DS de S.I.I n°2 Corrigé

Cycle 1 et cours C6

1. Robot MIR : Etude de l'asservissement (d'après sujet de concours)

Q1.1. Expliquer pourquoi $K_{conv} = K_{capt}$.

Dans un asservissement, la condition « l'écart doit être nul lorsque la sortie est égale à la consigne » doit être vérifiée. C'est une condition nécessaire mais pas suffisant.

Or, dans notre cas, $\varepsilon(p) = K_{conv} \cdot V_c(p) - K_{capt} \cdot V_r(p)$. On en déduit que la condition impose $K_{conv} = K_{capt}$.

Pour la suite, on pose $K_{conv} = K_{capt} = K_0$.

Q1.2. Donner l'expression de la FTBO, sans perturbation, de cet asservissement. Préciser les grandeurs d'entrée et de sortie de cette fonction. Donner sa classe et son ordre.

Par définition,
$$FTBO(p) = \frac{U_r(p)}{\varepsilon(p)} = C(p).H_{mot}(p).G(p).K_0$$

$$FTBO(p) = \frac{K_{cor}.K_m.K.K_0}{(1+\tau_m.p).(1+\tau.p)}$$

Classe 0 et Ordre 2

Q1.3. Exprimer
$$H_1(p) = \frac{V_r(p)}{V_c(p)}\Big|_{F_{pert}=0}$$
 en fonction de τ_m , τ , K , K_m , K_0 , K_{cor} et de p .

$$H_1(p) = \frac{K_0.C(p).H_{mot}(p).G(p)}{1 + K_0.H(p).H_{mot}(p).G(p)}$$

$$H_1(p) = \frac{K_0. K_{cor}. K_m. K}{(1 + \tau_m. p). (1 + \tau. p) + K_0. K_{cor}. K_m. K}$$

Q1.4. Exprimer
$$H_2(p) = \frac{V_r(p)}{F_{pert}(p)}\Big|_{V_c=0}$$
 en fonction de τ_m , τ , K , K_{cor} , K_m , K_0 et de p :

$$H_2(p) = \frac{G(p)}{1 + K_0.C(p).H_{mot}(p).G(p)}$$

$$H_2(p) = \frac{K.(1 + \tau_m.p)}{(1 + \tau_m.p).(1 + \tau.p) + K_0.K_{cor}.K_m.K}$$

Q1.5. Quels sont les noms des fonctions $H_1(p)$ et $H_2(p)$?

 $H_1(p)$ est la fonction de transfert en poursuite (elle est associée à la consigne).

 $H_2(p)$ est la fonction de transfert en régulation (elle est associée à la perturbation).

DS2 Cycle 1 et C6 CPGE 1^{ère} année

Q1.6. Donner la forme canonique de $H_2(p)$. Préciser son gain, classe et ordre.

En développant le dénominateur,
$$H_2(p) = \frac{K.(1+\tau_m.p)}{1+\tau_m.\tau.p^2+(\tau_m+\tau).p+K_0.K_{cor}.K_m.K_{cor}}$$

Et en mettant le terme constant du dénominateur en facteur,
$$H_2(p) = \frac{\frac{\kappa}{1+K_0.K_{cor.K_m.K}}(1+\tau_m.p)}{\frac{\tau_m.\tau}{1+K_0.K_{cor.K_m.K}}p^2 + \frac{(\tau_m+\tau)}{1+K_0.K_{cor.K_m.K}}p+1}$$

On en déduit, Gain :
$$\frac{K}{1+K_0.K_{cor}.K_m.K}$$
; Classe : 0 ; Ordre : 2

Q1.7. Donner l'expression de $V_r(p)$ en fonction des $H_i(p)$ et des entrées.

$$V_r(p) = H_1(p).V_c(p) + H_2(p).F_{pert}(p)$$

Q1.8. On impose une consigne de vitesse $v_c(t) = v_0.u(t)$ et une perturbation $f_{pert}(t) = -m_t.g.\sin(\alpha).u(t)$ (avec u(t) fonction échelon unitaire de Heaviside). Exprimer l'erreur statique (en fonction de l'angle α , de la vitesse v_0 et de différents gains).

