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Ce chapitre est dans la lignée directe du chapitre précédent. C'était le but. Pouvoir faire des
développements limités. Comme vous I'avez déja vu en Physique et en Sl, les développements limités
sont des approximations polynomiales de fonctions au voisinage d'un point (ou l'infini). Ca permet
de pouvoir “assimiler” (avec toutes les précautions et la rigueur mathématique qu'on aime bien) une
fonction a un polyndme au voisinage de ce point. Et il est beaucoup plus facile de manipuler les
polyndmes. On va pouvoir méme retrouver la fonction a partir de son développement limités.

L'année prochaine, vous étendrez cette notion a des intervalles entiers! Ce seront les séries
entieres. C'est trés pratique.

Attention par contre. Comme pour les relations de comparaison, on pourra faire tendre notre
variable vers n'importe quel valeur réelle finie. |l y a des infinies partout dans R. On peut se rapprocher
indéfiniment d'un réel a sans jamais I'atteindre. On a ici une notion d'infiniment proche. Il faudra
donc prendre bien garde au lieu ou I'on va faire notre développement limité. Comme c’est une notion
locale, un DL valable en a € R par exemple ne le sera plus forcément en b # a.

On rappelle que pour un intervalle I C R, on note I I'intervalle fermé ayant les méme bornes que
I dans R. On notera également I I'intervalle ouvert correspondant a I, i.e. I est le méme intervalle
que I dans sans ses bornes.
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Dans la suite, n sera un entier naturel, I C R un intervalle non vide et non réduit a un point et

toutes les fonctions seront considérées a valeurs dans K qui sera R ou C (avec précision si besoin
est).



1 GENERALITES

1 Généralités

Définition 1.1 (Développement limité, Partie réguliére) :
Soit [ CR,acTeRet f:I—K
= On dit que f admet un développement limité a I'ordre n € N en a si dag,...,a, € K tel
que
f(z) = ao+ a1(z — a) + az(x —a)* + -+ an(x — a)" + o((x — a)")
= La fonction z — >} _gar(x — a)k est appelée partie réguliere du développement limité de
fena Etzr f(x) — X0 gar(z —a)k est le reste.

Dit autrement, f admet un DL, (a) s'il existe un polynéme P € K,,[X] tel que

f(x) = P(z—a)+o((x—a)")

Parce qu'on va parler (trés trés) souvent de développement limité, je noterai DL, (a) pour
“développement limité en a a I'ordre n".

Un DL, (a) donne une information sur le comportement de f en a et seulement en a. On ne peut
rien dire a cbté de a, méme tres proche. C'est une relation local (a cause du =). Elle n'est valable
a

que trés proche de a.

Remarque :
Via le changement de variable x = a + h, on peut également écrire

fla+h) =, zn: arh® 4 o(h™) ) P(h) 4 o(h")
k=0

—0

Remarque :
Dans un DL,,, chaque terme est négligeable devant celui qui le précede. C'est le dernier terme qui

est le plus petit.

Définition 1.2 (DL en un point ou la fonction n'est pas définie) :
SiI CR,ael, neNetf définiesur I\ {a}, on dit que f admet un DL, (a) si f’]ﬂ]a oo

admet un DL,, en a™, f’[ﬁ]foo admet un DL,, en a~ et si ces deux DL coincide.

al

Par soucis de commodité d'écriture, on se placera seulement dans le cas ol f est définit sur [
entier. Mais il faudrait adapté tous les énoncés au cas ci-dessus aussi.
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Proposition 1.1 (Caractérisation de la continuité et dérivabilité par les DL) :
Soit I un intervallede Retaclet f: 1 — K.

= f est continue en a si et seulement si f admet un DLg(a) de la forme

f(z) = fla)+o(1)

T—a

= f est dérivable en a si et seulement si f admet un DL;(a) de la forme

dk eK, f(x) = fla)+ (x —a)k +o(z —a)

T—a

et dans ce cas, f'(a) = k.

Démonstration :
Supposons f continue en a. Alors, par caractérisation de la continuité par les limites,
x) — f(a
f(@) — f(a)

et la définition des o nous donne alors
f(x) = fla)+o(1)
Réciproquement, supposons f(z) = f(a)+ o(1). Alors f(z) — f(a) = o(1) — > 0et donc
Tr—a T—a a
f(zx) —2 f(a). Donc, par caractérisation de la continuité par les limites, f est continue en a.
r—a

Supposons que f soit dérivable. Alors w — f'(a) € R par définition. Donc f@-fla) _

r—a z—a

f'(a) +0(1) et donc f(z) — f(a) = f'(a)(x —a)+ o(z — a) et donc f admet un DLy (a).
Réciproquement, supposons que f(z) = f(a)+ k(z — a) + o(x — a). Alors dans ce cas

f@)—fla) _ L _
L = ki +o0(l) — k. Donc [ est dérivable en a et f'(a) = k. O
Exemple 1.1 :

Donner un DLo(0) et DL;(0) de = +— L.

