ANALOGIES ET DIFFERENCES /67

PHYSIQUE I : Interprétation d'un mouvement dans deux référentiels

A - Etude dans le référentiel R du laboratoire :

A-1 Les forces sont : le poids, la réaction et la force élastique.

Le poids et la réaction du support se compensent.

 $\frac{d\overrightarrow{L_o}}{dt} = \overrightarrow{OM} \wedge \overrightarrow{f} = \overrightarrow{0}$: If y a conservation du moment cinétique.

A-2-1
$$\vec{L}_{o} = cte = \vec{L}_{o}(t=0) = \vec{0}$$
:

Le mouvement est rectiligne suivant l'axe Ox.

A-2-2 D'après la relation fondamentale, $m \frac{d^2 l}{dt^2} + k (l - l_o) = 0$: $\frac{d^2 l}{dt^2} + \frac{k}{m} (l - l_o) = 0$

 $l = l_o + A\cos(\omega_o t) + B\sin(\omega_o t)$ avec $\omega_o = \sqrt{\frac{k}{m}}$.

A t=0, $l = 1.2l_o$ et $\frac{dl}{dt} = 0$ alors A=0.2 l_o et B = 0: $l = l_o + 0.2l_o \cos(\omega_o t)$

et
$$l \in [0, 8l_o, 1, 2l_o]$$

A-3-1
$$\overrightarrow{L_o} = mr^2 \left(\frac{d\theta}{dt} \right) \overrightarrow{k}$$

$$\overrightarrow{L_o} = cte = \overrightarrow{L_o}(t=0) = ml_1^2 \omega \overrightarrow{k}$$

A-3-2 La tension dérive d'une énergie potentielle, $E_p = \frac{1}{2}k(r-l_o)^2$

Il n'y a pas à tenir compte de l'énergie potentielle de pesanteur car le mouvement est dans un plan perpendiculaire à \vec{g} . E_p est constante.

Le poids et la réaction ne travaillent pas ici. Il y a conservation de l'énergie mécanique car la tension dérive d'une énergie potentielle.

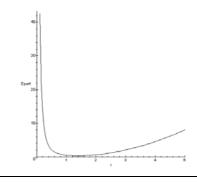
$$E_{m} = \frac{1}{2}ml_{1}^{2}\omega^{2} + \frac{1}{2}k(l_{1} - l_{o})^{2}$$

$$E_{m} = \frac{1}{2} m \left(\left(\frac{dr}{dt} \right)^{2} + r^{2} \left(\frac{d\theta}{dt} \right)^{2} \right) + \frac{1}{2} k \left(r - l_{o} \right)^{2}.$$

A-3-3
$$E_m = \frac{1}{2}m\left(\frac{dr}{dt}\right)^2 + \left(\frac{1}{2}m\frac{l_1^4\omega^2}{r^2} + \frac{1}{2}k(r-l_o)^2\right)$$

$$E_{p_{eff}} = \frac{1}{2} m \frac{l_1^4 \omega^2}{r^2} + \frac{1}{2} k (r - l_o)^2$$

$$NB : (G) = graphe.$$

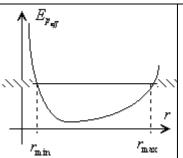


A-3-4 Si on superpose au graphe précédent, la droite E_m =cte, la trajectoire est toujours bornée entre 2 cercles de rayons r_{min} et r_{max} . La masse ne peut donc pas s'éloigner indéfiniment.

Autre méthode possible :

Comme L est constant, OM est borné donc M ne peut aller à l'infini

NB: Chaque correcteur appréciera une réponse à sa juste valeur.



A-3-5 La vitesse ne peut s'annuler à cause de la conservation du moment cinétique.

A-3-6 La distance r ne peut s'annuler à cause de la conservation du moment cinétique.

On peut le constater aussi sur la barrière de potentielle, r>r_{min}.

