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DS de SI n°2 SLCI et cinématique (C6_7)_correction 
Aucun document n’est autorisé, les calculatrices sont autorisées. Durée : 2 heures. 

(Les réponses se feront exclusivement sur le sujet.)  

1. Calculs vectoriels  

Q1.1. Faire les figures planes (= figures géométrales) correspondant à l’énoncé ci-dessous.  

• On considère une rotation d’angle 𝛾 autour de l’axe (𝑂, 𝑧1⃗⃗  ⃗) qui permet de passer de la 
base (𝑥1⃗⃗  ⃗, 𝑦1⃗⃗  ⃗, 𝑧1⃗⃗  ⃗) à la deuxième base (𝑥2⃗⃗⃗⃗ , 𝑦2⃗⃗⃗⃗ , 𝑧2⃗⃗  ⃗). 

• On considère une rotation d’angle 𝛽 autour de l’axe (𝑂, 𝑦2⃗⃗⃗⃗ ) qui permet de passer de la base 
(𝑥2⃗⃗⃗⃗ , 𝑦2⃗⃗⃗⃗ , 𝑧2⃗⃗  ⃗) vers la base (𝑥3⃗⃗⃗⃗ , 𝑦3⃗⃗⃗⃗ , 𝑧3⃗⃗  ⃗). 
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Q1.2. Compléter. 

Ω(ℬ3 ℬ2⁄ )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝛽̇. 𝑦2⃗⃗⃗⃗                 𝛽 est la position angulaire de la base 3 par rapport à la base 2, la vitesse de 

rotation de 3/2 est donc 𝛽̇ et le vecteur rotation est porté par l’axe de rotation de 3/2 càd (𝑂, 𝑦2⃗⃗⃗⃗ ) . 

Finalement, Ω(ℬ3 ℬ2⁄ )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = Ω(3/2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝛽̇. 𝑦2⃗⃗⃗⃗ .   Remarquez que 𝛽 = (𝑥2⃗⃗⃗⃗ ; 𝑥3⃗⃗⃗⃗ ), l’angle entre 2 et 3 donne la 
rotation de 3 par rapport à 2 ! 

Ω(ℬ1/ℬ2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −Ω(ℬ2 ℬ1⁄ )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝛾̇. 𝑧1⃗⃗  ⃗       

Ω(ℬ3/ℬ1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = Ω(ℬ3/ℬ2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + Ω(ℬ2/ℬ1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝛽̇. 𝑦2⃗⃗⃗⃗ + 𝛾̇. 𝑧1⃗⃗  ⃗   (c’est la composition des vecteurs rotations) 

Dans ℬ2,  𝑧3⃗⃗  ⃗ ∧ 𝑦1⃗⃗  ⃗ = (𝑐𝑜𝑠𝛽. 𝑧2⃗⃗  ⃗ + 𝑠𝑖𝑛𝛽. 𝑥2⃗⃗⃗⃗ ) ∧ 𝑦1⃗⃗  ⃗ = −𝑐𝑜𝑠𝛽. 𝑥1⃗⃗  ⃗ + 𝑠𝑖𝑛𝛽. 𝑐𝑜𝑠𝛾. 𝑧2⃗⃗  ⃗ 

= −𝑐𝑜𝑠𝛽. (𝑐𝑜𝑠𝛾. 𝑥2⃗⃗⃗⃗ − 𝑠𝑖𝑛𝛾. 𝑦2⃗⃗⃗⃗ ) + 𝑠𝑖𝑛𝛽. 𝑐𝑜𝑠𝛾. 𝑧2⃗⃗  ⃗ 

Dans ℬ1,  𝑥3⃗⃗⃗⃗ ∧ 𝑥1⃗⃗  ⃗ = (𝑐𝑜𝑠𝛽. 𝑥2⃗⃗⃗⃗ − 𝑠𝑖𝑛𝛽. 𝑧1⃗⃗  ⃗) ∧ 𝑥1⃗⃗  ⃗ = −𝑐𝑜𝑠𝛽. 𝑠𝑖𝑛𝛾. 𝑧1⃗⃗  ⃗ − 𝑠𝑖𝑛𝛽. 𝑦1⃗⃗  ⃗ 