ﬁ ATTENTION!! Ca ne fonctionne que pour les DL de rangs 0 et 1! Dés que n > 2, une
fonction f peut admettre un DL, (a) sans étre n-fois dérivable en a :
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Exemple 1.2 :

Soit la fonction
R — R

f . m+x3sin(z%) siz#£0
0 siz =0
Montrer que f admet un DLy(0) mais n'est pas 2 fois dérivable en 0.

0-4
AV

Les développements limités donnent une approximation polynomiale d'une fonction au voisinage
d'un point. Plus la précision est meilleure (plus on calcul loin le DL) et meilleure est |'approximation.
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DL successif du sinus

Le graphe des DL classiques (qui sont listés plus bas) est disponible que le cahier de prépa.

Remarque :
On notera donc que pour une fonction dérivable en a, on a

fl@) = f(a)+ f'(a)(x — a) +o((x — a)).

T—ra
Ta

Autrement dit, on approxime la courbe de f a sa tangente en a au voisinage de a.


https://www.desmos.com/calculator/xjtncddvct

1 GENERALITES

Proposition 1.2 (Troncature d’un DL) :
Soit [ CR,acTetf:I—KetnecN.
Si f admet un DL, (a) de la forme

i@ = 3 ale — o) +of(e - a)")

T—ra

k=0

alors f admet un DL,,(a) pour tout m < n qui s'obtient par troncature :

Tr—ra

flz) = > ar(e —a)* +o((z —a)™)
k=0

Démonstration :
C'est simplement la relation

Théoréeme 1.3 (Unicité du DL,,(a)) :
Soit ICR,acI, f:1—+KetnecN.
Si f admet un DL, (a), alors il est unique.

Démonstration :
Supposons que f admette deux DL, (a) distincts :

et

Tr—a

F@) = 3 bl —a)f +o((x— )™
k=0

Soit m = min{k € {0,...,n},ar # bp}. Comme les deux DL, (a) sont distincts, m existe (ils
différent par un des coefficients). Par troncature, on a donc

flx) = ap+a1(x—a)+ -+ an(zr—a)" +o((xr —a)™)

T—ra

f(x) =, bo+ b (z —a) + -+ + b (z — a)™ + o((z — a)™)
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Mais par définition de m, on sait que Yk € {0,...,m — 1}, ar = bx. Donc par soustraction, on
trouve
f@) = fla) = > ar(z —a)* =) bp(z — a)* +o((z —a)™)
k=0 k=0

= (am = bm)(z —a)™ +o((z — a)™)

Tr—ra
c'est a dire (ay — bpy)(xz —a)™ = o((z — a)™). En prenant = # a dans un voisinage de a, on
r—ra
ax —a # 0 et on peut donc simplifier par (x — a)™. La relation reste toujours valable et donc
am — by, = o(1) donc a,, — by, —2 0. Mais comme a,, — b,,, est une constante, on en déduit
T—ra r—a

am — by, = 0. C'est a dire a,, = by,. D'ou ;‘% O

[11 ATTENTION !!! |I

A Il'y a un théoréme d'unicité des DL mais il n'y a pas de théoreme d’existence. Il existe des
fonctions qui n'ont pas de DL. Par exemple, = +— sin(1/x) n'a pas de DL en 0 puisqu’elle
n'existe pas en 0 et ne peut méme pas y étre prolongée par continuité.

Donc les DL, c'est pas automatique. On ne peut pas toujours en faire.

Définition 1.3 (Partie principale) :
SiICR,acl,neNet f:I— K admettant un DL, (a) de la forme

n

f(x) = Z ap(x — a)* + o((z — a)")

k=0

Si p = min{k € {0,...,n},ar # 0} existe, on appelle partie principale de f en a la fonction
x = ap(r — a)P.

Remarque :

Autrement dit, la partie principale de f en a est le premier terme non nul dans le développement
limité de f en a. Bien sir, pour obtenir la partie principale de f, il faut donc aller assez loin dans le
calcul du développement limité. Par exemple, si z — a3(x — a)? est la partie principale de f en a,
alors f(x) = o((z — a)?). Donc on ne peut pas trouver la partie principale de f. Il faut calculer le

développement limité de f a I'ordre au moins 3.
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[11 ATTENTION !!! |I

Attention ! Toutes fonctions n'admet pas de partie principale. C'est le premier terme non
nul. Si f a un DL nul a tout ordre en a, elle n'a pas de partie principale. Le probléeme vient
de I'existence du minimum.

Définition 1.4 (Forme normalisée) :
Soit ICR,ael,neNet f:I— K admettant un DL,(a) de la forme

n

flz) = > ap(z —a)* +o((z —a)")

k=0

Si p =min{k € {0,...,n},ar # 0} existe, on appelle forme normalisée du DL, (a) de f toute
expression de la forme

@) =, (@=ay (Z b — a)) + of(x a)“p>>

k=0

On a donc essentiellement factorisé par la partie principale. De cette facon, on obtient un po-
lynéme de coefficient constant non nul.