Par définition, l'erreur statique $e_{stat} = \lim_{t \to +\infty} (e(t) - s(t))$ et d'après le théorème de la valeur finale, appliqué à notre système,

$$\begin{split} &\lim_{t \to +\infty} (v_c(t) - v_r(t)) = \lim_{p \to 0} p. \left(V_c(p) - V_r(p) \right) \\ &= \lim_{p \to 0} p. \left(\frac{v_0}{p} - (H_1(p).\frac{v_0}{p} + H_2(p).\frac{-m_t.g.sin(\alpha)}{p}) \right) \text{ car } F_{pert}(p) = \frac{-m_t.g.sin(\alpha)}{p} \\ &= v_0 - \frac{K_0.K_{cor}.K_m.K}{1 + K_0.K_{cor}.K_m.K}.v_0 + \frac{m_t.sin\alpha.g}{K_0.K_{cor}.K_m} \\ &\text{ car, } H_1(p = 0) = \frac{K_0.K_{cor}.K_m.K}{1 + K_0.K_{cor}.K_m.K} \text{ et } H_2(p = 0) = \frac{1}{K_0.K_{cor}.K_m} \end{split}$$
 Finalement,
$$e_{stat} = \frac{v_0}{1 + K_0.K_{cor}.K_m.K} + \frac{m_t.sin\alpha.g}{1 + K_0.K_{cor}.K_m.K} \end{split}$$

Q1.9. Quel correcteur C(p) aurait permis d'annuler l'erreur? Démontrer que le correcteur que vous proposez est pertinent.

 $La\ FTBO\ est\ de\ classe\ 0,\ on\ sait\ (TP)\ qu'il\ est\ bon\ d'avoir\ une\ FTBO\ de\ classe\ 1,\ autrement\ dit\ avec\ un\ int\'egrateur.$

On peut proposer un correcteur intégrateur en $C(p) = \frac{K_{cor}}{p}$.

Démonstration:

Le calcul de limite précédent devient alors,

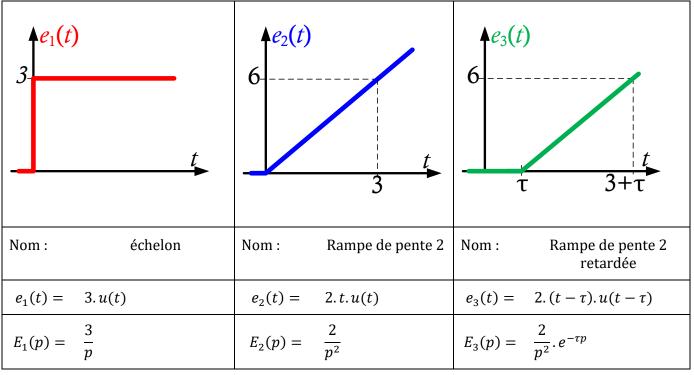
$$\begin{split} \lim_{t \to +\infty} & \left(v_c(t) - v_r(t) \right) = \lim_{p \to 0} p. \left(\frac{v_0}{p} - \frac{v_0}{p} \frac{K_0.\frac{K_{cor}}{p}.K_m.K}{1 + K_0.\frac{K_{cor}}{p}.K_m.K} + \frac{\frac{m_t.sina.g}{p}}{1 + K_0.\frac{K_{cor}}{p}.K_m.K} \right) \\ &= \lim_{p \to 0} \left(v_0 - v_0 \frac{K_0.K_{cor}.K_m.K}{p + K_0.K_{cor}.K_m.K} + \frac{p.m_t.sina.g}{p + K_0.K_{cor}.K_m.K} \right) \\ &\qquad \qquad \lim_{t \to +\infty} \left(v_c(t) - v_r(t) \right) = v_0 - v_0.1 + 0 \end{split}$$

$$Et \ finalement, e_{stat} = 0 \ \ (conforme \ \ a \ la \ pr\'evision) \end{split}$$

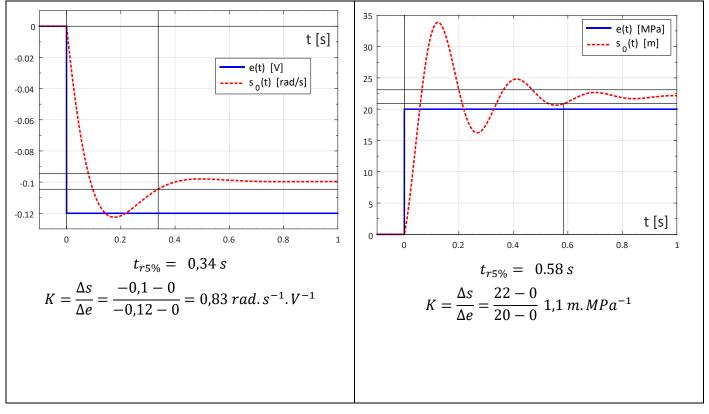
DS2 Cycle 1 et C6 CPGE 1ère année

2. Questions de cours de SLCI

Q2.1. Pour les signaux représentés ci-dessous, donner le nom, l'expression temporelle et l'expression dans le domaine de Laplace.