Q1.3. Exprimer la position du point M dans le repère ℛ0 = (0, 𝑥0⃗⃗⃗⃗ , 𝑦0⃗⃗⃗⃗ , 𝑧0⃗⃗  ⃗) exprimée dans ℛ0 en fonction des 

paramètres (𝑟, 𝜃, 𝑧) puis des paramètres (𝑟, 𝜃, 𝜑). 
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𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 

 

𝑟. 𝑢⃗ + 𝑧. 𝑧 
= 𝑟. cos 𝜃 . 𝑥 + 𝑟. sin 𝜃. 𝑦 + 𝑧. 𝑧 

 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =   𝑟. 𝑤⃗⃗ 
= 𝑟. sin𝜑 cos 𝜃 . 𝑥 

+ 𝑟. sin𝜑 sin 𝜃 . 𝑦 + 𝑟. cos𝜑 . 𝑧 
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2. Quille pendulaire – cinématique du solide 

Q2.1. Construire le graphe de liaisons à des informations de la figure A2. 

 

 

 

 

 

 

 

 

 

 

La figure A2 et ses annexes, montrent des liaisons pivots et précisent que les liaisons entre les corps des 
vérins et leurs tiges sont des glissières. 

Q2.2. Donner les figures planes des mouvements des bases ℬ𝑖  par rapport à la base ℬ𝑁 et exprimer 𝛺(ℬ𝑖/ℬ𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   . 
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Quel que soit la configuration angulaire sur le schéma cinématique, les 
figures planes doivent présenter des rotations directes. Ici, tous les 
vecteurs rotations sont portés par 𝑧𝑁⃗⃗⃗⃗  à multiplier par la dérivée de l’angle 

soit 𝜃̇𝑖. 

Ω(ℬ1/ℬN)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜃̇1. 𝑧𝑁⃗⃗⃗⃗  

Ω(ℬ2/ℬN)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜃̇2. 𝑧𝑁⃗⃗⃗⃗  

Ω(ℬ3/ℬN)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜃̇3. 𝑧𝑁⃗⃗⃗⃗  

Q2.3. Donner le vecteur position du point D appartenant à la quille 1 par rapport au navire N. 

Le vecteur position est :  𝑂𝐷⃗⃗⃗⃗⃗⃗ = −𝑑. 𝑦1⃗⃗  ⃗ . et on ne projette pas, on dérivera avec la loi de BOUR ! 

Le premier point du vecteur position doit être l’origine du repère N. 

Q2.4. Calculer par dérivation le vecteur vitesse du point D appartenant à la quille 1 par rapport au navire N. 

On cherche 𝑉(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ :  
𝑉(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗=

𝑑𝑂𝐷⃗⃗⃗⃗⃗⃗ 

𝑑𝑡
|
ℬ𝑁

=
𝑑(−𝑑. 𝑦1⃗⃗  ⃗)

𝑑𝑡
|
ℬ𝑁

=
𝑑(−𝑑. 𝑦1)⃗⃗⃗⃗⃗⃗ 

𝑑𝑡
|

ℬ1

+ Ω(1/𝑁)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ (−𝑑. 𝑦1⃗⃗  ⃗)

= 0⃗ + 𝜃̇1. 𝑧1⃗⃗  ⃗ ∧ (−𝑑. 𝑦1⃗⃗  ⃗)                                               
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⟹       𝑉(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑. 𝜃̇1. 𝑥1⃗⃗  ⃗  Homogénéité vérifiée : ☒ 

Q2.5. La longueur de la quille d= 4 m. En tenant compte du cahier des charges, quelle sera la vitesse maximale 

du bout de la quille (celle du point 𝐷) par rapport à la coque ? (Vous indiquerez l’exigence retenue pour 

votre calcul). 

L’exigence id= 1.1.2.2.2. impose une vitesse maximale de rotation de la quille de 8 °/𝑠 correspondant à 

une vitesse en rad/s, 𝜃̇1 =
𝜋

180
. 8 ≈ 0,14 𝑟𝑎𝑑. 𝑠−1. La vitesse maximale du point 𝐷 de la quille 1 par rapport 

au navire N est donc : 

|𝑉(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
𝑚𝑎𝑥

= 4.0,14 ⟹     |𝑉(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
𝑚𝑎𝑥

= 0,56 𝑚. 𝑠−1  

 

 

 

Q2.6. Calculer par dérivation vectorielle le vecteur accélération du point D appartenant à la quille 1 par rapport 

au navire N (résultat à donner sous forme littérale). 