Remarque :
Dans la forme normalisé, on a

Vk € {0,...,n—p}, by = aryp

avec en particulier by = a, # 0.

Proposition 1.4 (DL et équivalent) :
Soit ICR,acl,neNetp<m,etf:I—K Sifadmetun DL,(a) de partie principale
ap(x — a)P, alors

£@) x, anle = ay

On peut également écrire cette relation sous la forme

fla+h) ~ aph?

Tr—a

Démonstration :
Ona f(z) = >k_par(z —a)’ +o((x —a)"). Mais Vk > p+ 1, (z — a)k = o((x — a)P) donc
@) = ap(@ —a) +ol(@ —a)?) ~ aylz—a) o

9
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Remarque :
Autrement dit, une fonction est équivalente a sa partie principale en tout point (si elle existe). Les
DL permettent donc d’obtenir des équivalents des fonctions. C'est en fait I'intérét principale des
développements limités.

On va développer ici un outil qui va nous permettre de trouver un équivalents a n'importe quel
fonction en tout point (ou presque). On va donc pouvoir calculé les limite de n'importe quelle
fonctions en n'importe quel point.

Proposition 1.5 (DL d’une fonction paire, impaire) :
Soit I C R symétrique par rapport a0 et f: I - Ketn e N.

Si f admet un DL, (0) et si f est paire (resp. impaire), alors la partie réguliere de f n'admet
que des termes d'exposants pairs (resp. impair).

Autrement dit, le polyndme du DL de f a la méme parité que f. Ce qui parait assez logique dans
la mesure ou ce polynéme est “essentiellement” f. Il est normal qu’il hérite des méme propriétés de

f.

Démonstration :
f admet un DL, (0), donc

f(x) = a0+ a1z + -+ ana” + +o(z")

T—r

et par le changement de variable y = —x, on obtient :

f(=xz) = G —ar+---+ (=) "apz" + o(z")

r—

Or f est paire, donc les deux DL,,(0) doivent étre égaux par unicité du DL. Donc
Yk € {0,...,n}, ar = (—1)*ay

et donc on en déduit la résultat. O

Proposition 1.6 (Signe et DL) :
Soit I CR,aeletf:I— R admettant un DL en a.
Le signe de f au voisinage de a est déterminé par le signe de sa partie principale.

Démonstration :

Si f(x) = ap(z—a)P+api1(z—a)P M+ tapiq(z—a)PT+o((x—a)PT9), alors f(z) o~ ap(z—a)P
donc f est du signe de a,(x — a)P au voisinage de a (cad du signe de ay, si p est paire et du signe
de a, pour z > 0 et du signe de —a, si z < a si p est impair). O

10



2 DL, DERIVEES ET PRIMITIVES

2 DL, Dérivées et Primitives

Lemme 2.1 (“Les o passent aux primitives”) :
Soit a,a, 8 € R avec a < a < [ et f :]a, B|— K admettant une primitive F sur |, 8] (donc
une fonction F :]a, B[— K dérivable telle que F’ = f). Soit n € N.

Si f(z) = o((x—a)"), alors F(z) = F(a)+o((x — a)™t1)

Démonstration (*** (Tres trés bonne démo, genre fin de partie 3)) :
On pose I =]a, B[. Soit £ > 0.
On pose p = F — F(a). Alors ¢ est définie, continue et dérivable sur I car D!(I,R) est un R-ev.

EtVz eI, ¢'(z) = F'(z) = f(z). Donc ¢'(z) = o((z — a)"), donc £&) —— 0. Donc, 37 >0

r—a (x_a)n

tel que Vo € [a—n,a+n] C I, |¢'(z)| < ala:—d\”. En particulier, si on fixe x €]a, a+n], I'intervalle
[2a — z,z] = [a — (x — a),a + (z — a)] est un intervalle centré en a inclus dans [a — n,a + 7). En
effet, on a clairement x < a + 7 par choix de z et 2a —x > 2a —a —n =a —7n. On a donc

Vt € [2a —x,z], |§' ()| <elt —al” <elz—al

et |x —al™ est une constante par rapport a . On peut donc appliquer L'Inégalité des Accroissements
Finis sur I'intervalle [2a—x, x] a I'application ¢ — ¢/(t) et a = et a qui sont dans l'intervalle [2a—x, x]
en particulier. On obtient donc

‘Lp(l’) — SO((Z)‘ < €|l‘ _ a|n
Tr—a
Mais ¢(a) = 0 donc (xfé“;’})bﬂ < e. Et ce raisonnement est valable pour tout x €]0,a + n]. Si

x € [a—n,al, en appliquant une petite symétrie dans le raisonnement, on obtient le méme résultat.