A-4-1 Si $r = l_1$ est constant, à cause de la conservation du moment cinétique, $\frac{d\theta}{dt} = \frac{ml_1^2\omega}{mr^2} = \omega$: le mouvement est circulaire uniforme.

A-4-2 Le mouvement circulaire correspond au minimum de $E_{p_{eff}}$ pour r= l_1 .

Or,
$$\frac{dE_{p_{eff}}}{dr} = -m\frac{l_1^4\omega^2}{r^3} + k(r - l_o) = 0$$
 pour r=l₁ alors $m\frac{l_1^4\omega^2}{l_1^3} = k(l_1 - l_o)$: $(k - m\omega^2)l_1 = kl_o$:

$$l_1 = \frac{kl_o}{k - m\omega^2} \text{ si } \omega < \sqrt{\frac{k}{m}}$$

Autre méthode

On peut utiliser la base de Frenet : $m \frac{v^2}{l_1} = k (l_1 - l_o) = m \frac{l_1^2 \omega^2}{l_1}$ alors $l_1 = \frac{k l_o}{k - m \omega^2}$

B - Etude dans un référentiel R' en rotation uniforme autour d'un axe fixe :

B-1 $\overrightarrow{f_{ie}} = m\omega^2 r \overrightarrow{e_r}$; $\overrightarrow{f_{ic}} = -2m\omega \overrightarrow{k} \wedge \frac{dr}{dt} \overrightarrow{e_r} = -2m\omega \frac{dr}{dt} \overrightarrow{e_\theta}$

B-2 $\overrightarrow{f_{ie}} = m\omega^2 \overrightarrow{re_r}$ dérive d'une énergie potentielle $E_p = -\frac{1}{2}m\omega^2 OM^2 = -\frac{1}{2}m\omega^2 r^2 + \text{démonstration(D)}$

B-3 La force de Coriolis ne travaille pas car orthogonale à la vitesse

B-4
$$E_p = \frac{1}{2}k(r - l_o)^2 - \frac{1}{2}m\omega^2 r^2$$

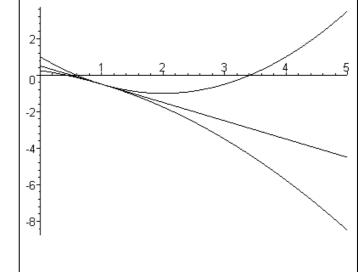
$$\frac{dE_p}{dr} = k(r - l_o) - m\omega^2 r \text{ soit}$$

$$\frac{dE_p}{dr} = (k - m\omega^2)r - kl_o$$

On a 3 cas possibles:

•
$$\omega = \sqrt{\frac{k}{m}}$$

•
$$\omega > \sqrt{\frac{k}{m}}$$



B-5 L'équilibre correspond à $\frac{dE_p}{dr} = 0$ alors $k(l_2 - l_o) = m\omega^2 l_2$: $l_2 = \frac{kl_o}{k - m\omega^2}$ si $\omega < \sqrt{\frac{k}{m}}$.

L'équilibre est stable car on a un minimum d'énergie potentielle.

Le mouvement est circulaire uniforme.

B-6 On trouve l₁=l₂ : les deux référentiels sont donc équivalents pour le mouvement circulaire et uniquement pour ce cas bien sûr!!

PHYSIQUE II: Transitoire thermique et électrique

C - Transitoire électrique :

C-1 $u_c(0^+) = 0$

car il y a conservation de l'énergie donc de la tension;

$$i\left(0^{+}\right) = \frac{E}{R + R_{g}}$$

C-2
$$E = (R + R_g)C\frac{du_c}{dt} + u_c$$

C-3 $\tau = (R + R_g)C$:

temps caractéristique du transitoire : Après quelques τ , on atteint le régime permanent.