Par définition ∶  𝛤(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑑𝑉(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
|

ℬ𝑁

      sachant que ∶     𝑉(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑. 𝜃̇1. 𝑥1⃗⃗  ⃗ 

⟹ 𝛤(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑑(𝑑. 𝜃̇1. 𝑥1⃗⃗  ⃗)

𝑑𝑡
|
ℬ𝑁

=
𝑑(𝑑. 𝜃̇1. 𝑥1⃗⃗  ⃗)

𝑑𝑡
|
ℬ1

+ Ω(1/𝑁)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ (𝑑𝜃̇1. 𝑥1⃗⃗  ⃗) 

⟹ 𝛤(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑𝜃̈1. 𝑥1⃗⃗  ⃗ + (𝜃̇1. 𝑧1⃗⃗  ⃗) ∧ (𝑑. 𝜃̇1. 𝑥1⃗⃗  ⃗)  

 

 

 

 

 

Au final ∶    𝛤(𝐷 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑. 𝜃̈1. 𝑥1⃗⃗  ⃗ + 𝑑. 𝜃̇1
2. 𝑦1⃗⃗  ⃗  Homogénéité vérifiée : ☒ 

Q2.7. Calculer, par Varignon, le vecteur vitesse du point A appartenant à la quille 1 par rapport au navire N en 

fonction de 𝜃̇1 et d’une constante de longueur. 

On a 𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑉(𝑂 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐴𝑂⃗⃗ ⃗⃗  ⃗ ∧ Ω(1/𝑁)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0⃗ + (−𝑎. 𝑦1⃗⃗  ⃗) ∧ (𝜃̇1. 𝑧1⃗⃗  ⃗) 

 

 

 

 

 

⟹       𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝑎. 𝜃̇1. 𝑥1⃗⃗  ⃗  Homogénéité vérifiée : ☒ 
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Q2.8. En écrivant que 𝑂𝐴⃗⃗⃗⃗  ⃗ = 𝑂𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐴⃗⃗⃗⃗  ⃗, calculer, par dérivation, le vecteur vitesse du point A appartenant à la 

quille 1 par rapport au navire N en fonction de 𝜆2, 𝜆̇2 et 𝜃̇2. 

On a :  𝑂𝐴⃗⃗ ⃗⃗  ⃗ = 𝑂𝐶⃗⃗⃗⃗  ⃗ + 𝐶𝐴⃗⃗⃗⃗  ⃗ avec le vecteur 𝑂𝐶⃗⃗⃗⃗  ⃗ fixe dans ℛ𝑁 et 𝐶𝐴⃗⃗⃗⃗  ⃗ = 𝜆2. 𝑥2⃗⃗⃗⃗  

⟹ 𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗=
𝑑𝑂𝐶⃗⃗⃗⃗  ⃗

𝑑𝑡
|
ℬ𝑁⏟    

𝑛𝑢𝑙 𝑐𝑎𝑟 𝑂𝐶⃗⃗ ⃗⃗  ⃗ 𝑒𝑠𝑡
𝑢𝑛 𝑣𝑒𝑐𝑡𝑒𝑢𝑟 𝑑𝑒 ℬ𝑁 

+ 
𝑑𝐶𝐴⃗⃗⃗⃗  ⃗

𝑑𝑡
|
ℬ𝑁

= 0⃗ + 
𝑑(𝜆2. 𝑥2⃗⃗⃗⃗ )

𝑑𝑡
|
ℬ𝑁

=
𝑑(𝜆2. 𝑥2⃗⃗⃗⃗ )

𝑑𝑡
|
ℬ2

+ Ω(2/𝑁)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ (𝜆2. 𝑥2⃗⃗⃗⃗ )

= 𝜆̇2. 𝑥2⃗⃗⃗⃗ + (𝜃̇2. 𝑧2⃗⃗  ⃗) ∧ (𝜆2. 𝑥2⃗⃗⃗⃗ )

 

 

⟹  𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜆̇2. 𝑥2⃗⃗⃗⃗ + 𝜆2𝜃̇2. 𝑦2⃗⃗⃗⃗  Homogénéité vérifiée : ☒ 

Q2.9. Calculer, par une  composition passant par 3 et 5 , le vecteur vitesse du point A appartenant à la quille 1 

par rapport au navire N. 

  𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗= 𝑉(𝐴 ∈ 1/3)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⏟      
=0⃗⃗ 

+ 𝑉(𝐴 ∈ 3/5)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⏟      
𝑑𝐵𝐴⃗⃗ ⃗⃗  ⃗

𝑑𝑡
|
ℬ5

+ 𝑉(𝐴 ∈ 5/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⏟        

=𝑉(𝐵∈5/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⏟      

=0⃗⃗ 

+𝐴𝐵⃗⃗ ⃗⃗  ⃗∧Ω(5/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

= 0⃗ +
𝑑(−𝜆3. 𝑥3⃗⃗⃗⃗ )

𝑑𝑡
|
ℬ5

+ (𝜆3. 𝑥3⃗⃗⃗⃗ ) ∧ (𝜃̇3. 𝑧3⃗⃗  ⃗)        (3 𝑒𝑠𝑡 𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟 𝑟𝑎𝑝𝑝𝑜𝑟𝑡 à 5 𝑑𝑜𝑛𝑐 ℬ3 = ℬ5) 

 

 

 

 

⟹  𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝜆̇3. 𝑥3⃗⃗⃗⃗ − 𝜆3. 𝜃̇3. 𝑦3⃗⃗⃗⃗  Homogénéité vérifiée : ☒ 

Q2.10. Que pouvez-vous dire de ces trois expressions du vecteur 𝑉(𝐴 ∈ 1/𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗? 

Ces trois vecteurs sont égaux. Ils permettront d’écrire des relations entre les différents paramètres de 
mouvements du système. 

 
 

Q2.11. Ecrire une fermeture géométrique permettant de trouver la fonction f telle que 𝜆3 = 𝑓(𝜃1). 

On doit passer par les points O, B et C seulement pour éviter d’avoir 𝜆2(𝑡) 𝑒𝑡 𝜃2 dans notre équation. 

𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝐴𝑂⃗⃗ ⃗⃗  ⃗ + 𝑂𝐵⃗⃗ ⃗⃗  ⃗ ⇔ 𝜆3(𝑡). 𝑥3⃗⃗⃗⃗ = −𝑎. 𝑦1⃗⃗  ⃗ + 𝑏. 𝑥𝑁⃗⃗ ⃗⃗  + 𝑐. 𝑦𝑁⃗⃗ ⃗⃗   
⇔ 𝜆3(𝑡). 𝑥3⃗⃗⃗⃗ = −𝑎. (𝑐𝑜𝑠𝜃1. 𝑦𝑁⃗⃗ ⃗⃗  − 𝑠𝑖𝑛𝜃1. 𝑥𝑁⃗⃗ ⃗⃗  ) + 𝑏. 𝑥𝑁⃗⃗ ⃗⃗  + 𝑐. 𝑦𝑁⃗⃗ ⃗⃗  = (𝑏 + 𝑎. 𝑠𝑖𝑛𝜃1). 𝑥𝑁⃗⃗ ⃗⃗  + (𝑐 − 𝑎. 𝑐𝑜𝑠𝜃1). 𝑦𝑁⃗⃗ ⃗⃗   

Par le calcul des normes (à gauche ℬ3 et à droite c’est ℬ𝑁), on obtient  

𝜆3(𝑡)
2 = (𝑏 + 𝑎. 𝑠𝑖𝑛𝜃1)

2 + (𝑐 − 𝑎. 𝑐𝑜𝑠𝜃1)
2   ① 

𝜆3(𝑡) = +√(𝑏 + 𝑎. 𝑠𝑖𝑛𝜃1)
2 + (𝑐 − 𝑎. 𝑐𝑜𝑠𝜃1)

2   𝑐𝑎𝑟 𝜆3(𝑡) > 0 
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Q2.12. A partir du dossier, donner l’intervalle approximatif de variation de 𝜃1 

La figure 3 suppose que 𝜃1 varie au moins, de ±45° 

 

Q2.13. Donner la fonction réciproque 𝑓−1. 