Finalement Vz € [a — n,a + 1] \ {a}, (Ifgzﬂ <e.
Or ce raisonnement a été fait avec un € > 0 arbitraire. On a donc (xfgzﬂ — 0 par définition
et donc F(z) — F(a) = o((x — a)™*!) par définition de ¢. O

Théoreme 2.2 (DL d’une primitive) :
Soit ] CR,a€l, neN, f:I— K admettant une primitive F' sur I et un DL, (a) de la
forme :

flz) = > ar(z—a)* +o((z —a)")

r—ra

k=0
alors F' admet un DL, +1(a) qui est

(.1‘ _a)k:-i-l —|—O((£C _ a)n—i—l)

k+1

11
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Démonstration :
On définit g(x) = f(x) — 37¥_gar(x — a)* sur I. Cette fonction est continue sur I comme somme
de fonction qui le sont. On pose également G(z) = F(z) — F(a) — X p—o n157 (7 — a)k 1 sur I.
Cette fonction est dérivable sur I comme somme de fonction qui le sont. Et pour tout z € I,
G'(z) = F'(z) — YF_gar(z — a)* = g(x). Donc G est une primitive de g (c’est méme la primitive
de g qui s'annule en a).

On sait d'autre part, que g(z) = o((z —a)™). On en déduit donc, par le lemme précédent, que

G(z) = of(x—a)"*1), autrement dit que F(z) = F(a)+Y}_o %= 4 o((2—a)"*+1). Donc

F admet un DL,,;+1(a) qui est bien de la forme annoncé par unicité du DL,,. ]

On va donc pouvoir “primitiver” les DL. Les DL passent trés bien par “primitivation”.

Exemple 2.1 :
Déterminer le DL,,(0) de arctan.

Théoréeme 2.3 (DL d’une dérivée) :
Soit I CR,a€l, neN" et f:I— K dérivable admettant un DL, (a) de la forme :

f(z) = Z ar(z — a)* + o((z — a)")

T—a

k=0

Si f" admet un DL,,_1(a), alors

Fi@) = 3 kag( —a)* !+ of(x — a)")
k=1

12
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[11 ATTENTION !!! |I

Il est ABSOLUMENT nécessaire de savoir ici que f’ admet un DL,,_1 pour pouvoir dériver
le DL. L'intégration permet de lisser encore un peu davantage une fonction. Donc il n'y pas
de soucis. Mais lors de la dérivation, on perd en “lissitude”. Par exemple dans I'exemple au
A dessus de la fonction x +  + 23 sin(1/22), la dérivée de cette fonction n'est pas continue
en 0 (donc la fonction n’est pas dérivable en 0). Ce qu'on a perdu en “lissitude” en dérivant
rend le DL faux. La fonction de base est tout juste assez lisse pour pouvoir avoir un DLy
(mais on ne pouvait pas aller plus loin) et la dérivée n'est pas assez lisse pour pouvoir en
avoir un.
Les DL sont tres lié a la “lissitude” de la fonction. Forcément puisqu’on écrit localement
notre fonction comme un polyndme. Et il n'y a rien de plus lisse qu'un polynome.

Démonstration :
f’ admet un DL,,_1(a) qui est donc de la forme

n—1
fl@) =" bi(z —a) + o((z —a)"™)
k=0

Comme f’ admet une primitive f, par le lemme précédent, on a f(z) = f(a)+ ZZ;(% ka’fl(a: —

—a

a)* 1 + o((z — a)™. Mais par unicité du DL, (a) de f et le fait que f(a) = ag, on a

by,
kE+1

Vke{(),...,n—l}, A1 =

c'est a dire Vk € {1,...,n}, kay = bi_1 d'ou le résultat. O

Remarque :
On notera qu'ici, comme n > 1, f admet un DL;(a) et est donc dérivable en a, donc en particulier
continue, ce qui nous permet d'avoir ag = f(a) qu'on a utilisé dans la démo sans plus de précision

Théoréme 2.4 (Formule de Taylor-Young) :
SoitICR,a€l, f:I—-K neN.
Si f € C"(I,K), alors f admet un DL,,(a) et il est de la forme :

n ) (g
f@) = W to((e -0

k=0 k

13



2 DL, DERIVEES ET PRIMITIVES

Démonstration :
On va faire une récurrence sur n. Si f € C°(I,KK), par caractérisation de la continuité par les DL,
Va € I, f(xr) = f(a)+ o(1). Cest encore vrai pour n = 1 toujours par caractérisation de la

T—a

dérivabilité par les DL.
Supposons qu'il existe n € N tel que Vf € C"(I,K), Va € I, f(z) = Y7, f(]:!(“) (z —a)* +

o((w — a)").
Soit f € C"1(I,K). Alors, par définition, f' € C"(I,K). Donc, par hypothése de récurrence,

n 1\ (k) a
5 D (ot oz — a)

Vael, f(z) = 2 1
n (k1)

ema Z ! o (@) (x — a)k +o((z — a)™).
k=0 :

. " ) () .
Va eI, f(x) = f(a)+ 2 G+ D)kl (z —a)** + o((x — a)™*)
ntl (k) (g
= t@+ Y D 0 o - )
= k!

ntl () (g
ima Z ! k'< )(x —a)* 4+ o((x — a)")
k=0 :

D’ou la formule de Taylor-Young par récurrence. (Il

Remarque :
Ce résultat pourra se prouver un peu plus tard comme un corollaire d'un résultat plus fort d'intégration :
la formule de Taylor avec reste intégral.