C-4
$$u_c(t) = E\left(1 - \exp\left(-\frac{t}{\tau}\right)\right)$$

C-5
$$0.9E = E\left(1 - \exp\left(-\frac{t_1}{\tau}\right)\right)$$
 alors $t_1 = \ln(10)\tau = 2.3\tau$

C-6 (2) e(t) et (1) $u_c(t)$

car il y a continuité de u_c

C-7 Couplage DC (AC "alternative current " étant réservé pour un signal sinusoïdal)

C-8 Au point P, on a un diviseur de tension :
$$u_c = \frac{RE}{R + R_o} = \frac{2}{3}E$$
 :

$$R = 2R_g$$
: $R_g = 50\Omega$

On mesure le temps de montée : t_m =4.5*0.1=0.45 ms soit τ =0.2 ms

Alors
$$C = \frac{\tau}{\left(R + R_g\right)} = 1.3 \mu F$$
 (tolérance entre 1 et 1.5 μ F)

C-10 II faut que T>8*2*0.1=1.6 ms soit f<625 Hz.

C-11 On permute R et C ou on utilise la touche (-CH1) et (ADD) de l'oscilloscope ou on dispose d'oscilloscopes à entrée différentielle,.....

D - Transitoire thermique :

D-1 A pression constante, $\delta Q = dH$.

On peut aussi accepter $\delta Q = dU$ car les liquides sont quasiment incompressibles.

D-2
$$dH = (\Gamma + mc)dT = \delta Q = -k(T - T_{ext})dt + \frac{U^2}{R}dt$$

PS : On peut aussi admettre $dH = \delta Q + \delta W_e = -k(T - T_{ext})dt + \frac{U^2}{R}dt$

Alors
$$\sqrt{\frac{dT}{dt} + \frac{k}{\Gamma + mc}T} = \frac{k}{\Gamma + mc} \left(\frac{U^2}{Rk} + T_{ext}\right)$$
 alors

PHYSIQUE III : Les champs électrostatiques et magnétostatiques

E- Champ électrostatique crée par une spire :

E-1 Champ sur l'axe :

E-2 Champ au voisinage de l'axe :

E-2-1 Le plan passant par l'axe Oz laisse la spire invariante donc E est appartient au plan de symétrie donc $E_{\theta}=0$.

E-2-2 Toute rotation autour de l'axe Oz à r et z fixés ne modifie pas le champ \vec{E} donc E ne dépend pas de θ .

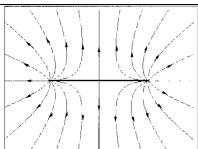
E-2-3 Le champ \vec{E} est à flux conservatif en l'absence de charge car d'après le théorème de Gauss :

$$\phi = \iiint_{(S)} \vec{E} \cdot \vec{dS} = \frac{Q_{\text{int}}}{\varepsilon_o} = 0$$

Le champ \vec{E} est toujours à circulation conservative. E-2-4 Si on considère un cylindre de hauteur dz et <u>de section circulaire alors</u>

$$E(z+dz)\pi r^2 - E(z)\pi r^2 + 2\pi r dz E_r(r,z) = 0. \text{ Alors } \boxed{E_r(r,z) = -\frac{r}{2} \frac{dE_z(z)}{dz}}$$

$$\frac{dE}{dz} = \frac{\lambda R}{2\varepsilon_o} \left(\frac{1}{(z^2 + R^2)^{\frac{5}{2}}} - \frac{3}{2} \frac{2z^2}{(z^2 + R^2)^{\frac{5}{2}}} \right) \text{soit} \quad \frac{dE}{dz} = \frac{\lambda R(R^2 - 2z^2)}{2\varepsilon_o(z^2 + R^2)^{\frac{5}{2}}} : E_r(r, z) = -\frac{r}{2} \frac{dE}{dz} = -\frac{\lambda rR(R^2 - 2z^2)}{4\varepsilon_o(z^2 + R^2)^{\frac{5}{2}}}$$



Les lignes de champ divergent de l'anneau.