L’équation ① s’écrit :  𝜆3(𝑡)
2 − (𝑎2 + 𝑏2 + 𝑐2) = 2. 𝑎. (𝑏. 𝑠𝑖𝑛𝜃1 − 𝑐. 𝑐𝑜𝑠𝜃1) 

⇔
𝜆3(𝑡)

2 − (𝑎2 + 𝑏2 + 𝑐2)

2. 𝑎. √𝑏2 + 𝑐2
  (

𝑏

√𝑏2 + 𝑐2⏟      
=cos(𝜑)

. 𝑠𝑖𝑛𝜃1 +
−𝑐

√𝑏2 + 𝑐2⏟      
=sin(𝜑)

. 𝑐𝑜𝑠𝜃1) 

⇔
𝜆3(𝑡)

2 − (𝑎2 + 𝑏2 + 𝑐2)

2. 𝑎. √𝑏2 + 𝑐2
= sin(𝜃1 + 𝜑)  𝑎𝑣𝑒𝑐 𝜑 = arctan (

−𝑐

𝑏
) 

 

⇔ 𝜃1 = 𝑎𝑟𝑐𝑠𝑖𝑛 [
𝜆3(𝑡)

2 − (𝑎2 + 𝑏2 + 𝑐2)

2. 𝑎. √𝑏2 + 𝑐2
] − 𝜑 𝑎𝑣𝑒𝑐 𝜑 = arctan (

−𝑐

𝑏
)   𝑒𝑡 𝜃1 ∈ [−

𝜋

4
;+
𝜋

4
] 

 

 

 

 

 

 

 

Q2.14. A-t-on des singularités de fonctionnement ? Expliquer. 

Il y a singularité lorsque OAB sont alignés. La quille ne pourra pas s’incliner davantage. Le vérin 2-4 devra 
prendre la relève. Et inversement lorsque CAO seront alignés. 

 

 

 

Q2.15. Comment sont-elles levées ? 

.Le vérin 2-4 devra prendre la relève pour accentuer l’inclinaison. Et inversement lorsque CAO seront 
alignés. 

 

 

 

3. Quille pendulaire – Asservissement 

 

Modélisation du vérin 

Q3.1. A  partir de la modélisation d’un vérin (figure 12) et des équations temporelles (a) et (b), donner les 

fonctions de transfert 𝐴𝑖. 
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En tenant compte du schéma-blocs, (a) s’écrit : Σ(𝑝) = [Q(p).
1

𝑆.𝑝
− 𝑋(𝑝)] .

2.𝐵

𝑉.𝑝
  dans Laplace 

On obtient,    𝑨𝟏(𝒑) =
𝟏

𝑺.𝒑
  𝒆𝒕  𝑨𝟐(𝒑) =

𝟐.𝑩.𝑺

𝑽
. 

Par ailleurs, (b) s’écrit :  X(𝑝) = [Σ(𝑝). 𝑆 − 𝐹𝑅(𝑝)].
1

𝑀.𝑝2+𝜆.𝑝+𝑘
. 

On a donc,  𝑨𝟑(𝒑) = 𝑺 𝒆𝒕  𝑨𝟒(𝒑) =
𝟏

𝑴.𝒑𝟐+𝝀.𝒑+𝒌
 

 

 

 

 

 

 

 

Le schéma de la figure 12 peut se mettre sous la forme de la figure 13.  

 

 

 

Q3.2. Indiquer les manipulations à effectuer et donner le 

nouveau schéma-blocs en fonction de A1, A2, A3 et 

A4.  

On positionne le second sommateur à la gauche du premier sommateur (la permutation de blocs et de 
sommateur est autorisée mais attention, on ne permute pas sommateur et point de prélèvement). En on 
corrige  

Nouveau schéma, 

 

 

 

Q3.3. Donner les expressions des fonctions de transfert H1 et H2 en fonction de A1, A2, A3 et A4, puis de la 

variable p et des constantes. Préciser leurs classe et ordres. 

On sait alors que 𝐻1(𝑝) = 𝐴1(𝑝). 𝐴2(𝑝). 𝐴3(𝑝) =
1

𝑝
.
2.𝐵.𝑆

𝑉
 

Classe 1 et ordre 1 
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Et d’après Black, 𝐻2(𝑝) =
𝐴4(𝑝)

1+𝐴4(𝑝).𝐴2(𝑝).𝐴3(𝑝)
=

𝑉

𝑀.𝑉.𝑝2+𝜆.𝑉.𝑝+𝑘.𝑉+2.𝐵.𝑆2
 

Classe 0 et ordre 2 

 

 

Asservissement de la quille 

Q3.4. Pourquoi a-t-on 𝐾𝑐′ =  𝐾𝑐  ? 

