LIAISONS NORMALISÉES D'UN SOLIDE REPÉRÉ PAR R_i EN LIAISON AVEC UN AUTRE SOLIDE REPÉRÉ PAR R_j

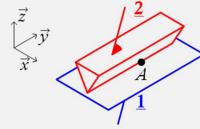
\vec{Z} \vec{X} \vec{Y} \vec{Y} Repère local associé à la	Géométrie du contact	Nom	Nbre de ddl indépendants	Forme générale du torseur cinématique $\{\mathcal{V}(2/1)\}$	Validité de la forme générale du torseur	Représentation 3D \overrightarrow{Z}	Représentation 2D
5	Cylindre	Pivot d'axe (A, \vec{x})	1	$ \begin{pmatrix} \boldsymbol{\omega}_{x} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{B}} $	Tout point de l'axe (A, \vec{x})	\vec{v}	
	Hélice	Hélicoïdale d'axe (A, \vec{x}) et de pas p	1	$\begin{cases} \omega_{x} & \pm \frac{pas}{2.\pi} \cdot \omega_{x} \\ 0 & 0 \\ 0 & 0 \end{cases}_{\mathcal{B}}$ $V_{x} = \pm \frac{pas}{2.\pi} \cdot \omega_{x}$	Tout point de l'axe (A, \vec{x})		filet à droite
	Prisme	Glissière de direction \vec{x}	1		Tout point A de l'espace		
	Cylindre	Pivot glissantd'axe (A, \vec{x})	2	$\begin{pmatrix} \boldsymbol{\omega}_{x} & \boldsymbol{V}_{x} \\ \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix}_{\mathcal{B}}$	Tout point de l'axe (A, \vec{x})	139 Nu	\vec{y}
	Sphère	Rotule (ou sphérique) à doigt de centre O et de rotation interdite $(0, \vec{y})$	2	$\begin{pmatrix} \omega_x & 0 \\ 0 & 0 \\ \omega_z & 0 \end{pmatrix}_{\mathcal{B}}$	Seulement en O	13 TE	$\overrightarrow{y}_{\uparrow}$
R	Sphère	Rotule (ou sphérique) de centre O	3	$\begin{pmatrix} \omega_x & 0 \\ \omega_y & 0 \\ \omega_z & 0 \end{pmatrix}_{\mathcal{B}}$	Seulement en O	\vec{y}	$\overrightarrow{y}_{\uparrow}$

	Plane	Appui plan de normale $ec{y}$	3		Tout point de l'espace	$\sum_{\vec{z}}^{\vec{y}} \vec{x}$	$\vec{y}_{\stackrel{\overrightarrow{x}}{\longrightarrow}}$
C. Co.	Cercle	Linéaire annulaire de centre O et de direction \vec{x}	4	$\begin{pmatrix} \omega_x & V_x \\ \omega_y & 0 \\ \omega_z & 0 \end{pmatrix}_{\mathcal{B}}$	Seulement O	$\vec{\vec{z}}$	\vec{y}_{\uparrow}
	Droite	Linéaire rectiligne de ligne de contact $(0, \vec{x})$ et de normale \vec{y}	4	$ \begin{pmatrix} \omega_x & V_x \\ \omega_y & 0 \\ 0 & V_z \end{pmatrix}_{\mathcal{B}} $	Tout point du plan $(0, \vec{x}, \vec{y})$	$\vec{y}_{\vec{z}}$	$\overrightarrow{y}_{\uparrow}$ \overrightarrow{x} $\overrightarrow{y}_{\uparrow}$
3	Point	Ponctuelle (ou sphère/plan) en O de normale \vec{y}	5	$ \begin{pmatrix} \omega_x & V_x \\ \omega_y & 0 \\ \omega_z & V_z \end{pmatrix}_{\mathcal{B}} $	Tout point de la normale $(0, \vec{\mathbf{y}})$	$ \vec{\vec{z}} \vec{\vec{x}} $	$ec{y}_{igwedge}$

Exemple de démonstration : on cherche la zone de validité pour la liaison linéaire rectiligne de ligne (A, \vec{y}) et de normale \vec{z} .

La forme du torseur cinématique est :

$$\{\mathcal{V}(2/1)\} = \begin{cases} 0 & V_{x21} \\ \omega_{y21} & V_{y21} \\ \omega_{z21} & 0 \end{cases}_{\mathcal{B}}$$



Supposons un point *P* tel que : $\overrightarrow{PA} = a \cdot \vec{x} + b \cdot \vec{y} + c \cdot \vec{z}$. Ainsi :

$$\text{Soit: } \{\mathcal{V}(2/1)\} = \left\{ \begin{array}{ccc} 0 & V_{x21} + b\omega_{z21} - c\omega_{y21} \\ \omega_{y21} & V_{y21} - a\omega_{z21} \\ \omega_{z21} & a\omega_{y21} \end{array} \right\}_{\mathcal{B}} \qquad \begin{array}{c} \text{Pour que le torseur ait la même forme} \\ (0 \text{ sur } V_z \text{ donc}), \text{ il faut nécessairement} \\ \text{que } a = 0. \end{array}$$

Conclusion: la forme du torseur cinématique (avec deux zéros) est valide en tous points du plan (A, \vec{y}, \vec{z}) .