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Ce chapitre est dans la lignée directe du chapitre précédent. C’était le but. Pouvoir faire des
développements limités. Comme vous l’avez déjà vu en Physique et en SI, les développements limités
sont des approximations polynomiales de fonctions au voisinage d’un point (ou l’infini). Ça permet
de pouvoir “assimiler” (avec toutes les précautions et la rigueur mathématique qu’on aime bien) une
fonction à un polynôme au voisinage de ce point. Et il est beaucoup plus facile de manipuler les
polynômes. On va pouvoir même retrouver la fonction à partir de son développement limités.

L’année prochaine, vous étendrez cette notion à des intervalles entiers ! Ce seront les séries
entières. C’est très pratique.

Attention par contre. Comme pour les relations de comparaison, on pourra faire tendre notre
variable vers n’importe quel valeur réelle finie. Il y a des infinies partout dans R. On peut se rapprocher
indéfiniment d’un réel a sans jamais l’atteindre. On a ici une notion d’infiniment proche. Il faudra
donc prendre bien garde au lieu où l’on va faire notre développement limité. Comme c’est une notion
locale, un DL valable en a ∈ R par exemple ne le sera plus forcément en b ̸= a.

On rappelle que pour un intervalle I ⊂ R, on note I l’intervalle fermé ayant les même bornes que
I dans R. On notera également I̊ l’intervalle ouvert correspondant à I, i.e. I̊ est le même intervalle
que I dans sans ses bornes.
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Dans la suite, n sera un entier naturel, I ⊂ R un intervalle non vide et non réduit à un point et
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est).

2



1 GÉNÉRALITÉS

1 Généralités

Définition 1.1 (Développement limité, Partie régulière) :
Soit I ⊂ R, a ∈ I ∈ R et f : I → K.

• On dit que f admet un développement limité à l’ordre n ∈ N en a si ∃a0, . . . , an ∈ K tel
que

f(x) =
x→a

a0 + a1(x − a) + a2(x − a)2 + · · · + an(x − a)n + o((x − a)n)

• La fonction x 7→
∑n

k=0 ak(x − a)k est appelée partie régulière du développement limité de
f en a. Et x 7→ f(x) −

∑n
k=0 ak(x − a)k est le reste.

Dit autrement, f admet un DLn(a) s’il existe un polynôme P ∈ Kn[X] tel que

f(x) =
x→a

P̃ (x − a) + o((x − a)n)

Parce qu’on va parler (très très) souvent de développement limité, je noterai DLn(a) pour
“développement limité en a à l’ordre n”.

Un DLn(a) donne une information sur le comportement de f en a et seulement en a. On ne peut
rien dire à côté de a, même très proche. C’est une relation local (à cause du =

a
). Elle n’est valable

que très proche de a.
Remarque :
Via le changement de variable x = a + h, on peut également écrire

f(a + h) =
h→0

n∑
k=0

akhk + o(hn) =
h→0

P̃ (h) + o(hn)

Remarque :
Dans un DLn, chaque terme est négligeable devant celui qui le précède. C’est le dernier terme qui
est le plus petit.

Définition 1.2 (DL en un point où la fonction n’est pas définie) :
Si I ⊂ R, a ∈ I, n ∈ N et f définie sur I \ {a}, on dit que f admet un DLn(a) si f

∣∣
I∩]a,+∞[

admet un DLn en a+, f
∣∣
I∩]−∞,a[ admet un DLn en a− et si ces deux DL cöıncide.

Par soucis de commodité d’écriture, on se placera seulement dans le cas où f est définit sur I
entier. Mais il faudrait adapté tous les énoncés au cas ci-dessus aussi.
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1 GÉNÉRALITÉS

Proposition 1.1 (Caractérisation de la continuité et dérivabilité par les DL) :
Soit I un intervalle de R et a ∈ I et f : I → K.

• f est continue en a si et seulement si f admet un DL0(a) de la forme

f(x) =
x→a

f(a) + o(1)

• f est dérivable en a si et seulement si f admet un DL1(a) de la forme

∃κ ∈ K, f(x) =
x→a

f(a) + (x − a)κ + o(x − a)

et dans ce cas, f ′(a) = κ.

Démonstration :
Supposons f continue en a. Alors, par caractérisation de la continuité par les limites,

f(x) −−−→
x→a

f(a)

et la définition des o nous donne alors

f(x) =
x→a

f(a) + o(1)

Réciproquement, supposons f(x) =
x→a

f(a) + o(1). Alors f(x) − f(a) =
x→a

o(1) −−−→
x→a

0 et donc
f(x) −−−→

x→a
f(a). Donc, par caractérisation de la continuité par les limites, f est continue en a.

Supposons que f soit dérivable. Alors f(x)−f(a)
x−a −−−→

x→a
f ′(a) ∈ R par définition. Donc f(x)−f(a)

x−a =
x→a

f ′(a) + o(1) et donc f(x) − f(a) =
x→a

f ′(a)(x − a) + o(x − a) et donc f admet un DL1(a).
Réciproquement, supposons que f(x) =

x→a
f(a) + κ(x − a) + o(x − a). Alors dans ce cas

f(x)−f(a)
x−a =

x→a
κ + o(1) −−−→

x→a
κ. Donc f est dérivable en a et f ′(a) = κ. □

Exemple 1.1 :
Donner un DL0(0) et DL1(0) de x 7→ 1

1−x .