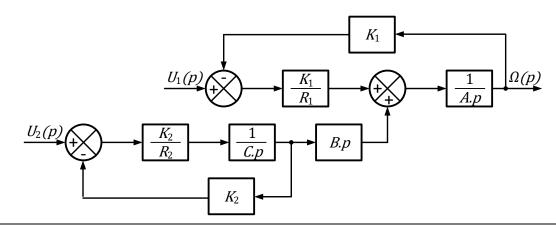


Q2.2. En effectuant les tracés nécessaires sur les deux courbes ci-dessous, donner les temps de réponse à 5% et les gains statiques de ces systèmes :



DS2 Cycle 1 et C6 CPGE 1ère année 3/7

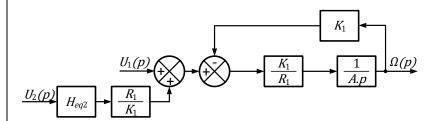
Q2.3. Donner, en indiquant vos modifications du schéma-blocs, l'expression de $\Omega(p) = H_1(p)$. $U_1(p) + H_2(p)$. $U_2(p)$ correspondant au schéma-blocs ci-dessous. Préciser les fonctions H_1 et H_2 .



La boucle inférieure peut être directement réduite par la formule de Black qui sera multipliée par le bloc *B. p,* on a :

$$H_{eq2}(p) = \frac{\frac{K_2}{R_2} \frac{1}{C.p}}{1 + K_2 \cdot \frac{K_2}{R_2} \cdot \frac{1}{C.p}} \cdot B.p = B.p. \frac{K_2}{R_2 \cdot C.p + K_2^2}$$

Par ailleurs, le déplacement du sommateur (+,+) vers la gauche et la permutation des sommateurs conduisent à créer une boucle fermée et à corriger par un bloc $\frac{R_1}{K_1}$.



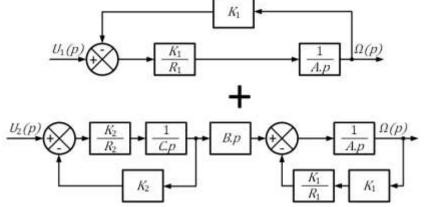
La boucle restante équivaut d'après la formule de Black à :

$$H_{eq1}(p) = \frac{K_1}{R_1 \cdot A \cdot p + K_1^2}$$

Finalement: $\Omega(p) = H_{eq1}(p).U_1(p) + H_{eq1}(p).H_{eq2}(p).\frac{R_1}{K_1}.U_2(p)$

$$\Omega(p) = \frac{K_1}{R_1 \cdot A \cdot p + K_1^2} \cdot U_1(p) + \frac{B \cdot K_2 \cdot R_1 \cdot p}{(R_2 \cdot C \cdot p + K_2^2) \cdot (R_1 \cdot A \cdot p + K_1^2)} \cdot U_2(p)$$

Remarque, on aurait aussi pu procéder avec le théorème de superposition en considérant successivement $U_1(p)=0$ et $U_2(p)=0$:



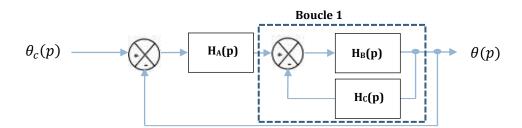
ATTENTION: $U_1(p) = 0$ ne fait pas disparaître la boucle supérieure.

DS2 Cycle 1 et C6 CPGE 1ère année

5/7

3. Miroir tilt

Q3.1. Indiquer les modifications que vous proposez pour obtenir le schéma-bloc ci-dessous. Vous indiquerez l'expression des fonctions de transfert de chaque bloc.



On déplace le point de jonction $E_5(p)$ vers $\theta(p)$.

Il faut alors installer sur ce retour un bloc K_4 .

Les blocs K_4 associés à $\theta(p)$ et $\theta_c(p)$ peuvent maintenant être réunis en un seul bloc après le comparateur. Et on aura bien un retour unitaire.

Q3.2. Indiquer l'expression des fonctions de transfert de chaque bloc.

$$H_A(p) = K_4.K_1.(1 + \frac{1}{T_1.p})$$

$$H_B(p) = \frac{K_2.K_3}{k + T.k.p + J.p^2}$$

$$H_C(p) = K_4.K_5.(1 + T_5.p)$$

Q3.3. Déterminer la FTBO de la boucle 1. Donner sa classe et son ordre.

$$FTBO_1(p) = H_B(p).H_C(p) = K_2.K_3.K_4.K_5.\frac{(1+T_5.p)}{k+T.k.p+J.p^2}$$

Classe =0 Ordre = 2

Q3.4. Déterminer la FTBF de la boucle 1 sous forme canonique. Donner sa classe et son ordre.

$$\begin{split} FTBF_1(p) &= \frac{H_B(p)}{1 + FTBO_1(p)} = \frac{K_2.K_3}{k + T.k.p + J.p^2} \cdot \frac{1}{1 + K_2.K_3.K_4.K_5.\frac{(1 + T_5.p)}{k + T.k.p + J.p^2}} \\ &= \frac{K_2.K_3}{k + T.k.p + J.p^2 + K_2.K_3.K_4.K_5.(1 + T_5.p)} \end{split}$$

DS2 Cycle 1 et C6 CPGE 1^{ère} année

L'équation est du 2nd ordre et sa forme canonique est $H_{2nd}(p) = \frac{\theta(p)}{\theta_c(p)} = \frac{K}{1 + \frac{2Z}{\omega_0} \cdot p + \frac{1}{\omega_0^2} \cdot p^2}$.