Dans un asservissement, l’écart 𝜖(𝑡), en sortie du comparateur, doit être nul lorsque 𝜃𝑐 =
𝜃 (𝑝𝑜𝑢𝑟 𝑡 "grand"). Or,  𝜖(𝑡) = 𝑣𝑐(𝑡) − 𝑣𝑚(𝑡) = 𝐾𝑐

′. 𝜃𝑐(𝑡) − 𝐾𝑐 . 𝜃(𝑡). 

La condition énoncée sera respectée ssi 𝐾𝑐′ =  𝐾𝑐  

 

 

Q3.5. On suppose que 𝐻𝑆𝑉(𝑝) = 𝐾𝑆𝑉 . Estimer la valeur de ce gain à partir de la figure 15. 

On propose un modèle linéaire pour caractériser le comportement de la servovalve soit 𝑞(𝑡) = 𝐾𝑆𝑉 . 𝑣(𝑡) 

Alors, 𝐾𝑆𝑉 =
Δ𝑞(𝑡)

Δ𝑣(𝑡)
≈
2,2.10−2−0

10−0
⇔ 𝐾𝑆𝑉 ≈ 2,2. 10

−3 𝑚3. 𝑠−1. 𝑉−1 

 

 

 

On pose 𝐻𝑃(𝑝) = (
𝛩(𝑝)

𝛩𝑐(𝑝)
)𝐹𝑅(𝑝)=0 

Q3.6. Quel est le nom de 𝐻𝑃 ? 

C’est la fonction de transfert en poursuite. 

 

On pose 𝐻𝑅(𝑝) = (
𝛩(𝑝)

𝐹𝑅(𝑝)
)𝛩𝑐(𝑝)=0 

Q3.7. Quel est le nom de 𝐻𝑅 ? 

C’est la fonction de transfert en régulation. 

Le correcteur 𝐶(𝑝) n’est pas encore choisi. 

Q3.8. Calculer la fonction de transfert 𝐻𝑃(𝑝) en fonction de p, de C(p) et de constantes. 

𝐻𝑃(𝑝)  est le produit de 𝐾𝑐 par un boucle de Black. 

Alors,  𝐻𝑃(𝑝) = 𝐾𝑐 .
𝐶(𝑝).𝐾𝑆𝑉 .𝐻1(𝑝).𝐻2(𝑝).𝐾𝜃

1+𝐾𝑐.𝐶(𝑝).𝐾𝑆𝑉 .𝐻1(𝑝).𝐻2(𝑝).𝐾𝜃
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⟺𝐻𝑃(𝑝) =
𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃

𝑝. 𝑉. (𝑀. 𝑉. 𝑝2 + 𝜆. 𝑉. 𝑝 + 𝑘. 𝑉 + 2. 𝐵. 𝑆2) + 𝐾𝑐 . 𝐶(𝑝).𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃 
 

 

 

 

 

 

 

 

 

Q3.9. Calculer la fonction de transfert 𝐻𝑅(𝑝) en fonction de p, de C(p) et de constantes. 

La chaîne directe est maintenant 𝐻2(𝑝). 𝐾𝜃 

𝐻𝑅(𝑝) =
−𝐻2(𝑝).𝐾𝜃

1 + 𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 𝐻1(𝑝). 𝐻2(𝑝). 𝐾𝜃
 

⇔ 𝐻𝑅(𝑝) =
−𝑝. 𝑉. 𝐾𝜃

𝑝. 𝑉. (𝑀. 𝑉. 𝑝2 + 𝜆. 𝑉. 𝑝 + 𝑘. 𝑉 + 2. 𝐵. 𝑆2) + 𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
 

 

 

 

 

 

 

 

 

 

 

 

 

Q3.10. Donner l’expression de 𝛩(𝑝) en fonction de 𝛩𝑐(𝑝) ; 𝐹𝑅(𝑝) ; 𝐻𝑃(𝑝) et 𝐻𝑅(𝑝) 

On a, 𝛩(𝑝) = 𝐻𝑃(𝑝). 𝛩𝑐(𝑝) + 𝐻𝑅(𝑝). 𝐹𝑅(𝑝)  

 

 

On a le choix entre les deux correcteurs suivants afin de répondre à l’exigence de Précision : 

• Correcteur proportionnel-Intégral (PI) tel que 𝐶(𝑝) = 𝐶1(𝑝) =
𝐾𝑖.(1+𝜏𝑖.𝑝)

𝜏𝑖.𝑝
, 𝐾𝑖 𝑒𝑡 𝜏𝑖  𝑠𝑜𝑛𝑡 𝑑𝑒𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒𝑠 ; 

• Correcteur dérivateur 𝐶(𝑝) = 𝐶2(𝑝) = 𝐾𝑐𝑜𝑟. 𝑝 ,   𝐾𝑐𝑜𝑟  𝑒𝑠𝑡 𝑢𝑛𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒. 