E-2-5-2 A grande distance, la distribution est équivalente à une charge ponctuelle. On aura des droites issues de O.

E-2-5-3 Les équipotentielles tendent vers des sphères (ou des cercles en coupe)

E-2-5-4 Sur une équipotentielle, V=cte alors dV=0 alors $\vec{E}.d\vec{l}$ =0 : \vec{E} est orthogonal à l'équipotentielle. On a une équipotentielle à 2 nappes donc le champ E doit être nul à l'intersection ce qui est le cas.

E-2-5-5 E_r est <0 si $z < \frac{R}{\sqrt{2}}$ et >0 au delà donc E s'approche de l'axe avant de s'éloigner.

F- Champ magnétostatique créé par une spire parcourue par un courant I:

F-1 Champ sur l'axe:

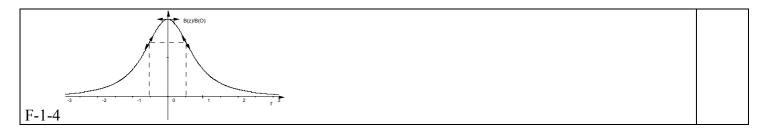
F-1-1 Si on fait une symétrie par rapport au plan P passant par l'axe du disque, celui-ci transforme le courant en son opposé alors \vec{B} est invariant par cette symétrie donc \vec{B} appartient à l'axe: $\vec{B} = B\vec{k}$

F-1-2 Une symétrie par rapport à la distribution des courants transforme z en -z sans modifier B donc

F-1-3
$$\vec{B}.\vec{k} = B = \frac{\mu_o I}{4\pi} \iint_{circuit} \left(d\vec{l} \wedge \frac{\vec{u}}{r^2} \right) \vec{k}$$
. Or, $r^2 = R^2 + z^2$ est une constante dans l'intégration.

$$(\vec{dl} \wedge \vec{\mathbf{u}})\vec{\mathbf{k}} = dl \sin \alpha : \sin \theta = \frac{R}{\sqrt{R^2 + z^2}} \text{ alors } \mathbf{B}(\mathbf{z}) = \int_0^{2\pi} \frac{\mu_o I}{4\pi} \sin \alpha \frac{R d\phi}{R^2 + z^2} = \frac{\mu_o I R^2}{2(\sqrt{R^2 + z^2})^3} = \frac{\mu_o I}{2R} \sin^3 \alpha$$

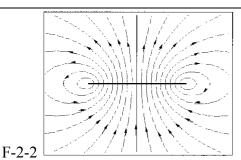
$$B(z) = \frac{\mu_o I}{2R} \sin^3 \alpha = B_o \frac{1}{\left(\sqrt{1 + \frac{z^2}{R^2}}\right)^3} \text{ avec } \tan(\alpha) = \frac{R}{z} \text{ . Au centre, } \alpha = \frac{\pi}{2} \operatorname{donc} \left[\overrightarrow{B_o} = \frac{\mu_o I}{2R} \overrightarrow{k} \right]$$



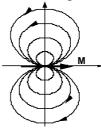
F-2 Champ au voisinage de l'axe :

F-2-1 Le plan passant par l'axe Oz laisse la spire invariante mais transforme I en -I, comme B est antisymétrique appartient au plan de symétrie donc $B_{\theta} = 0$.

Toute rotation autour de l'axe Oz à r et z fixés ne modifie pas le champ \overrightarrow{B} donc B ne dépend pas de θ.