" ATTENTION ! ! Ça ne fonctionne que pour les DL de rangs 0 et 1 ! Dès que n ≥ 2, une
fonction f peut admettre un DLn(a) sans être n-fois dérivable en a :
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1 GÉNÉRALITÉS

Exemple 1.2 :
Soit la fonction

f :
R → R

x 7→

x + x3 sin
(

1
x2

)
si x ̸= 0

0 si x = 0

Montrer que f admet un DL2(0) mais n’est pas 2 fois dérivable en 0.

Les développements limités donnent une approximation polynomiale d’une fonction au voisinage
d’un point. Plus la précision est meilleure (plus on calcul loin le DL) et meilleure est l’approximation.
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1 GÉNÉRALITÉS

DL successif du sinus

Le graphe des DL classiques (qui sont listés plus bas) est disponible que le cahier de prépa.
Remarque :
On notera donc que pour une fonction dérivable en a, on a

f(x) =
x→a

f(a) + f ′(a)(x − a)︸ ︷︷ ︸
Ta

+o((x − a)).

Autrement dit, on approxime la courbe de f à sa tangente en a au voisinage de a.
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1 GÉNÉRALITÉS

Proposition 1.2 (Troncature d’un DL) :
Soit I ⊂ R, a ∈ I et f : I → K et n ∈ N.

Si f admet un DLn(a) de la forme

f(x) =
x→a

n∑
k=0

ak(x − a)k + o((x − a)n)

alors f admet un DLm(a) pour tout m ≤ n qui s’obtient par troncature :

f(x) =
x→a

m∑
k=0

ak(x − a)k + o((x − a)m)

Démonstration :
C’est simplement la relation

n∑
k=m+1

ak(x − a)k + o((x − a)n) =
x→a

o((x − a)m)

□

Théorème 1.3 (Unicité du DLn(a)) :
Soit I ⊂ R, a ∈ I, f : I → K et n ∈ N.

Si f admet un DLn(a), alors il est unique.

Démonstration :
Supposons que f admette deux DLn(a) distincts :

f(x) =
x→a

n∑
k=0

ak(x − a)k + o((x − a)n)

et
f(x) =

x→a

n∑
k=0

bk(x − a)k + o((x − a)n)

Soit m = min{k ∈ {0, . . . , n}, ak ̸= bk}. Comme les deux DLn(a) sont distincts, m existe (ils
diffèrent par un des coefficients). Par troncature, on a donc

f(x) =
x→a

a0 + a1(x − a) + · · · + am(x − a)m + o((x − a)m)

f(x) =
x→a

b0 + b1(x − a) + · · · + bm(x − a)m + o((x − a)m)
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1 GÉNÉRALITÉS

Mais par définition de m, on sait que ∀k ∈ {0, . . . , m − 1}, ak = bk. Donc par soustraction, on
trouve

f(x) − f(x) =
x→a

m∑
k=0

ak(x − a)k −
m∑

k=0
bk(x − a)k + o((x − a)m)

=
x→a

(am − bm)(x − a)m + o((x − a)m)

c’est à dire (am − bm)(x − a)m =
x→a

o((x − a)m). En prenant x ̸= a dans un voisinage de a, on
a x − a ̸= 0 et on peut donc simplifier par (x − a)m. La relation reste toujours valable et donc
am − bm =

x→a
o(1) donc am − bm −−−→

x→a
0. Mais comme am − bm est une constante, on en déduit

am − bm = 0. C’est à dire am = bm. D’où A. □

"

!!! ATTENTION !!!

Il y a un théorème d’unicité des DL mais il n’y a pas de théorème d’existence. Il existe des
fonctions qui n’ont pas de DL. Par exemple, x 7→ sin(1/x) n’a pas de DL en 0 puisqu’elle
n’existe pas en 0 et ne peut même pas y être prolongée par continuité.

Donc les DL, c’est pas automatique. On ne peut pas toujours en faire.

Définition 1.3 (Partie principale) :
Si I ⊂ R, a ∈ I, n ∈ N et f : I → K admettant un DLn(a) de la forme

f(x) =
x→a

n∑
k=0

ak(x − a)k + o((x − a)n)

Si p = min{k ∈ {0, . . . , n}, ak ̸= 0} existe, on appelle partie principale de f en a la fonction
x 7→ ap(x − a)p.

Remarque :
Autrement dit, la partie principale de f en a est le premier terme non nul dans le développement
limité de f en a. Bien sûr, pour obtenir la partie principale de f , il faut donc aller assez loin dans le
calcul du développement limité. Par exemple, si x 7→ a3(x − a)3 est la partie principale de f en a,
alors f(x) =

x→a
o((x − a)2). Donc on ne peut pas trouver la partie principale de f . Il faut calculer le

développement limité de f à l’ordre au moins 3.
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1 GÉNÉRALITÉS

"
!!! ATTENTION !!!

Attention ! Toutes fonctions n’admet pas de partie principale. C’est le premier terme non
nul. Si f a un DL nul à tout ordre en a, elle n’a pas de partie principale. Le problème vient
de l’existence du minimum.

Définition 1.4 (Forme normalisée) :
Soit I ⊂ R, a ∈ I, n ∈ N et f : I → K admettant un DLn(a) de la forme

f(x) =
x→a

n∑
k=0

ak(x − a)k + o((x − a)n)

Si p = min{k ∈ {0, . . . , n}, ak ̸= 0} existe, on appelle forme normalisée du DLn(a) de f toute
expression de la forme

f(x) =
x→a

(x − a)p

(n−p∑
k=0

bk(x − a)k + o((x − a)n−p)
)

On a donc essentiellement factorisé par la partie principale. De cette façon, on obtient un po-
lynôme de coefficient constant non nul.
Remarque :
Dans la forme normalisé, on a

∀k ∈ {0, . . . , n − p}, bk = ak+p

avec en particulier b0 = ap ̸= 0.