 



DS de SI n°2 SLCI et cinématique (C6_7)_correction 

 MPSI 9/10 

On rappelle que l’expression de l’erreur statique est 𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑡→+∞

(𝜃𝑐(𝑡) − 𝜃(𝑡)) 

Par ailleurs, l’erreur statique en position est définie par des entrées échelons (aussi appelées indicielles). 

On donne 𝜃𝑐(𝑡) = 𝜃𝑐0. 𝑢(𝑡)  𝑒𝑡   𝑓𝑅(𝑡) = 𝑓𝑅0. 𝑢(𝑡) ;  𝑢(𝑡) é𝑡𝑎𝑛𝑡 𝑙
′é𝑐ℎ𝑒𝑙𝑜𝑛 𝑢𝑛𝑖𝑡é. 

Q3.11. Donner l’expression de 𝑒𝑠𝑡𝑎𝑡 en fonction de p de C(p) et de constantes après l’élimination de tous les 

termes qui peuvent l’être. 

Le théorème de la valeur finale affirme que : 

𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑡→+∞

(𝜃𝑐(𝑡) − 𝜃(𝑡)) = 𝑙𝑖𝑚
𝑝→0

  𝑝. (𝛩𝑐(𝑝)− 𝛩(𝑝)) 

⇒ 𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑝→0

  𝑝. (𝛩𝑐(𝑝)− 𝐻𝑃(𝑝).𝛩𝑐(𝑝) − 𝐻𝑅(𝑝). 𝐹𝑅(𝑝) ) 

⇒ 𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑝→0

  𝑝.

(

 
 𝜃𝑐0
𝑝
− 𝐻𝑃(𝑝).

𝜃𝑐0
𝑝⏟          

𝑒𝑟𝑟𝑒𝑢𝑟 𝑒𝑛
𝑝𝑜𝑢𝑟𝑠𝑢𝑖𝑡𝑒

− 𝐻𝑅(𝑝).
𝑓𝑅0
𝑝⏟      

𝑒𝑟𝑟𝑒𝑢𝑟 𝑒𝑛
𝑟é𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 

)

 
 

 

 

 

⇒ 𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑝→0

  (𝜃𝑐0 − 𝐻𝑃(𝑝). 𝜃𝑐0 − 𝐻𝑅(𝑝). 𝑓𝑅0 ) 

⇒ 𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑝→0

  (𝜃𝑐0 −
𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃

𝑝. 𝑉. (𝑀. 𝑉. 𝑝2 + 𝜆. 𝑉. 𝑝 + 𝑘. 𝑉 + 2. 𝐵. 𝑆2) + 𝐾𝑐 . 𝐶(𝑝).𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃 
. 𝜃𝑐0

+
−𝑝. 𝑉.𝐾𝜃

𝑝. 𝑉. (𝑀. 𝑉. 𝑝2 + 𝜆. 𝑉. 𝑝 + 𝑘. 𝑉 + 2. 𝐵. 𝑆2) + 𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
. 𝑓𝑅0 ) 

Et en éliminant ce qui peut l’être, 

⇒ 𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑝→0

  (𝜃𝑐0 −
𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃  

. 𝜃𝑐0 −
−𝑝. 𝑉. 𝐾𝜃

𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
. 𝑓𝑅0 ) 

⇒ 𝑒𝑠𝑡𝑎𝑡 = 𝑙𝑖𝑚
𝑝→0

  (𝜃𝑐0 − 1. 𝜃𝑐0⏟      
𝑒𝑟𝑟𝑒𝑢𝑟 𝑒𝑛
𝑝𝑜𝑢𝑟𝑠𝑢𝑖𝑡𝑒

+
𝑝. 𝑉. 𝐾𝜃

𝐾𝑐 . 𝐶(𝑝). 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
. 𝑓𝑅0 ) 

L’erreur en poursuite est donc nulle. Reste à étudier l’erreur en régulation. 