[11 ATTENTION !!! |I

Attention, ce résultat n'est valable que si f est définie en a, et de classe C™ sur un voisinage
de a!

A\

On retiendra que si f est de classe C" sur I, alors f admet un DL, en tout point de I.

14



3 DL DE REFERENCE

Remarque :
On a donc, sous forme développée,

Fa) + fa)e —a) + 0D (g g2y L0

(@) :

T—ra

Corollaire 2.5 :
Soit ICR,a€l, f:I—K
Si f € C*(I,K), alors f admet un DL, (a) pour tout n € N.

Corollaire 2.6 (DL de la dérivée d’une fonction C""1) :
Soit ICR,acI,neN, f:I— K declasse C"*!.
Alors f’ admet un DL, (a) qui s'obtient en dérivant terme a terme le DL,,11(a) de f.

Démonstration :

f est de classe C"*!, donc f’ est de classe C" par définition. Donc f’ admet un DL,,(a) par Taylor-
Young et le théoréme [2.3| acheve la démo. O
Exemple 2.2 :

Donner le DL, (0) de f: 2 — ﬁ Calculer f42(0) et f3(0).

Remarque :

Le théoréme de Taylor-Young est donc un théoréme tres fort. Il permet de connaitre la fonction
assez précisément au voisinage d’un point si on la connait suffisamment en profondeur en ce point.
Autrement dit, la connaissance des valeurs de toutes les dérivées successives de la fonction en un
point permet de la connaitre au voisinage de ce point. Ce théoréme fait un lien entre “I'horizontalité”
de la fonction et sa “verticalité”. C'est une méthode pour reconstruire la fonction au voisinage d'un
point a partir que de quelques valeurs.

3 DL de référence

On donne ici plein de DL en 0 obtenus par la formule de Taylor-Young. On donne en fait tous
les DL des fonctions de référence que |'on sait étre de classe C°°. Ces DL sont bien siir a connattre.

15



3 DL DE REFERENCE

Les formules données ci-dessous sont un peu en avance. On a besoin de quelques petites opérations
sur les DL pour pouvoir les établir. On va donner ces opérations juste en dessous. Mais c'est un bon
moment pour donner les DL célébres.

Il'y a un graphe sur cahier de prépa qui permet de “voir” ces DL de référence a différents ordre
avec la fonction qu'ils approchent.

» DL,(0) de z — 1=

1 n
1—$z§0

z* + o(z") :01+$+$2+---+x”+0($")
T—
k=0
(on reconnait une somme géométrique)

L] DL()del’Hm

1 n
T2 = (—1)ka:k+0(l‘n) fo1—JJ+$2—.’E3+‘-'—|—(—1)nﬂj‘n—|—0(l‘n)
k=0

Ce DL est obtenu en faisant le changement de variable x ~ —x dans le DL précédent.
= DL,(0) de  — €

- n ok n 2?2 2% ot z" n
e :ZHJFO(UC)JOIJHH_?JF?JFQJF +H+0(x)
Ce DL est primordial. Il FAUT le connaitre. On notera aussi e!* = Y k=0 tk—k,xk + o(z™). Ce

sera utile dans votre carriere de mathématicien.
= DL,(0) de z — In(1 + z).

n k+1 k 1 1 (_1)n+1
) o 2:: to(@") = w—gat+gat o 1" fo(a")
C’est une primitive de = 1+$
» DL,(0) de z — In(1 — z)
n ok z? 28 z" n
ln(l—x = z::? Zfo—l'—?—?_—?‘FO(.’IJ)

La aussi, obtenue grace au DL précédent et le changement de variable x ~ —z, ou alors grace
3 une primitive de = — ﬁ

» DL,(0) de x — (1 4+ x)P avec p € N

oo (P)a* +o(z") sin<p
P _

veo B)at +o(z™) VYn>p

Il correspond a la troncature du bindbme de Newton pour des ordres plus petit que p et le
développement du bindme de Newton en entier pour des ordres plus grand que p.
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3 DL DE REFERENCE

= DL,(0) de z — (1 + x)“ avec a € R fixé

(1+2)° = 1+ia(a—l)...(a—k+l)xk+0(mn)