Les constantes caractéristiques d'un second ordre sont $K(gain\ statique)$, $z\ (facteur\ d'amortissement)$ et ω_0 (pulsation propre non amortie)

Q3.5. Donner l'expression de ces constantes caractéristiques.

Gain statique $K:$	Pulsation propre ω_0 :	Facteur d'amortissement :
	On a $\frac{1}{3} = \frac{J}{J}$	On a $\frac{2.z}{\omega_0} = \frac{T.k + K_2.K_3.K_4.K_5.T_5}{k + K_2.K_3.K_4.K_5}$
$K = \frac{K_2. K_3}{k + K_2. K_3. K_4. K_5}$	$\frac{\omega_0^2}{\omega_0^2} = \frac{1}{k + K_2 \cdot K_3 \cdot K_4 \cdot K_5}$ Et,	$z = \frac{T.k + K_2.K_3.K_4.K_5.T_5}{k + K_2.K_3.K_4.K_5} \cdot \frac{\omega_0}{2}$
	$\omega_0 = \sqrt{\frac{k + K_2 \cdot K_3 \cdot K_4 \cdot K_5}{J}}$	Et, $z = \frac{T. k + K_2. K_3. K_4. K_5. T_5}{2. \sqrt{J. (k + K_2. K_3. K_4. K_5)}}$
		$2.\sqrt{J}.(k+K_2.K_3.K_4.K_5)$

4. Questions de cours de cinématique du solide

Q4.1. Calculs élémentaires (figure 3.1)

Donner l'expression de $\overrightarrow{y_2}$ dans la base B_1 :	Donner l'expression de $\overrightarrow{x_3}$ dans la base B_4 :
$\overrightarrow{y_2} = -\sin(\alpha).\overrightarrow{x_1} + \cos(\alpha).\overrightarrow{y_1}$	$\overrightarrow{x_3} = \cos(\theta) \cdot \overrightarrow{x_4} + \sin(\theta) \cdot \overrightarrow{z_4}$
Donner l'expression de $\overrightarrow{x_3}$ dans la base B_1 :	Donner l'expression de $\overrightarrow{x_1}$ dans la base B_3 :
$\overrightarrow{x_3} = \cos(\beta) \cdot (\cos(\alpha) \cdot \overrightarrow{x_1} + \sin(\alpha) \cdot \overrightarrow{y_1}) - \sin(\beta) \cdot \overrightarrow{z_1}$	$\overrightarrow{x_1} = \cos(\beta) \cdot \cos(\alpha) \cdot \overrightarrow{x_3} - \sin(\alpha) \cdot \overrightarrow{y_3} + \sin(\beta) \cdot \cos(\alpha) \cdot \overrightarrow{z_3}$

Calculer le produit scalaire $\overrightarrow{x_1}$. $\overrightarrow{y_2}$: $\overrightarrow{x_1}$. $\overrightarrow{y_2} = -\sin(\alpha)$	Calculer le produit vectoriel $\overrightarrow{x_1} \wedge \overrightarrow{y_2}$: $\overrightarrow{x_1} \wedge \overrightarrow{y_2} = \cos(\alpha) \cdot \overrightarrow{z_1}$
Calculer le produit scalaire $\overrightarrow{y_1}$. $\overrightarrow{z_4}$: $\overrightarrow{y_1}$. $\overrightarrow{z_4} = \sin(\alpha)$. $\sin(\beta + \theta)$	Calculer le produit vectoriel $\overrightarrow{y_4} \wedge \overrightarrow{y_2}$: $\overrightarrow{y_4} \wedge \overrightarrow{y_2} = \overrightarrow{0}$
Calculer le produit scalaire $\overrightarrow{y_3}$. $\overrightarrow{x_2}$:	Calculer le produit vectoriel $\overrightarrow{z_4} \wedge \overrightarrow{y_1}$: $(r \acute{e} sultat \ dans \ la \ base \ B_4)$
$\overrightarrow{y_3}.\overrightarrow{x_2}=0$	$\overrightarrow{z_4} \wedge \overrightarrow{y_1} = -\cos(\alpha) \cdot \overrightarrow{x_4} + \sin(\alpha) \cdot \cos(\beta + \theta) \cdot \overrightarrow{y_4}$

Q4.2. Tableau des liaisons

Compléter le tableau. VOIR LE COURS C6

DS2 Cycle 1 et C6 CPGE 1ère année 7/7