NOM : Prénom :

Interrogation 9

Suites 2

Correction

Exercice 1:

Donner les définitions ou énoncés précis suivants avec quantificateurs et rédaction :

1. Définition de deux suites équivalentes.

Soit $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ t.q. $(v_n)_{n\in\mathbb{N}}$ qui ne s'annule pas à partir d'un certain rang. On dit que $(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $(v_n)_{n\in\mathbb{N}}$ quand $n+\infty$, et on note $u_n \underset{n \to +\infty}{\sim} v_n$, si $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$.

2. Définition de la négligeabilité.

Soit $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ t.q. $(v_n)_{n\in\mathbb{N}}$ qui ne s'annule pas à partir d'un certain rang. On dit que $(u_n)_{n\in\mathbb{N}}$ est négligeable devant $(v_n)_{n\in\mathbb{N}}$ quand $n\to+\infty$ si $\frac{u_n}{v_n}\xrightarrow[n\to+\infty]{} 0$. Et on note $u_n = o(v_n)$.

3. Caractérisation des \sim par les o.

Soit $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$. Alors

$$u_n \underset{n \to +\infty}{\sim} v_n \iff u_n \underset{n \to +\infty}{=} v_n + o(v_n).$$

4. Premiers équivalents de références.

Soit
$$(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$$
 telle que $u_n\xrightarrow[n\to+\infty]{}0$. Alors $\cos(u_n)-1\underset{n\to+\infty}{\sim}-u_n^2/2$, $\sin(u_n)\underset{n\to+\infty}{\sim}u_n$, $\ln(1+u_n)\underset{n\to+\infty}{\sim}u_n$ et $e^{u_n}-1\underset{n\to+\infty}{\sim}u_n$.

1. Premier développement asymptotique.

Soit $f: I \to \mathbb{R}$, $a \in I$, f dérivable en a, $(u_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}$ telle que $u_n \xrightarrow[n \to +\infty]{} a$. Alors

$$f(u_n) = f(a) + f'(a)(u_n - a) + o(u_n - a).$$

2. Composition des \sim par \ln .

Soit $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ telles que $u_n\underset{n\to+\infty}{\sim}v_n$ et $u_n\xrightarrow[n\to+\infty]{}\ell\in(\mathbb{R}_+\setminus\{1\})\cup\{+\infty\}.$ Alors $\ln(u_n)\underset{n\to+\infty}{\sim}\ln(v_n).$

3. Théorème de l'âne.

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ et $\ell\in\mathbb{K}$ telle que $u_n\xrightarrow[n\to+\infty]{}\ell$. Si $\ell\neq 0$, alors $u_n\sim\ell$.

4. Équivalent de Stirling.

$$n! \sim_{n \to +\infty} \sqrt{2\pi n} (n/e)^n$$
.

Exercice 2:

Soit $\alpha \in \mathbb{R}$. Donner un équivalent de la suite $(u_n)_{n \in \mathbb{N}}$ définie par $\forall n \in \mathbb{N}^*$, $u_n = \sin\left(\frac{\pi}{2} + \frac{\alpha}{n}\right)^{n^2}$.

On a

$$u_n = e^{n^2 \ln(\sin(\pi/2 + \alpha/n))}.$$

Or $\sin(\pi/2 + \alpha/n) = \cos(\alpha/n) \xrightarrow[n \to +\infty]{} 1$. Donc

$$\ln(\sin(\pi/2 + \alpha/n)) = \ln(1 + (\cos(\alpha/n) - 1)) \underset{n \to +\infty}{\sim} \cos(\alpha/n) - 1 \underset{n \to +\infty}{\sim} -\alpha^2/n^2.$$

Et donc

$$n^2 \ln(\sin(\pi/2 + \alpha/n)) \underset{n \to +\infty}{\sim} -\alpha^2 \xrightarrow[n \to +\infty]{} -\alpha^2.$$

Et donc, par continuité de l'exponentielle sur \mathbb{R} ,

$$u_n \xrightarrow[n \to +\infty]{} \frac{1}{e^{\alpha^2}} \neq 0.$$

Et donc $u_n \underset{n \to +\infty}{\sim} \frac{1}{e^{\alpha^2}}$ par "théorème de l'âne".