= 1+4ar+ a(aQ—l)xQ_i_ a(a—16)(a—2)$3+”.+ a(a—1)(a n') (a—n+1) n+0( )
z—0
Tres trés utile. C'est la formule qui donne les DL de z — 14z, x — \/11?5 et méme
r— /1 —xet \/11_7 par une petit changement de variable qu'on connait bien.
» DL,+1(0) de = +— cos(x)
n
_ (—1)%% 2n+1y _ a? xt af (—1)n 2n 2n-+1
cosxz:()kz:w%-o(az ) =1 7+ﬂ %4- (2n)! + oz
=0
» DL9,42(0) de x — sin(x)
n 2k-+1 3 5 n
. _ (_1)k95 2n4+2\ z £ (-1) 2n+1 2n+2
5111959;0];) k1) +o(x )x:Ox 5 + 120+ + (2n—|—1)!$ + o(x™"77)
» DL3,4+1(0) de z — ch(x)
n 2 4 6 2n
_ p2ntly ii 957 x x 2n+1
HZ:: ) St Tttt (n)!++o(x )
» DL2,42(0) de 2 +— sh(x)
no p2ktl R T 2+l
h = - 2n+2y _ - el 2n+2
s(x)x ok 1) +o(x )T_)Ox+6+120+ @n T 1) + o(x*"7)
» DLg(0) de = — tan(z)
17
tan(x) = x + x +— S — 2" 4 o(z®)

@0 3 15 315

Attention, il n'y a pas de formule générale pour celui la. Les deux premiers termes (a I'ordre
3) sont a connaitre et les autres a savoir retrouvés a partir du sinus et cosinus ou toute autre
méthode.

» DLgy42(0) de x — arctan(z)
n -1 k,.2k+1 5 —1)" 2n+1
arctan(z) = Z (=1)*z + 0(x2"+2) - r— - 4 ro_. + % + 0($2n+2)

=0 L 2k +1 @—0 3 5 2n+1

C'est la primitive s'annulant en 0 de z — — qu’on connait.
14z

» DLj,42(0) de = +— arcsin(x)

_ 2%k+1 2n+2

arcsin(x : ]g Qkk" 2k+1) + o(z*12)
a? 1x3x---x(2n—1) z2"t! 42
z~>0x+€+”+ 2><4><---><(2n) 2n+1+0(x )

C'est aussi une primitive.
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4 DL ET OPERATIONS

» DLj,42(0) de z +— arccos(x)
T .
arccos(z) = 3~ arcsin(z)

C'est pas le plus dur, celui [a. On notera qu’'on aurait pu faire le contraire. Trouver le DL de
arccos par primitivation et en déduire celui du arcsin.

Remarque :
En fait, on peut définir

al ala—1)...(a—k+1)
k k!

pour o € R et k € N et qui va coincider avec le coefficient binomial si & € N. Avec cette notation,
on peut alléger la formule de (1 + x)® et la faire ressemble a une sorte de formule de Newton.

Pour obtenir le DL d'une fonction en a, on “relocalise” le probléme en 0 par le changement de
variable © = a + h pour pouvoir utiliser ensuite les DL de référence ci-dessus.

Toutes les opérations autorisées seront détaillées juste en dessous, y compris celles utilisés pour
établir les formules de cette partie.

Exemple 3.1 :
Déterminer le DLy(1) de = — €%, le DL3(7/3) de cos et le DLy(2) de z — +/z.

4 DL et opérations

4.1 Combinaison linéaire

Proposition 4.1 (Combinaison linéaire) :
Soit I C R,ae€ I, neN, fig: I — K admettant des DL, (a) de parties régulieres
respectivement P et () (dans K[X]), donc

f(z) = Plx—a)+o((z—a)") et  glx) = Qz—a)+o((x—a)")

Alors VA, n € K, Af + ug admet un DL,,(a) de partie réguliere AP + uQ, i.e.
(Af +pg)(@) = AP(x —a) + pQ(x — a) + o((z — a)")

Tr—ra

ATTENTION! On ne peut sommer que des DL de méme ordre.

Démonstration :
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4 DL ET OPERATIONS 4.2 Produits

On a, au voisinage de a :

(A +pg)(@) ~ AP+ pQ)(x —a) _ f(z) ~Plz—a)  g(z) - Qlz —a)

=\ 0
(x—a)" (x —a)" T (x —a)” T—a
O
Corollaire 4.2 :
L’ensemble des applications a valeurs dans K admettant un DL,,(a) est un K-espace vectoriel
et |'application a valeur dans K, [X] qui, a une fonction, associe le polyndme associé a sa
partie réguliere est linéaire.
Exemple 4.1 :
Donner un DL4(0) de la fonction x +— 2cosz — 3shz.
4.2 Produits
Proposition 4.3 (Produit de DL) :
Soit ICR,acel,neN, f,g: I — K admettant des DL,,(a) de partie réguliére respective-
ment P € K[X] et @ € K[X].
Alors fg admet un DL,,(a) de partie réguliere PQ, i.e.
f(z) = P(z—a)+o((zx—a)") —
s = fg(z) = PQ(z —a)+o((z —a)")
o(@) = G —a) + of(x — a)") )m T
Démonstration :
Au voisinage de a, on a
z)— PQ(z —a z)— Pz —a ~ 2)—Q(z —a
fox) = PQr—a) _ fa) ~Pla—a) 5o o)~ Qla—a)
(z —a) (x —a) (z —a)"
—P(z— ~ T ~
Or f(:v()w_a()a; a) — 0 car P(x — a) est Izi partie réguliere du DLy(a) de f, g(z) — Q(0)
car g admet un DL, (a), P(z — a) —= P(0) car P est un polynéme donc continue en 0 et
r—a
g(ggzg_Qa(ﬁ_a) =0 car Q est la partie réguliere du DL, (a) de g.
Finalement, les opérations sur les limites, nous donne le résultat. (I
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4 DL ET OPERATIONS 4.3 Compositions

Exemple 4.2 :
Déterminer le DL3(0) de = — e® cosz — 2sinz et de tan.