Proposition 1.4 (DL et équivalent) :
Soit I ⊂ R, a ∈ I, n ∈ N et p ≤ n, et f : I → K. Si f admet un DLn(a) de partie principale
ap(x − a)p, alors

f(x) ∼
x→a

ap(x − a)p

On peut également écrire cette relation sous la forme

f(a + h) ∼
x→a

aphp

Démonstration :
On a f(x) =

x→a

∑n
k=p ak(x − a)p + o((x − a)n). Mais ∀k ≥ p + 1, (x − a)k =

x→a
o((x − a)p) donc

f(x) =
x→a

ap(x − a)p + o((x − a)p) ∼
x→a

ap(x − a)p □
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1 GÉNÉRALITÉS

Remarque :
Autrement dit, une fonction est équivalente à sa partie principale en tout point (si elle existe). Les
DL permettent donc d’obtenir des équivalents des fonctions. C’est en fait l’intérêt principale des
développements limités.

On va développer ici un outil qui va nous permettre de trouver un équivalents à n’importe quel
fonction en tout point (ou presque). On va donc pouvoir calculé les limite de n’importe quelle
fonctions en n’importe quel point.

Proposition 1.5 (DL d’une fonction paire, impaire) :
Soit I ⊂ R symétrique par rapport à 0 et f : I → K et n ∈ N.

Si f admet un DLn(0) et si f est paire (resp. impaire), alors la partie régulière de f n’admet
que des termes d’exposants pairs (resp. impair).

Autrement dit, le polynôme du DL de f a la même parité que f . Ce qui parâıt assez logique dans
la mesure où ce polynôme est “essentiellement” f . Il est normal qu’il hérite des même propriétés de
f .

Démonstration :
f admet un DLn(0), donc

f(x) =
x→0

a0 + a1x + · · · + anxn + +o(xn)

et par le changement de variable y = −x, on obtient :

f(−x) =
x→0

a0 − a1x + · · · + (−1)nanxn + o(xn)

Or f est paire, donc les deux DLn(0) doivent être égaux par unicité du DL. Donc

∀k ∈ {0, . . . , n}, ak = (−1)kak

et donc on en déduit la résultat. □

Proposition 1.6 (Signe et DL) :
Soit I ⊂ R, a ∈ I et f : I → R admettant un DL en a.

Le signe de f au voisinage de a est déterminé par le signe de sa partie principale.

Démonstration :
Si f(x) =

x→a
ap(x−a)p+ap+1(x−a)p+1+· · ·+ap+q(x−a)p+q+o((x−a)p+q), alors f(x) ∼

x→a
ap(x−a)p

donc f est du signe de ap(x − a)p au voisinage de a (cad du signe de ap si p est paire et du signe
de ap pour x > 0 et du signe de −ap si x < a si p est impair). □
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2 DL, DÉRIVÉES ET PRIMITIVES

2 DL, Dérivées et Primitives

Lemme 2.1 (“Les o passent aux primitives”) :
Soit a, α, β ∈ R avec α < a < β et f :]α, β[→ K admettant une primitive F sur ]α, β[ (donc
une fonction F :]α, β[→ K dérivable telle que F ′ = f). Soit n ∈ N.

Si f(x) =
x→a

o((x − a)n), alors F (x) =
x→a

F (a) + o((x − a)n+1)

Démonstration (*** (Très très bonne démo, genre fin de partie 3)) :
On pose I =]α, β[. Soit ε > 0.

On pose φ = F −F (a). Alors φ est définie, continue et dérivable sur I car D1(I,R) est un R-ev.
Et ∀x ∈ I, φ′(x) = F ′(x) = f(x). Donc φ′(x) =

x→a
o((x − a)n), donc φ′(x)

(x−a)n −−−→
x→a

0. Donc, ∃η > 0
tel que ∀x ∈ [a−η, a+η] ⊂ I, |φ′(x)| ≤ ε|x−a|n. En particulier, si on fixe x ∈]a, a+η], l’intervalle
[2a − x, x] = [a − (x − a), a + (x − a)] est un intervalle centré en a inclus dans [a − η, a + η]. En
effet, on a clairement x ≤ a + η par choix de x et 2a − x ≥ 2a − a − η = a − η. On a donc

∀t ∈
[
2a − x, x

]
, |φ′(t)| ≤ ε|t − a|n ≤ ε|x − a|n

et |x − a|n est une constante par rapport à t. On peut donc appliquer L’Inégalité des Accroissements
Finis sur l’intervalle [2a−x, x] à l’application t 7→ φ′(t) et à x et a qui sont dans l’intervalle [2a−x, x]
en particulier. On obtient donc ∣∣∣∣φ(x) − φ(a)

x − a

∣∣∣∣ ≤ ε|x − a|n

Mais φ(a) = 0 donc
∣∣∣ φ(x)

(x−a)n+1

∣∣∣ ≤ ε. Et ce raisonnement est valable pour tout x ∈]0, a + η]. Si
x ∈ [a − η, a[, en appliquant une petite symétrie dans le raisonnement, on obtient le même résultat.
Finalement ∀x ∈ [a − η, a + η] \ {a},

∣∣∣ φ(x)
(x−a)n+1

∣∣∣ ≤ ε.
Or ce raisonnement a été fait avec un ε > 0 arbitraire. On a donc φ(x)