F-2-3 On obtient un dipôle magnétique :



- F-2-4 Les lignes de champs électrostatiques divergent des sources alors que les lignes de champs magnétiques circulent autour des sources.
- F-2-5 Le champ \vec{B} est toujours à flux conservatif et au voisinage de l'axe où il n'y a pas de courant, \vec{B} est à circulation conservative. On a les mêmes propriétés que pour le champ \overline{E} donc les mêmes conclusions.

$$B_r(r,z) = -\frac{r}{2} \frac{dB_z(z)}{dz}$$

conclusions.

$$B_{r}(r,z) = -\frac{r}{2} \frac{dB_{z}(z)}{dz}$$
F-2-6 $B_{r}(r,z) = -\frac{r}{2} \frac{dB_{z}(z)}{dz} = +B_{o} \frac{3zr}{2R^{2}} \frac{1}{\left(\sqrt{1 + \frac{z^{2}}{R^{2}}}\right)^{5}}$

CHIMIE: Autour de l'ammoniac/33

I- Structure

$I-1 Z=7 : N(1s)^2(2s)$	$(2(2p)^3)$				
I-2					
<u>—</u> Н-N-Н			— (+) H-O-N=O O		
NH ₃ : H;	HNO_2 :	O=N-O— H	HNO ₃ :	<u>-</u>	
I-3 molécule	p+q	Polyèdre de coordination XpEq	formule structurale	forme de la molécule AXm	
NH ₃	4	tétraèdre	AX3E1	pyramide à base triangulaire	
HNO ₃	3	triangle	AX3E0	triangulaire équilatérale	
HNO ₂	3	équilatéral	AX2E1	Coudée à environ 120°	
I-4 Contrairement at l'octet. NF6 ⁻ ne peut	·	qui appartient à la d	euxième période d	loit vérifier la règle de	

II - Les propriétés acido-basiques de NH₃

II-1 $NH_3 + H_3O^+ \cap NH_4^+ + H_2O$:				
La constante d'équilibre est $K = 10^{9.2} >> 1$: La réaction est quasiment totale.				
II-2 Les deux pentes sont >0 mais la seconde pente est plus élevée car la mobilité de H_3O^+ est plus				
élevée que NH_4^+ .				
II-3 A l'équivalence, $C_aV_a = C_bV_b$ alors comme $V_a = 9$ mL alors $C_b = 0.09 mol.L^{-1}$				

III - Les propriétés complexantes de NH3: Mesure de log(β₄) pour Cu(NH₃)₄²⁺: (/14.5)

III-1
$$\beta_{1} = \frac{\left[Cu(NH_{3})^{2+}\right]}{\left[NH_{3}\right]\left[Cu^{2+}\right]}; \beta_{2} = \frac{\left[Cu(NH_{3})^{2+}\right]}{\left[NH_{3}\right]^{2}\left[Cu^{2+}\right]}; \beta_{3} = \frac{\left[Cu(NH_{3})^{2+}\right]}{\left[NH_{3}\right]^{3}\left[Cu^{2+}\right]}; \beta_{4} = \frac{\left[Cu(NH_{3})^{2+}\right]}{\left[NH_{3}\right]^{4}\left[Cu^{2+}\right]}$$

$$K_{d1} = \frac{\left[NH_{3}\right]\left[Cu^{2+}\right]}{\left[Cu(NH_{3})^{2+}\right]}; K_{d2} = \frac{\left[NH_{3}\right]\left[Cu(NH_{3})^{2+}\right]}{\left[Cu(NH_{3})^{2+}\right]}; K_{d3} = \frac{\left[NH_{3}\right]\left[Cu(NH_{3})^{2+}\right]}{\left[Cu(NH_{3})^{3+}\right]};$$

$$K_{d4} = \frac{\left[NH_{3}\right]\left[Cu(NH_{3})^{2+}\right]}{\left[Cu(NH_{3})^{2+}\right]} \text{ alors } K_{d1} = \frac{1}{\beta_{1}}; K_{d2} = \frac{\beta_{1}}{\beta_{2}}; K_{d3} = \frac{\beta_{2}}{\beta_{3}}; K_{d4} = \frac{\beta_{3}}{\beta_{4}}$$

$$\text{alors } pK_{d1} = \log(\beta_{1}) = 4.2; pK_{d2} = \log(\beta_{2}) - \log(\beta_{1}) = 3.4; pK_{d3} = \log(\beta_{3}) - \log(\beta_{2}) = 3$$