4.3 Compositions

Proposition 4.4 (DL d’'une composée) :
Sot ICR,ael,neN, f: TR, etg: f(I) =K

Si f — f(a) admet un DL(a) de partie principale a,(z — a)? avec p < n, et g admet un
DL,(f(a)) ou ¢ = min{k € N,k > n/p}, alors g o f admet un DL, (a) qui est obtenue en
substituant le DL(a) de f dans le DL,(f(a)) de g et en tronquant a I'ordre n.

Autrement dit :

= On détermine un DLy ,(a) de f— f(a) de partie principale p < n, donc f(x) = fla)+ (z—
0P (ay + ap1 (z — )+ + apyp(e — a)* + oz — a)")). |

= On détermine un DLy(f(a)) de g avec ¢ > n/p. Donc g(y) s bo +b1(y — f(a)) + ba(y —

1@
F@))? + - 4 bg(y = f(a)? + o((y — f(a))?).

= On fait le changement de variable y = f(x) et on obtient

9 2, B0 = ) +ollf(@) = @)

l:aZb (z—a) Z Oap+l(az a)i+o((z—a) (x a)pq< g _oap+j(T— a)f)q)

min(k,n/j)
= bo—i—Zb x—a)m( Z apti(x —a) ) (x —a)")

r—ra .
j=1 =0

= On tronque tout ¢a a l'ordre n.
Ou encore, on écrit f(2) = f(a)+P(o—a)+o((w-a)). g(y) = Qly—f(@)+ol(y—f(a)?)

et enfin
— — n

9(f@) = Q(P—a) +o(x—a)"

T—a

771 —_

ot Q ( (x — a)) désigne la troncature a I'ordre n de la fonction polynomiale Q) o P.

Remarque :

L'ordre dans lequel on compose les DL n’a pas d'importance. Pour avoir la DL de g o f, que 'on
compose calcul g(DL(f)) et que I'on fasse le DL de tout ¢a, ou que I'on calcul DLj(,)(g) que I'on
compose ensuite par le DL de f ne change absolument rien. C'est une histoire de golfit.
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4 DL ET OPERATIONS 4.4 Quotients

Exemple 4.3 :
Déterminer le DL3(0) de z ~— e*+%”,

Exemple 4.4 :

7 H 1
Déterminer le DL4(0) de z +— SO

Exemple 4.5 :

Déterminer le DL3(0) de 2 — eTHe

4.4 Quotients

Proposition 4.5 (DL d’un inverse) :

Soit ] CR,ael, neN,f:I— K admettant un DL(a) de partie principale ay(z — a)?

avec p < n. Alors z — ﬁ admet un DL,,(a)

Concrétement :

= On sait que

q
flz) = ap(z —a)” (Z R (5 — a)t + of (@ - a)q)>
T—a prt ap
= ap(x —a)? (1 + M(ﬂc —a)+-+ M(a: —a)’+o((x — a)q)>
T—a ap ap
= On écrit
1 1 1 1
@) e —apr ity ale-ar i)
avec g(2) = 7 f S —1 = Tl S0 +ol(a—a)t) = BEr—a) -+ B2
a)7 + o((z — a)?).
= On fait alors le composée de DL de g et de z — H% = 1—utu?—ud+- - 4 (=1)"u"+o(u™)

avec gm le premier entier > n/p.
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5 APPLICATIONS

= On tronque tout ca a l'ordre qu'il faut.

Pour le DL d'un quotient, on fait le DL numérateur fois le DL de I'inverse du dénominateur. C'est
donc le DL d'un produit dont I'un des facteurs est une composée.

Exemple 4.6 :

Déterminer le DL3(0) de z — H%

Exemple 4.7 :
Déterminer le DL3(0) de z + S-2

5 Applications

5.1 Calcul de limites

Chercher un limite d'une fonction en a, c'est déterminer son DLg(a).
Exemple 5.1 :
Déterminer la limite de z +— —VH“’C; V1=2=2 on (),

Pour obtenir un équivalent en a d'une fonction, on cherche la partie principale du DL de cette
fonction en a, c’est a dire le premier terme non nul du DL de cette fonction en a. Il n'y a aucune
méthode générale pour faire ca.

