∼

x→a
avec des o. □

Attention, la réciproque est fausse !

Proposition 4.7 (Enchâınement ∼ et o ou ∼ et O) :
Soit I ⊂ R, a ∈ I ou éventuellement ±∞, f, g, h : I → K.

1.
f(x) ∼

x→a
g(x)

g(x) =
x→a

o(h(x))

}
=⇒ f(x) =

x→a
o(h(x))

2.
f(x) ∼

x→a
g(x)

g(x) =
x→a

O(h(x))

}
=⇒ f(x) =

x→a
O(h(x))

3.
f(x) =

x→a
o(g(x))

g(x) ∼
x→a

h(x)

}
=⇒ f(x) =

x→a
o(h(x))

4.
f(x) =

x→a
O(g(x))

g(x) ∼
x→a

h(x)

}
=⇒ f(x) =

x→a
O(h(x))
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Remarque :
Comme pour la suites, grâce aux deux dernières propriétés, on ne compare les fonctions qu’à des
expressions “simples”, c’est à dire qu’on préfère o(x) à o(x + 1).

"

!!! ATTENTION !!!

ON NE PEUT PAS SOMMER LES ÉQUIVALENT ! !
On ne pouvait déjà pas avec les suites, on ne peut pas plus avec les fonctions. Il faut

repasser par les o pour pouvoir faire des sommes. Par exemple x + 1 ∼
x→0

1 et x − 1 ∼
x→0

−1
mais (1 + x) + (x − 1) = 2x ̸∼

x→0
0.

Théorème 4.8 (Équivalence et produit) :
Soit I ⊂ R, a ∈ I ou éventuellement ±∞ et f, f1, f2, g, g1, g2 : I → K.

1. Si f1(x) ∼
x→a

g1(x) et f2(x) ∼
x→a

g2(x), alors

f1(x)f2(x) ∼
x→a

g1(x)g2(x)

2. Si f1(x) ∼
x→a

g1(x) et f2(x) ∼
x→a

g2(x), et si f2 et g2 ne s’annule pas au voisinage de a,
alors

f1(x)
f2(x) ∼

x→a

g1(x)
g2(x)

3. Si f(x) ∼
x→a

g(x), alors
∀p ∈ Z, f(x)p ∼

x→a
g(x)p

Ici, fp est au sens de la puissance dans K, le produit de f par elle-même p fois.

Théorème 4.9 (Équivalence et produit dans R) :
Soit I ⊂ R, a ∈ I ou éventuellement ±∞ et f, g : I →]0, +∞[.

Si f(x) ∼
x→a

g(x), alors
∀α ∈ R, f(x)α ∼

x→a
g(x)α
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"
Ce résultat ne vaut que pour des fonctions à valeurs réels strictement positive. Si

les fonctions sont à valeurs complexes, on ne peut déjà pas les élever à des puissances
autres choses qu’entières, donc ça ne peut pas fonctionner, et si f et g prennent des valeurs
négatives, on ne peut pas prendre les racines de ces valeurs là. Ça ne fonctionne donc pas
plus.

Exemple 4.5 :
Déterminer un équivalent simple en +∞ de

√
x3 + x

3√x2 + 1

Proposition 4.10 (Composition par ln) :
Soit I ⊂ R, a ∈ I ou éventuellement ±∞, f, g : I →]0, +∞[.

f(x) ∼
x→a

g(x)
g(x) −−−→

x→a
ℓ ∈ R+ \ {1} ou + ∞

}
=⇒ ln(f(x)) ∼

x→a
ln(g(x))

Exemple 4.6 :
Déterminer un équivalent simple de ln(1 + x + 2x2) en +∞.

Remarque :
Si f(x) −−−→

x→a
1, pour déterminer une équivalent de ln ◦f , il suffit de considérer ln(1 + g) avec

g = f − 1.

Exemple 4.7 :
Déterminer un équivalent de ln(1 + x + 2x2) en 0.
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"

!!! ATTENTION !!!

ON NE PEUT PAS PASSER À L’EXPONENTIELLE ! ! Si on veut un équivalent de f , que
vous prenez le log de f (en admettant que vous pouvez), vous ne pourrez pas remonter à f
en prenant l’exponentielle de l’équivalent de ln f . C’est FAUX. Il faudra étudier au cas par
cas.

On a 1 + 1/x ∼
0

1/x mais e1+1/x ̸∼
0

e1/x.
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