$$pK_{d4} = \log(\beta_{4}) - \log(\beta_{3}) = 2$$

 $Cu(NH_3)_4^{2+}$ | $Cu(NH_3)_3^{2+}$ | $Cu(NH_3)_2^{2+}$ | $Cu(NH_3)_2^{2+}$ | $Cu(NH_3)_2^{2+}$ | Cu^{2+} pNH_2 3.4 4.2 III-2 III-3-1 L'ammoniaque est en excès et les espèces intermédiaires ne sont jamais majoritaires donc on a la forme la plus stable : $Cu(NH_3)_4^{2+}$ $Cu^{2+} + 4NH_3 \Box \Box Cu(NH_3)_4^{2+}$ III-3-2 Attention: On a une dilution d'un facteur 2 lors du mélange: La réaction étant fortement avancée: $Cu^{2+} + 4NH_3 \Box \Box \Box$ $Cu(NH_3)_4^{2+}$ 0,005 0,5 ε 0.4 CI C_{eq} $[NH_3] = 0,48mol.L^{-1}; \quad \left[Cu(NH_3)_4^{2+}\right] = 0,005mol.L^{-1}; \quad \left[Cu^{2+}\right] = \frac{\left[Cu(NH_3)_4^{2+}\right]}{\beta[NH_3]^4} = 2.36.10^{-14}mol/L$ III-4-1 $E = E^{\circ}(Cu^{2+}/Cu) + 0.03\log([Cu^{2+}])$ Alors, $U = E^{\circ}(Cu^{2+}/Cu) + 0.03\log[Cu^{2+}]_A - E^{\circ}(Cu^{2+}/Cu) + 0.03\log[Cu^{2+}]_B$ $U = 0.03 \log \left(\frac{[Cu^{2+}]_A}{[Cu^{2+}]_B} \right) = 349 mV$ III-4-2 (+) $Cu|Cu^{2+}||Cu(NH_3)|_{A}^{2+}|Cu(-)$ III-4-3 A la cathode (+): $Cu^{2+} + 2\acute{e} \longrightarrow Cu$ A l'anode (-): $Cu + 4NH_3 \longrightarrow Cu(NH_3)_4^{2+} + 2\acute{e}$ Le bilan : $Cu^{2+} + 4NH_3 \longrightarrow Cu(NH_3)_{L}^{2+}$ III-4-4 Le pont salin assure la conduction des ions.

IV - Les propriétés thermodynamiques de NH3:

La réaction : N₂ + 3 H₂ \Leftrightarrow 2 NH₃

IV-1 $\Delta_r H^{\circ}(298) = 2\Delta_r H^{\circ}(NH_3) = -92, 42kJ.mol^{-1}$ IV-2 $\Delta_r H^{\circ}(770) = \Delta_r H^{\circ}(298) + \int_{298}^{770} \left(2Cp_{NH_3} - Cp_{N_2} - 3Cp_{H_2}\right) dT$ $\Delta_r H^{\circ}(770) = \Delta_r H^{\circ}(298) + \left(2Cp_{NH_3} - Cp_{N_2} - 3Cp_{H_2}\right) \left(770 - 298\right)$ $\Delta_r H^{\circ}(1000) = -120.85kJ/mol$ La réaction est exothermique.

IV-3 $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$ IV-4-1 La probabilité de collision entre 3 molécules est nulle.

IV-4-2 Le mécanisme est par stade car l'intermédiaire créé à l'étape i et consommé à l'état i+1

IV-4-3 $\frac{d[NO_2]}{dt} = 2k_2[N_2O_2][O_2]$. Or , $\frac{[N_2O_2]}{[NO]^2} = \frac{k_1}{k_{-1}}$ alors $v = k_2 \frac{k_1}{k_{-1}}[NO]^2[O_2]$: ordre 3