Exemple 5.2 :
Déterminer un équivalent en 0 de = — 2¢* — /1 + 42 — /1 + 622.

5.2 Position d’une courbe par rapport a ses tangentes ou a une asymptotes

Un DL d'une fonction en a € R, permet de donner une équation de la tangente a la courbe en
a ainsi que la position au voisinage de a de la courbe par rapport a la tangente :
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5 APPLICATIONS 5.3 Développements asymptotiques

Siona f(z) = ag+ai(x—a)+ (x —a)2P(z — a) + o((x — a)™) pour une fonction continue,
alors on sait que ag = f(a), a1 = f’(a) et que la tangente a la courbe en a est donné par |'équation
y = f'(a)(x —a)+ f(a) = ap + a1(x — a). La position relative d'une par rapport a I'autre est donc

déterminer par le signe de la différence au voisinage de a, c'est a dire de f(x) —ag—a1(z —a) =

(z —a)2P(x — a) + o((z — a)™) qui est du signe de P(z — a) au voisinage de a.
On proceéde de la méme maniére avec les asymptotes (voir juste en dessous).
Exemple 5.3 :
Déterminer la position de la fonction f par rapport a sa tangente en 1 pour f(z) = e~ % arctan(x).

5.3 Développements asymptotiques

Un développement asymptotique est une sorte de DL généralisé. On ne demande plus cette
fois que les éléments constitutif du DL soit des mondmes. |l suffit de fonctions dont chacune est
négligeable devant la suivante au point considéré.

Exemple 5.4 :
Un développement asymptotique de 2 terme de = +— z* en 0 est

x” =1 +zxlnz + o(xlnx)

r—

L'intérét majeure des développements asymptotiques est de permettre de donner DL en +oo. I
faut faire intervenir des puissance de % En pratique, on opére le changement de variable u = 1/x
et on se ramene alors a un DL en 0.

Exemple 5.5 :
Déterminer une asymptote de z — V22 + x en +o0.

Exemple 5.6 :
Faire un développement asymptotique de 4 termes de = +— In(ch(x)) et en déduire une asymptote
en +00.
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5 APPLICATIONS 5.4 Extremums

Exemple 5.7 :
Déterminer une courbe asymptotique de z — z!T1/% en +0c0.

5.4 Extremums

Proposition 5.1 (DL et extremums) :
Soit I CR,a€el, f:1—RetneN*
Si f admet un DL, (a) de la forme

f(x) = f(a) +an(z —a)" +o((z — a)")

T—a

avec a, # 0.
Alors f présente un extremum local en a si, et seulement si n = 0 [2].
Et dans ce cas :

(i) Sia, <0, alors f admet un maximum local en a.

(ii) Si an > 0, alors f admet un minimum local en a.

Corollaire 5.2 :
Soit I CR,a€l, feC"(I,R).

f admet un extremum local en a si, et seulement si, min{k € N*, f*)(a) # 0} existe et
est pair.

11t ATTENTION !!! |I

A L'ensemble {k > 1, f*)(a) # 0} peut étre vide : f : z+— e /% siz > 0 et f(z) = 0 sinon.
f est de classe C*° sur R et Vk € N, f(k)(O) = 0. Et pourtant, f admet un minimum local
en 0 (c’est méme un minimum global).

Dans le cas d'un DLy(a) on a :
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5 APPLICATIONS 55

Prolongements

Corollaire 5.3 (DL2 et extremums) :
Sot ICR,a€el, f:I—R.
Si f admet un DLs(a) de la forme

flz) = fla) +ai(z —a) + az(z — a)* + o((z — a)?)

alors :
(i) Si f admet un extremums local en a, alors a; = 0.
(i) Siap =0etag <0, alors f admet un maximum local en a.

(iii) Sia; =0 et ag > 0, alors f admet un minimum local en a.

On retrouve des choses connus dans le cas d'une fonction dérivable (dans ce cas, a1 = f/(a) et

la condition qui va avec sur les extremums).
Exemple 5.8 :
Montrer que z —

shax

sinx

5.5 Prolongements

est prolongeable par continuité en 0 et que c'est alors un maximum local.

Avec les DL, on peut reformuler les différents théoréemes qui sont égrainés dans les chapitres

précédents en :

» Si f n'est pas définie en a mais admet un DLg(a), évidemment, elle est prolongeable par

continuité en a.

= Si on prolonge f en a et que ce prolongement admet un DL;(a), alors f est dérivable en a

tout court.

» Si f est dérivable au voisinage de a mais n’est pas définie en a et f et f’ admettent toutes les
deux un DLg(a), alors f est prolongeable par continuité en a et le théoréme satanique nous

dit alors que f est dérivable en a.

= Si f n'est pas définie en a, mais de classe C" au voisinage de a et Vk € {0,...,n}, f*
admet un DLg(a), alors on peut appliquer le théoréme satanique a chaque étage (sauf au
rez-de-chaussée) et la fonction est prolongeable par continuité en a en une fonction de classe

C" en a.
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