(x−a)n+1 −−−→
x→a

0 par définition
et donc F (x) − F (a) =

x→a
o((x − a)n+1) par définition de φ. □

Théorème 2.2 (DL d’une primitive) :
Soit I ⊂ R, a ∈ I, n ∈ N, f : I → K admettant une primitive F sur I et un DLn(a) de la
forme :

f(x) =
x→a

n∑
k=0

ak(x − a)k + o((x − a)n)

alors F admet un DLn+1(a) qui est

F (x) =
x→a

F (a) +
n∑

k=0

ak

k + 1(x − a)k+1 + o((x − a)n+1)
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2 DL, DÉRIVÉES ET PRIMITIVES

Démonstration :
On définit g(x) = f(x) −

∑n
k=0 ak(x − a)k sur I. Cette fonction est continue sur I comme somme

de fonction qui le sont. On pose également G(x) = F (x) − F (a) −
∑n

k=0
ak

k+1(x − a)k+1 sur I.
Cette fonction est dérivable sur I comme somme de fonction qui le sont. Et pour tout x ∈ I,
G′(x) = F ′(x) −

∑n
k=0 ak(x − a)k = g(x). Donc G est une primitive de g (c’est même la primitive

de g qui s’annule en a).
On sait d’autre part, que g(x) =

x→a
o((x − a)n). On en déduit donc, par le lemme précédent, que

G(x) =
x→a

o((x−a)n+1), autrement dit que F (x) =
x→a

F (a)+
∑n

k=0
ak(x−a)k+1

k+1 +o((x−a)n+1). Donc
F admet un DLn+1(a) qui est bien de la forme annoncé par unicité du DLn. □

On va donc pouvoir “primitiver” les DL. Les DL passent très bien par “primitivation”.
Exemple 2.1 :
Déterminer le DLn(0) de arctan.

Théorème 2.3 (DL d’une dérivée) :
Soit I ⊂ R, a ∈ I, n ∈ N∗ et f : I → K dérivable admettant un DLn(a) de la forme :

f(x) =
x→a

n∑
k=0

ak(x − a)k + o((x − a)n)

Si f ′ admet un DLn−1(a), alors

f ′(x) =
x→a

n∑
k=1

kak(x − a)k−1 + o((x − a)n−1)
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2 DL, DÉRIVÉES ET PRIMITIVES

"

!!! ATTENTION !!!

Il est ABSOLUMENT nécessaire de savoir ici que f ′ admet un DLn−1 pour pouvoir dériver
le DL. L’intégration permet de lisser encore un peu davantage une fonction. Donc il n’y pas
de soucis. Mais lors de la dérivation, on perd en “lissitude”. Par exemple dans l’exemple au
dessus de la fonction x 7→ x + x3 sin(1/x2), la dérivée de cette fonction n’est pas continue
en 0 (donc la fonction n’est pas dérivable en 0). Ce qu’on a perdu en “lissitude” en dérivant
rend le DL faux. La fonction de base est tout juste assez lisse pour pouvoir avoir un DL2
(mais on ne pouvait pas aller plus loin) et la dérivée n’est pas assez lisse pour pouvoir en
avoir un.

Les DL sont très lié à la “lissitude” de la fonction. Forcément puisqu’on écrit localement
notre fonction comme un polynôme. Et il n’y a rien de plus lisse qu’un polynôme.

Démonstration :
f ′ admet un DLn−1(a) qui est donc de la forme

f ′(x) =
n−1∑
k=0

bk(x − a)k + o((x − a)n−1)

Comme f ′ admet une primitive f , par le lemme précédent, on a f(x) =
x→a

f(a) +
∑n−1

k=0
bk

k+1(x −
a)k+1 + o((x − a)n. Mais par unicité du DLn(a) de f et le fait que f(a) = a0, on a

∀k ∈ {0, . . . , n − 1}, ak+1 = bk

k + 1

c’est à dire ∀k ∈ {1, . . . , n}, kak = bk−1 d’où le résultat. □

Remarque :
On notera qu’ici, comme n ≥ 1, f admet un DL1(a) et est donc dérivable en a, donc en particulier
continue, ce qui nous permet d’avoir a0 = f(a) qu’on a utilisé dans la démo sans plus de précision
...

Théorème 2.4 (Formule de Taylor-Young) :
Soit I ⊂ R, a ∈ I, f : I → K, n ∈ N.

Si f ∈ Cn(I,K), alors f admet un DLn(a) et il est de la forme :

f(x) =
x→a

n∑
k=0

f (k)(a)
k! (x − a)k + o((x − a)n)
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Démonstration :
On va faire une récurrence sur n. Si f ∈ C0(I,K), par caractérisation de la continuité par les DL,
∀a ∈ I, f(x) =

x→a
f(a) + o(1). C’est encore vrai pour n = 1 toujours par caractérisation de la

dérivabilité par les DL.
Supposons qu’il existe n ∈ N tel que ∀f ∈ Cn(I,K), ∀a ∈ I, f(x) =

x→a

∑n
k=0

f (k)(a)
k! (x − a)k +

o((x − a)n).
Soit f ∈ Cn+1(I,K). Alors, par définition, f ′ ∈ Cn(I,K). Donc, par hypothèse de récurrence,

∀a ∈ I, f ′(x) =
x→a

n∑
k=0

(f ′)(k)(a)
k! (x − a)k + o((x − a)n)

=
x→a

n∑
k=0

f (k+1)(a)
k! (x − a)k + o((x − a)n).

Or f est une primitive de f ′ sur I (par définition), donc, par DL d’une primitive,

∀a ∈ I, f(x) =
x→a

f(a) +
n∑

k=0

f (k+1)(a)
(k + 1)k! (x − a)k+1 + o((x − a)n+1)

=
x→a

f(a) +
n+1∑
k=1

f (k)(a)
k! (x − a)k + o((x − a)n+1)

=
x→a

n+1∑
k=0

f (k)(a)
k! (x − a)k + o((x − a)n+1)

D’où la formule de Taylor-Young par récurrence. □

Remarque :
Ce résultat pourra se prouver un peu plus tard comme un corollaire d’un résultat plus fort d’intégration :
la formule de Taylor avec reste intégral.

