Fiche 10: TD du 26-09.

Exercice 1

On cherche à résoudre l'équation

$$z^{3} + (1+i)z^{2} + (i-1)z - i = 0.$$

- 1. Rechercher une solution imaginaire pure ai à l'équation avec $a \in \mathbb{R}$.
- 2. Déterminer $b, c \in \mathbb{R}$ tels que

$$z^{3} + (1+i)z^{2} + (i-1)z - i = (z-ai)(z^{2} + bz + c).$$

- 3. En déduire toutes les solutions de l'équation.
- 4. Sur le même modèle, résoudre l'équation $z^3 (2+i)z^2 + 2(1+i)z 2i = 0$.

Exercice 2

- 1. Établir la formule de trigonométrie $\cos^4(\theta) = \cos(4\theta)/8 + \cos(2\theta)/2 + 3/8$.
- 2. Fournir une relation analogue pour $\sin^4(\theta)$. $\cos^5(\theta)$, $\sin^5(\theta)$ et $\cos^2(\theta)\sin^3(\theta)$.

Exercice 3

On cherche à déterminer tous les réels t tels que

$$\cos(t) = \frac{1 + \sqrt{5}}{4}.$$

- 1. Démontrer qu'il existe une unique solution dans l'intervalle $]0, \pi/4[$. Dans la suite, on notera cette solution t_0 .
- 2. Calculer $cos(2t_0)$, puis démontrer que $cos(4t_0) = -cos(t_0)$.
- 3. En déduire t_0 .
- 4. Résoudre l'équation.

Exercice 4

Soit $n \in \mathbb{N}^*$ et $x, y \in \mathbb{R}$. Calculer les sommes suivantes :

1.
$$\sum_{k=0}^{n} {n \choose k} \cos(x+ky);$$

2.
$$S = \sum_{k=0}^{n} \frac{\cos(kx)}{(\cos x)^k}$$
 et $T = \sum_{k=0}^{n} \frac{\sin(kx)}{(\cos x)^k}$, avec $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$;

3.
$$D_n = \sum_{k=-n}^n e^{ikx}$$
, avec $x \neq 0 + 2k\pi$, $k \in \mathbb{Z}$.

Exercice 5

Dans le plan complexe orienté on considère A, B, C, D 4 points situés dans cet ordre sur le cercle trigonométrique. On note P, Q, R, S les milieux respectifs des arcs (orientés) AB, BC, CD, DA de Γ .

Montrer que les segments [PR] et [QS] sont orthogonaux.