Fiche 7: TD du 19-09.

Exercice 1

Mettre sous forme trigonométrique les nombres complexes suivants : a=-3+3i $b=1-i\sqrt{3}$ Mettre sous forme algébrique le complexe $a=\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$

Exercice 2

Déterminer les racines carrées des nombres 3 + 4i puis 5 + 12i sous forme algébrique.

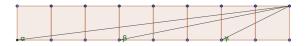
Exercice 3

- 1. Déterminer les solutions de l'équation d'inconnue réelle $x:5x-20x^3+16x^5=0$.
- 2. Pour $\theta \in \mathbb{R}$, donner une expression de $\sin(5\theta)$ en fonction de $\sin(\theta)$ (on pourra développer $e^{i5\theta}$).
- 3. Montrer alors que : $\sin\left(\frac{\pi}{5}\right) = \sqrt{\frac{5-\sqrt{5}}{8}}$.
- 4. En déduire que :

$$\cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5} - 1}{4}$$

Exercice 4

On cherche à résoudre l'équation (e):


$$P(x) = x^3 - x - \frac{1}{3}$$

d'inconnue x réelle.

- 1. Montrer par une étude de fonction que (e) a 3 solutions réelles et 3 seulement $x_1 < x_2 < x_3$ qui sont toutes dans l'intervalle [-2, 2]
- 2. Calculer, si $\theta \in \mathbb{R}$, $\cos(3\theta)$ en fonction de $\cos(\theta)$.
- 3. Simplifier, si $\theta \in \mathbb{R} : P\left(\frac{2}{\sqrt{3}}\cos(\theta)\right)$
- 4. En déduire des expression trigonométriques de x_1 , x_2 et x_3 .

Exercice 5

Soit la figure suivante : on a dessiné 8 carrés et repéré les angles α , β , γ .

Montrer que $\alpha + \beta + \gamma = \frac{\pi}{4}$ (On pourra écrire des nombres complexes z_1 , z_2 et z_3 dont les arguments sont α , β et γ et calculer $z_1 * z_2 * z_3$).

Exercice 6

Trouver tous les nombres complexes z tels que les points d'affixes z, z^2 et z^4 soient alignés.