"
!!! ATTENTION !!!

Attention, ce résultat n’est valable que si f est définie en a, et de classe Cn sur un voisinage
de a !

On retiendra que si f est de classe Cn sur I, alors f admet un DLn en tout point de I.
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3 DL DE RÉFÉRENCE

Remarque :
On a donc, sous forme développée,

f(x) =
x→a

f(a) + f ′(a)(x − a) + f ′′(a)
2 (x − a)2 + f (3)(a)

6 (x − a)3 + · · · + o((x − a)n)

Corollaire 2.5 :
Soit I ⊂ R, a ∈ I, f : I → K.

Si f ∈ C∞(I,K), alors f admet un DLn(a) pour tout n ∈ N.

Corollaire 2.6 (DL de la dérivée d’une fonction Cn+1) :
Soit I ⊂ R, a ∈ I, n ∈ N, f : I → K de classe Cn+1.

Alors f ′ admet un DLn(a) qui s’obtient en dérivant terme à terme le DLn+1(a) de f .

Démonstration :
f est de classe Cn+1, donc f ′ est de classe Cn par définition. Donc f ′ admet un DLn(a) par Taylor-
Young et le théorème 2.3 achève la démo. □

Exemple 2.2 :
Donner le DLn(0) de f : x 7→ 1

(1−x)2 . Calculer f (42)(0) et f (53)(0).

Remarque :
Le théorème de Taylor-Young est donc un théorème très fort. Il permet de connâıtre la fonction
assez précisément au voisinage d’un point si on la connâıt suffisamment en profondeur en ce point.
Autrement dit, la connaissance des valeurs de toutes les dérivées successives de la fonction en un
point permet de la connâıtre au voisinage de ce point. Ce théorème fait un lien entre “l’horizontalité”
de la fonction et sa “verticalité”. C’est une méthode pour reconstruire la fonction au voisinage d’un
point à partir que de quelques valeurs.

3 DL de référence
On donne ici plein de DL en 0 obtenus par la formule de Taylor-Young. On donne en fait tous

les DL des fonctions de référence que l’on sait être de classe C∞. Ces DL sont bien sûr à connâıtre.
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3 DL DE RÉFÉRENCE

Les formules données ci-dessous sont un peu en avance. On a besoin de quelques petites opérations
sur les DL pour pouvoir les établir. On va donner ces opérations juste en dessous. Mais c’est un bon
moment pour donner les DL célèbres.

Il y a un graphe sur cahier de prépa qui permet de “voir” ces DL de référence à différents ordre
avec la fonction qu’ils approchent.

• DLn(0) de x 7→ 1
1−x

1
1 − x

=
x→0

n∑
k=0

xk + o(xn) =
x→0

1 + x + x2 + · · · + xn + o(xn)

(on reconnâıt une somme géométrique)
• DLn(0) de x 7→ 1

1+x

1
1 + x

=
x→0

n∑
k=0

(−1)kxk + o(xn) =
x→0

1 − x + x2 − x3 + · · · + (−1)nxn + o(xn)

Ce DL est obtenu en faisant le changement de variable x ; −x dans le DL précédent.
• DLn(0) de x 7→ ex

ex =
x→0

n∑
k=0

xk

k! + o(xn) =
x→0

1 + x + x2

2 + x3

6 + x4

24 + · · · + xn

n! + o(xn)

Ce DL est primordial. Il FAUT le connâıtre. On notera aussi etx =
x→0

∑n
k=0

tk

k! x
k + o(xn). Ce

sera utile dans votre carrière de mathématicien.
• DLn(0) de x 7→ ln(1 + x).

ln(1 + x) =
x→0

n∑
k=1

(−1)k+1xk

k
+ o(xn) =

x→0
x − 1

2x2 + 1
3x3 + · · · + (−1)n+1

n
xn + o(xn)

C’est une primitive de x 7→ 1
1+x .

• DLn(0) de x 7→ ln(1 − x)

ln(1 − x) =
x→0

−
n∑

k=1

xk

k
+ o(xn) =

x→0
−x − x2

2 − x3

3 − · · · − xn

n
+ o(xn)

Là aussi, obtenue grâce au DL précédent et le changement de variable x ; −x, ou alors grâce
à une primitive de x 7→ 1

1−x .
• DLn(0) de x 7→ (1 + x)p avec p ∈ N

(1 + x)p =
x→0


∑n

k=0
(p

k

)
xk + o(xn) si n ≤ p

∑p
k=0

(p
k

)
xk + o(xn) ∀n ≥ p

Il correspond à la troncature du binôme de Newton pour des ordres plus petit que p et le
développement du binôme de Newton en entier pour des ordres plus grand que p.
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3 DL DE RÉFÉRENCE

• DLn(0) de x 7→ (1 + x)α avec α ∈ R fixé

(1 + x)α =
x→0

1 +
n∑

k=1

α(α − 1) . . . (α − k + 1)
k! xk + o(xn)

=
x→0

1 + αx + α(α−1)
2 x2 + α(α−1)(α−2)

6 x3 + · · · + α(α−1)(α−2)...(α−n+1)
n! xn + o(xn)

Très très utile. C’est la formule qui donne les DL de x 7→
√

1 + x, x 7→ 1√
1+x

et même
x 7→

√
1 − x et 1√

1−x
par une petit changement de variable qu’on connâıt bien.

