Fiche 5: Td du 12-09.

Exercice 1

Définissons une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et pour tout $n\in\mathbb{N},$ $u_{n+1}=\frac{1}{2}u_n+n-1$.

- 1. Démontrer que pour tout $n \geq 3$, u_n est positif. En déduire la limite de la suite $(u_n)_{n \in \mathbb{N}}$.
- 2. Définissons maintenant la suite $v_n = u_n 2n + 6$. Montrer que la suite (v_n) est une suite géométrique. En déduire une formule pour u_n et une formule pour la quantité $u_0 + u_1 + ... + u_n$ en fonction de l'entier n.

Exercice 2

On pose si $n \in \mathbb{N}$:

$$A = \sum_{k=0}^{n} 2^{2k} \binom{n}{2k} \quad ; \quad B = \sum_{k=0}^{n} 2^{2k} \binom{n}{2k+1}$$

Déterminer A + 2B et A - 2B et en déduire les valeurs de A et B. On rappelle que si p > n sont des entiers naturels $\binom{n}{p} = 0$.

Exercice 3

Soit $a \in]0, \pi/2[$, et définissons une suite réelle par $u_0 = 2\cos(a)$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{2 + u_n}$. Montrer que pour tout $n \in \mathbb{N}$, on a $u_n = 2\cos\left(\frac{a}{2^n}\right)$.

Exercice 4

1. Soit $n \in \mathbb{N}$; montrer que pour tout entier $k \geq 1$ on a

$$n^k + kn^{k-1} \le (n+1)^k.$$

2. Soit b un réel positif ou nul. Montrer par récurrence, que pour tout $n \geq 1$ on a

$$(1+b)^n \le 1 + \frac{nb}{1!} + \frac{(nb)^2}{2!} + \dots + \frac{(nb)^n}{n!}.$$

Exercice 5

On considère la suite $(F_n)_{n\in\mathbb{N}}$ définie par $F_{n+1}=F_n+F_{n-1}$ pour $n\geq 1$ et $F_0=0,\ F_1=1$ Montrer que si $n\in\mathbb{N}$:

$$F_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}$$

Exercice 6:

Nombres de Catalan] On définit une suite $(C_n)_{n\in\mathbb{N}}$ par $C_0=1$ et pour tout naturel $n, C_{n+1}=\sum_{k=0}^n C_k C_{n-k}$.

- 1. Calculer les cinq premiers termes de la suite;
- 2. Montrer par récurrence que pour tout $n \geq 0, C_n \geq 2^{n-1}$;
- 3. Montrer par récurrence forte que pour tout $n \ge 0$, $C_n \ge 3^{n-2}$;