 

 

 

 

 

 

 

Q3.12. Quel correcteur choisir pour satisfaire l’exigence de Précision ? Justifier. 

L’exigence Id 1.1.2.1 impose une erreur de position nulle. Cette contrainte sera vérifiée si l’erreur de 
régulation est nulle. 
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𝑙𝑖𝑚
𝑝→0

  (
𝑝.𝑉. 𝐾𝜃

𝐾𝑐. 𝐶(𝑝). 𝐾𝑆𝑉. 2. 𝐵. 𝑆.𝐾𝜃
. 𝑓
𝑅0

 ) = 0 

 

Il faut donc que 𝐶(𝑝) ne soit pas proportionnel à 𝑝𝑛   𝑎𝑣𝑒𝑐 𝑛 ≥ 1. 

Si 𝑛 = 1, l’erreur est finie mais non nulle. Pour 𝑛 > 1, 𝑙′𝑒𝑟𝑟𝑒𝑢𝑟 𝑑𝑒 𝑟é𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑣𝑖𝑒𝑛𝑡 𝑖𝑛𝑓𝑖𝑛𝑖𝑒. 

Le correcteur 𝐶2(𝑝) = 𝐾𝑐𝑜𝑟. 𝑝 ne convient donc pas. 

 

Le choix se portera sur le correcteur proportionnel-Intégral 𝐶(𝑝) = 𝐶1(𝑝) =
𝐾𝑖.(1+𝜏𝑖.𝑝)

𝜏𝑖.𝑝
  (𝑒𝑛 𝑝−1).  

 

𝑙𝑖𝑚
𝑝→0

  (
𝑝.𝑉. 𝐾𝜃

𝐾𝑐.
𝑲𝒊. (𝟏 + 𝝉𝒊. 𝒑)

𝝉𝒊. 𝒑
. 𝐾𝑆𝑉. 2. 𝐵. 𝑆.𝐾𝜃

. 𝑓
𝑅0

 ) = 0 

 

 

 

 

Q3.13. Question subsidiaire. Donner la forme canonique de 𝐻𝑅(𝑝)  𝑠𝑖  𝐶(𝑝) = 𝐶2(𝑝). 

On a alors, 

𝐻𝑅(𝑝) =
−𝑝. 𝑉. 𝐾𝜃

𝑝. 𝑉. (𝑀. 𝑉. 𝑝2 + 𝜆. 𝑉. 𝑝 + 𝑘. 𝑉 + 2. 𝐵. 𝑆2) + 𝐾𝑐 .𝐾𝑐𝑜𝑟. 𝑝 . 𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
 

⇔ 𝐻𝑅(𝑝) =
−𝑉.𝐾𝜃

𝑉. (𝑀. 𝑉. 𝑝2 + 𝜆. 𝑉. 𝑝 + 𝑘. 𝑉 + 2. 𝐵. 𝑆2) + 𝐾𝑐 .𝐾𝑐𝑜𝑟.𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
 

⇔ 𝐻𝑅(𝑝) =
−𝑉.𝐾𝜃

𝑀.𝑉2. 𝑝2 + 𝜆. 𝑉2. 𝑝 + 𝑘. 𝑉2 + 2.𝐵. 𝑆2. 𝑉 + 𝐾𝑐 .𝐾𝑐𝑜𝑟.𝐾𝑆𝑉 . 2. 𝐵. 𝑆. 𝐾𝜃
 

Et en mettant en facteur le terme constant du dénominateur, 

⇔ 𝐻𝑅(𝑝) =

−𝑉.𝐾𝜃
2. 𝐵. 𝑆. (𝑆. 𝑉 + 𝐾𝑐 .𝐾𝑐𝑜𝑟.𝐾𝑆𝑉 . 𝐾𝜃)

𝑀. 𝑉2

2. 𝐵. 𝑆. (𝑆. 𝑉 + 𝐾𝑐 .𝐾𝑐𝑜𝑟.𝐾𝑆𝑉 . 𝐾𝜃)
. 𝑝2 +

𝜆. 𝑉2

2. 𝐵. 𝑆. (𝑆. 𝑉 + 𝐾𝑐 .𝐾𝑐𝑜𝑟.𝐾𝑆𝑉 . 𝐾𝜃)
. 𝑝 + 1

 

 

 

 

 