• DL2n+1(0) de x 7→ cos(x)

cos x =
x→0

n∑
k=0

(−1)kx2k

(2k)! + o(x2n+1) =
x→0

1 − x2

2 + x4

24 − x6

720 + · · · + (−1)n

(2n)! x2n + o(x2n+1)

• DL2n+2(0) de x 7→ sin(x)

sin x =
x→0

n∑
k=0

(−1)kx2k+1

(2k + 1)! + o(x2n+2) =
x→0

x − x3

6 + x5

120 + · · · + (−1)n

(2n + 1)!x
2n+1 + o(x2n+2)

• DL2n+1(0) de x 7→ ch(x)

ch(x) =
x→0

n∑
k=0

x2k

(2k)! + o(x2n+1) =
x→0

1 + x2

2 + x4

24 + x6

720 + · · · + x2n

(2n)! + +o(x2n+1)

• DL2n+2(0) de x 7→ sh(x)

sh(x) =
x→0

n∑
k=0

x2k+1

(2k + 1)! + o(x2n+2) =
x→0

x + x3

6 + x5

120 + · · · + x2n+1

(2n + 1)! + o(x2n+2)

• DL8(0) de x 7→ tan(x)

tan(x) =
x→0

x + 1
3x3 + 2

15x5 + 17
315x7 + o(x8)

Attention, il n’y a pas de formule générale pour celui là. Les deux premiers termes (à l’ordre
3) sont à connâıtre et les autres à savoir retrouvés à partir du sinus et cosinus ou toute autre
méthode.

• DL2n+2(0) de x 7→ arctan(x)

arctan(x) =
x→0

n∑
k=0

(−1)kx2k+1

2k + 1 + o(x2n+2) =
x→0

x − x3

3 + x5

5 − · · · + (−1)nx2n+1

2n + 1 + o(x2n+2)

C’est la primitive s’annulant en 0 de x 7→ 1
1+x2 qu’on connâıt.

• DL2n+2(0) de x 7→ arcsin(x)

arcsin(x) =
x→0

n∑
k=0

(2k)!
(2kk!)2(2k + 1)x2k+1 + o(x2n+2)

=
x→0

x + x3

6 + · · · + 1 × 3 × · · · × (2n − 1)
2 × 4 × · · · × (2n)

x2n+1

2n + 1 + o(x2n+2)

C’est aussi une primitive.
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4 DL ET OPÉRATIONS

• DL2n+2(0) de x 7→ arccos(x)

arccos(x) = π

2 − arcsin(x)

C’est pas le plus dur, celui là. On notera qu’on aurait pu faire le contraire. Trouver le DL de
arccos par primitivation et en déduire celui du arcsin.

Remarque :
En fait, on peut définir (

α

k

)
= α(α − 1) . . . (α − k + 1)

k!

pour α ∈ R et k ∈ N et qui va cöıncider avec le coefficient binomial si α ∈ N. Avec cette notation,
on peut alléger la formule de (1 + x)α et la faire ressemble à une sorte de formule de Newton.

Pour obtenir le DL d’une fonction en a, on “relocalise” le problème en 0 par le changement de
variable x = a + h pour pouvoir utiliser ensuite les DL de référence ci-dessus.

Toutes les opérations autorisées seront détaillées juste en dessous, y compris celles utilisés pour
établir les formules de cette partie.
Exemple 3.1 :
Déterminer le DL2(1) de x 7→ ex, le DL3(π/3) de cos et le DL2(2) de x 7→

√
x.

4 DL et opérations

4.1 Combinaison linéaire

Proposition 4.1 (Combinaison linéaire) :
Soit I ⊂ R, a ∈ I, n ∈ N, f, g : I → K admettant des DLn(a) de parties régulières
respectivement P et Q (dans K[X]), donc

f(x) =
x→a

P̃ (x − a) + o((x − a)n) et g(x) =
x→a

Q̃(x − a) + o((x − a)n)

Alors ∀λ, µ ∈ K, λf + µg admet un DLn(a) de partie régulière λP + µQ, i.e.

(λf + µg)(x) =
x→a

λP̃ (x − a) + µQ̃(x − a) + o((x − a)n)

ATTENTION ! On ne peut sommer que des DL de même ordre.

Démonstration :
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4 DL ET OPÉRATIONS 4.2 Produits

On a, au voisinage de a :

(λf + µg)(x) − ˜(λP + µQ)(x − a)
(x − a)n

= λ
f(x) − P̃ (x − a)

(x − a)n
+ µ

g(x) − Q̃(x − a)
(x − a)n

−−−→
x→a

0

□

Corollaire 4.2 :
L’ensemble des applications à valeurs dans K admettant un DLn(a) est un K-espace vectoriel
et l’application à valeur dans Kn[X] qui, à une fonction, associe le polynôme associé à sa
partie régulière est linéaire.

Exemple 4.1 :
Donner un DL4(0) de la fonction x 7→ 2 cos x − 3 sh x.

4.2 Produits

Proposition 4.3 (Produit de DL) :
Soit I ⊂ R, a ∈ I, n ∈ N, f, g : I → K admettant des DLn(a) de partie régulière respective-
ment P ∈ K[X] et Q ∈ K[X].

Alors fg admet un DLn(a) de partie régulière PQ, i.e.

f(x) =
x→a

P̃ (x − a) + o((x − a)n)
g(x) =

x→a
Q̃(x − a) + o((x − a)n)

 =⇒ fg(x) =
x→a

P̃Q(x − a) + o((x − a)n)

Démonstration :
Au voisinage de a, on a

fg(x) − P̃Q(x − a)
(x − a)n

= f(x) − P̃ (x − a)
(x − a)n

g(x) + P̃ (x − a)g(x) − Q̃(x − a)
(x − a)n

Or f(x)−P̃ (x−a)
(x−a)n −−−→

x→a
0 car P̃ (x − a) est la partie régulière du DLn(a) de f , g(x) −−−→

x→a
Q̃(0)

car g admet un DLn(a), P̃ (x − a) −−−→
x→a

P̃ (0) car P est un polynôme donc continue en 0 et
g(x)−Q̃(x−a)

(x−a)n −−−→
x→a

0 car Q est la partie régulière du DLn(a) de g.
Finalement, les opérations sur les limites, nous donne le résultat. □
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4 DL ET OPÉRATIONS 4.3 Compositions

Exemple 4.2 :
Déterminer le DL3(0) de x 7→ ex cos x − 2 sin x et de tan.

4.3 Compositions

Proposition 4.4 (DL d’une composée) :
Soit I ⊂ R, a ∈ I, n ∈ N, f : I → R, et g : f(I) → K.

Si f − f(a) admet un DL(a) de partie principale ap(x − a)p avec p ≤ n, et g admet un
DLq(f(a)) où q = min{k ∈ N, k ≥ n/p}, alors g ◦ f admet un DLn(a) qui est obtenue en
substituant le DL(a) de f dans le DLq(f(a)) de g et en tronquant à l’ordre n.

Autrement dit :
• On détermine un DLk+p(a) de f − f(a) de partie principale p ≤ n, donc f(x) =

x→a
f(a) + (x −

a)p(ap + ap+1(x − a) + · · · + ap+k(x − a)k + o((x − a)k)).
• On détermine un DLq(f(a)) de g avec q ≥ n/p. Donc g(y) =

y→f(a)
b0 + b1(y − f(a)) + b2(y −

f(a))2 + · · · + bq(y − f(a))q + o((y − f(a))q).
• On fait le changement de variable y = f(x) et on obtient

g ◦ f(x) =
x→a

q∑
j=0

bj(f(x) − f(a))j + o((f(x) − f(a))q)

=
x→a

q∑
j=0

bj
(

(x−a)p
∑k

i=0 ap+i(x−a)i+o((x−a)k)
)j + o

(
(x−a)pq

(∑k

j=0 ap+j(x−a)j

)q)

=
x→a

b0 +
q∑

j=1
bj(x − a)pj

min(k,n/j)∑
i=0

ap+i(x − a)i

j

+ o((x − a)n)

• On tronque tout ça à l’ordre n.
Ou encore, on écrit f(x) =

x→a
f(a)+P̃ (x−a)+o((x−a)p), g(y) =

y→f(a)
Q̃(y−f(a))+o((y−f(a))q)

et enfin
g(f(x)) =

x→a
Q̃
(
P̃ (x − a)

)n

+ o(x − a)n

où Q̃
(
P̃ (x − a)

)n

désigne la troncature à l’ordre n de la fonction polynomiale Q̃ ◦ P .
Remarque :
L’ordre dans lequel on compose les DL n’a pas d’importance. Pour avoir la DL de g ◦ f , que l’on
compose calcul g(DL(f)) et que l’on fasse le DL de tout ça, ou que l’on calcul DLf(x)(g) que l’on
compose ensuite par le DL de f ne change absolument rien. C’est une histoire de goût.
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4 DL ET OPÉRATIONS 4.4 Quotients

Exemple 4.3 :
Déterminer le DL3(0) de x 7→ ex+x2 .

Exemple 4.4 :
Déterminer le DL4(0) de x 7→ 1

2+cos x .

Exemple 4.5 :
Déterminer le DL3(0) de x 7→ e

1
1+x

4.4 Quotients

Proposition 4.5 (DL d’un inverse) :
Soit I ⊂ R, a ∈ I, n ∈ N, f : I → K admettant un DL(a) de partie principale ap(x − a)p

avec p ≤ n. Alors x 7→ 1
f(x) admet un DLn(a)

Concrètement :
• On sait que

f(x) =
x→a

ap(x − a)p

( q∑
k=0

ap+k

ap
(x − a)k + o((x − a)q)

)

=
x→a

ap(x − a)p

(
1 + ap+1

ap
(x − a) + · · · + ap+q

ap
(x − a)q + o((x − a)q)

)

• On écrit
1

f(x) = 1
ap(x − a)p f(x)

ap(x−a)p

= 1
ap(x − a)p

1
1 + g(x)

avec g(x) = f(x)
ap(x−a)p −1 =

x→a

∑q
k=1

ap+k

ap
(x−a)k +o((x−a)q) =

x→a

ap+1
ap

(x−a)+ · · ·+ ap+q

ap
(x−

a)q + o((x − a)q).
• On fait alors le composée de DL de g et de x 7→ 1

1+u =
u→0

1−u+u2−u3+· · ·+(−1)mum+o(um)
avec qm le premier entier ≥ n/p.
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5 APPLICATIONS

• On tronque tout ça à l’ordre qu’il faut.
Pour le DL d’un quotient, on fait le DL numérateur fois le DL de l’inverse du dénominateur. C’est

donc le DL d’un produit dont l’un des facteurs est une composée.
Exemple 4.6 :
Déterminer le DL3(0) de x 7→ 1

1+ex .

Exemple 4.7 :
Déterminer le DL3(0) de x 7→ sin2 x

ex−1 .

5 Applications

5.1 Calcul de limites

Chercher un limite d’une fonction en a, c’est déterminer son DL0(a).
Exemple 5.1 :
Déterminer la limite de x 7→

√
1+x−

√
1−x−x

x3 en 0.

Pour obtenir un équivalent en a d’une fonction, on cherche la partie principale du DL de cette
fonction en a, c’est à dire le premier terme non nul du DL de cette fonction en a. Il n’y a aucune
méthode générale pour faire ça.
Exemple 5.2 :
Déterminer un équivalent en 0 de x 7→ 2ex −

√
1 + 4x −

√
1 + 6x2.

5.2 Position d’une courbe par rapport à ses tangentes ou à une asymptotes

Un DL d’une fonction en a ∈ R, permet de donner une équation de la tangente à la courbe en
a ainsi que la position au voisinage de a de la courbe par rapport à la tangente :
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5 APPLICATIONS 5.3 Développements asymptotiques

Si on a f(x) =
x→a

a0 + a1(x − a) + (x − a)2P̃ (x − a) + o((x − a)n) pour une fonction continue,
alors on sait que a0 = f(a), a1 = f ′(a) et que la tangente à la courbe en a est donné par l’équation
y = f ′(a)(x − a) + f(a) = a0 + a1(x − a). La position relative d’une par rapport à l’autre est donc
déterminer par le signe de la différence au voisinage de a, c’est à dire de f(x) − a0 − a1(x − a) =

x→a

(x − a)2P̃ (x − a) + o((x − a)n) qui est du signe de P̃ (x − a) au voisinage de a.
On procède de la même manière avec les asymptotes (voir juste en dessous).

Exemple 5.3 :
Déterminer la position de la fonction f par rapport à sa tangente en 1 pour f(x) = e−x arctan(x).

5.3 Développements asymptotiques

Un développement asymptotique est une sorte de DL généralisé. On ne demande plus cette
fois que les éléments constitutif du DL soit des monômes. Il suffit de fonctions dont chacune est
négligeable devant la suivante au point considéré.
Exemple 5.4 :
Un développement asymptotique de 2 terme de x 7→ xx en 0 est

xx =
x→0

1 + x ln x + o(x ln x)

L’intérêt majeure des développements asymptotiques est de permettre de donner DL en ±∞. Il
faut faire intervenir des puissance de 1

x . En pratique, on opère le changement de variable u = 1/x
et on se ramène alors à un DL en 0.
Exemple 5.5 :
Déterminer une asymptote de x 7→

√
x2 + x en +∞.

Exemple 5.6 :
Faire un développement asymptotique de 4 termes de x 7→ ln(ch(x)) et en déduire une asymptote
en +∞.
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5 APPLICATIONS 5.4 Extremums

Exemple 5.7 :
Déterminer une courbe asymptotique de x 7→ x1+1/x en +∞.

5.4 Extremums

Proposition 5.1 (DL et extremums) :
Soit I ⊂ R, a ∈ I̊, f : I → R et n ∈ N∗.

Si f admet un DLn(a) de la forme

f(x) =
x→a

f(a) + an(x − a)n + o((x − a)n)

avec an ̸= 0.
Alors f présente un extremum local en a si, et seulement si n ≡ 0 [2].
Et dans ce cas :

(i) Si an < 0, alors f admet un maximum local en a.
(ii) Si an > 0, alors f admet un minimum local en a.

Corollaire 5.2 :
Soit I ⊂ R, a ∈ I̊, f ∈ Cn(I,R).

f admet un extremum local en a si, et seulement si, min{k ∈ N∗, f (k)(a) ̸= 0} existe et
est pair.

"
!!! ATTENTION !!!

L’ensemble {k ≥ 1, f (k)(a) ̸= 0} peut être vide : f : x 7→ e−1/x si x > 0 et f(x) = 0 sinon.
f est de classe C∞ sur R et ∀k ∈ N, f (k)(0) = 0. Et pourtant, f admet un minimum local
en 0 (c’est même un minimum global).

Dans le cas d’un DL2(a) on a :
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5 APPLICATIONS 5.5 Prolongements

Corollaire 5.3 (DL2 et extremums) :
Soit I ⊂ R, a ∈ I̊, f : I → R.

Si f admet un DL2(a) de la forme

f(x) =
x→a

f(a) + a1(x − a) + a2(x − a)2 + o((x − a)2)

alors :
(i) Si f admet un extremums local en a, alors a1 = 0.
(ii) Si a1 = 0 et a2 < 0, alors f admet un maximum local en a.
(iii) Si a1 = 0 et a2 > 0, alors f admet un minimum local en a.

On retrouve des choses connus dans le cas d’une fonction dérivable (dans ce cas, a1 = f ′(a) et
la condition qui va avec sur les extremums).
Exemple 5.8 :
Montrer que x 7→ sh x

sin x est prolongeable par continuité en 0 et que c’est alors un maximum local.

5.5 Prolongements

Avec les DL, on peut reformuler les différents théorèmes qui sont égrainés dans les chapitres
précédents en :

• Si f n’est pas définie en a mais admet un DL0(a), évidemment, elle est prolongeable par
continuité en a.

• Si on prolonge f en a et que ce prolongement admet un DL1(a), alors f est dérivable en a
tout court.

• Si f est dérivable au voisinage de a mais n’est pas définie en a et f et f ′ admettent toutes les
deux un DL0(a), alors f est prolongeable par continuité en a et le théorème satanique nous
dit alors que f est dérivable en a.

• Si f n’est pas définie en a, mais de classe Cn au voisinage de a et ∀k ∈ {0, . . . , n}, f (k)

admet un DL0(a), alors on peut appliquer le théorème satanique à chaque étage (sauf au
rez-de-chaussée) et la fonction est prolongeable par continuité en a en une fonction de classe
Cn en a.
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